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With the exception of the stratified layer approximation, the problem of wave propagation due to
localized sources in nonuniform magneto-ionic media has received little attention. In previous work,
the coupling between natural modes of the homogeneous gyrotropic medium has restricted the useful
range of the analysis to the slowly varying case. In the present investigation, an £ and H mode repre-
sentation is used which results in a type of coupling independent of the rate of variation in the medium,
thereby permitting the study of regions with strong inhomogeneities along the gyrotropic axis.

The coupling between the E and H modes now arises due to the deviation of the gyromagnetic
parameter Y=w./o from zero or infinite values. The uncoupled problems are therefore associated
with the nongyrotropic (Y=0 or Y=®) but nonuniform cases, and the procedure converges rapidly
when Y is large or small, even for rapid spatial variations of the medium parameters.

An iterative expansion is employed to deduce the gyrotropic corrections, and the procedure is
phrased systematically in transmission line form. The analysis is applied to the evaluation of the far
field radiated by an electric current element exterior to a semi-infinite, nonuniform plasma region.

1. Introduction

A fundamental difficulty in the analysis of wave propagation in a continuously stratified mag-
neto-ionic medium is due to the coupling among the four wave types (upgoing and downgoing,
ordinary and extraordinary) which may propagate independently when the medium is homogeneous.
Four coupled first-order differential equations may be derived for the specification of the wave
functions [Budden, 1961; Clemmow and Heading, 1954] and while a formal exact solution may be
found under special conditions [H. Keller, 1953], the determination of explicit results has generally
been based on perturbation techniques which converge rapidly when the coupling is small. Such
approximation procedures have utilized as unperturbed solutions the magneto-ionic waves in a
homogeneous region, with the coupling produced by the variation of the medium parameters
along the axis of stratification. While the coupling is minimized when the variation is small,
thereby permitting an approximate analysis of the four equations for the wave functions [Clemmow
and Heading, 1954], there exist regions even under these conditions wherein two or more wave types
may interact strongly (for example, near reflection points). A modification may then be employed
by which the problem is phrased generally in terms of two coupled second-order equations
[Hougardy, 1961]; the two solutions of each equation (for example, upgoing and downgoing waves
of one type) may then be strongly coupled, whereas, interaction between the two pairs is weak.
The analysis in all of these considerations is built around the unperturbed solutions for the homo-
geneous case, thereby making slow variation an essential requirement.

! The material for this paper has been taken from the dissertation of one of the authors, S. H. Gross, submitted to the Faculty of the Polytechnic Institute of
Brooklyn in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 1964.
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An alternative viewpoint is employed in the present treatment where the unperturbed situation
is one for which the magneto-ionic dielectric tensor has a diagonal representation. In a coordinate
system oriented so that the z-axis coincides with the direction of the d-c magnetic field B, this
occurs when B=o (uniaxial case) and, of course, also when B =0 (isotropic case). If the uniaxial
medium parameters vary only (but arbitrarily) along z, four uncoupled wave solutions may be
derived; the coupling in this instance is due to finite, rather than infinite, values of B (or of the
gyrofrequency w.). The present formulation is therefore useful for the study of the influence
of strong gradients in the constitutive parameters provided, however, that . is large in comparison
to the applied frequency w and the plasma frequency w,. (The constraint on w, relative to w. is
actually less severe, see sec. 2.3b.) While this regime may exhibit strong anisotropic effects,
analogous considerations apply as well to the almost isotropic range where w, is small.

The analysis proceeds from a guided wave viewpoint by which the field is decomposed into
E and H modes with respect to the direction of B. The modal amplitudes are found to satisfy
conventional transmission line equations which are coupled by the off-diagonal term in the dielectric
tensor. A solution of these equations is achieved by an iterative scheme which converges rapidly
when o, is very large or small. The procedure is illustrated for the case of a transverse electric
current dipole embedded in a magneto-ionic medium with z-dependent electron density, with field
expressions derived for the unperturbed situation (w. =) as well as the first gyrotropic correction,
0(1/w.). Explicit results are summarized for the case of a half-space with constant density gradient,
with the source located in the exterior region.

A variety of other applications for Y > 1 and Y < 1 have also been studied in detail and will
be submitted for publication in separate form. It may be mentioned that although the case
Y <1 pertains more directly to the ionosphere than Y > 1, the latter has been chosen for illustration,
since even the unperturbed solution (Y=o) may exhibit strong anisotropic effects.

2. Formal Solution

As mentioned earlier, the direction of nonuniformity and the steady magnetic field are taken
along the z-axis of a right-handed Cartesian coordinate system, so that the configuration in the
x-y plane is uniform and infinite in extent. The relative permittivity tensor € relating the electric
displacement vector and the electric field intensity vector in the nonuniform, gyrotropic medium
may be expressed as follows [Budden, 1961]:

/€1 —iex 0
= i€2 €1 0
0 0 €3 (1)
where the double bar above the symbol denotes a tensor, the expression on the right is its matrix
representation and the elements of the matrix €;, €2, and €3 are permitted to be functions of z.
The permeability of the medium is taken as that of free space. Throughout this paper the implied
time dependence is taken as e~i®!, where w is the radian frequency of the source, and the steady
magnetic field is taken along the negative z-axis.
The quantities €1, €2, and €3 for a lossless gyrotropic plasma medium have the form [Budden,
1961]

X
“«=l Ty
0 XY )
=0z
62:1_X
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where:

X=w}/w?

Y=w./o

wp,=plasma frequency = e

p—P q y o
eB

s

we=gyromagnetic frequency = ‘*—
m

B =steady magnetic field,

€o is the permittivity of free space, e and m are the electronic charge and mass and NV is the electron
density of the medium.

2.1. Reduction of the Maxwell Field Equations

It has been shown elsewhere [Arbel and Felsen, 1963] that the Maxwell equations for the
transverse field components may be written as follows:

_ . o o
_%z—LwG()(Gr'f'k—zvt Vo) - zo X Ec+20 X J
(3)
_aa_E;’:ino(i‘f‘zge—“V,V,).Z_(,X]__I’_;“XM[
- 0

where the subscript ¢ is used to designate vector components transverse to z, V, =V —z, 3
z

?=w’uo€o, £ and H are the electric and magnetic field intensity vectors, o is the permeability

of free space, l; is the transverse unit dyadic, zo is the unit vector along z, and € is the transverse

= 61_i€2
Gr=1| o :
L€ €

tensor givey by:

Furthermore,

a
Jt_Jl_iw/-L()

VM. X z,

M{ZM1+. 1 V,szzo,

LWEpE3

are equivalent transverse source distributions whose values are expressed in terms of those of
the specified electric and magnetic vector current densities J and M, respectively. The z com-
ponents of the field vectors, E. and H., may be expressed in terms of the transverse field com-
ponents and the z components of the applied current densities [Arbel and Felsen, 1963].

To solve (3) in a transversely unbounded region, one seeks a representation for the transverse
field vectors E; and H, in terms of a complete set of vector eigenfunctions. If these eigenfunctions
belong to a “characteristic” set for the configuration in question, they are solutions of the source-
free field equations, satisfy simple orthogonality conditions, and their z-dependence in a homo-
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geneous medium is of the form exp(=ik,z), where k, is the longitudinal wave number and the
subscript distinguishes the nth mode. Such a set of functions has been found by Arbel and
Felsen [1963] and utilized by them for the representation of fields in piecewise homogeneous
regions; the resulting “ordinary” and ‘“‘extraordinary’” modes, familiar from conventional magneto-
ionic theory, are uncoupled in each homogeneous section but couple at the boundaries. If the
eigenfunctions turn out to be independent of the properties of the medium in the transverse plane,
then they lead to an uncoupled description even in the presence of continuous stratification. This
is not the case for the characteristic modes and leads to the coupling difficulties mentioned in the
introduction.

By the alternative approach explored in this paper, the mode set is chosen so as to satisfy the
source-free field equations when the dielectric tensor is diagonal (uniaxial or isotropic case). In
this instance, the resulting eigenfunctions are indeed independent of the transverse medium para-
meters (they are in fact identical to the transverse E and H mode functions for isotropic regions)
and thus lead to an uncoupled representation for arbitrary €(z) and €3(z) when €, =0.

We therefore assume the field representation [Felsen, 1964, sec. 2.2]

E.= 2 Vi(@)e,(p) + 2 Vi@enp),
(4)

H =3I)(2)h},(p) + Sk (p),
n n

where e, and Ay, are the transverse E and H mode functions [see (7) and (15)], the V's and I's are
voltage and current coefficients (yet to be determined), hy,=2z¢ X em, p is the transverse position
vector, and the single and double primes refer to E modes and H modes, respectively. The
summation is over all values of the modal index n (a double index), which is wholly or partially
continuous for the present case of an unbounded cross section. For example, if the cross section
is described in cylindrical coordinates the eigenfunctions and eigenvalues take the form given
in (15) and the first paragraph of section 2.3a.

On inserting (4) in place of the transverse field components in (3), and using the known orthog-
onality properties of the eigenvectors and the equivalence e/, =h/, e/, =—h,, for modes in an un-
bounded transverse cross section [Felsen, 1964], one obtains the following two sets of differential
equations for the modal amplitudes:

dv!
= dz":— w2+

} ®)

dl . ; w_ it
——d—f=— Z"LV + wepeV )+ 15,

- " 3
d_’{n K"Z" + "

dz n cnn

(6)

I" A .
B B YT — weoesl )+ i

A 'Zn "

where k, and Z., are the modal propagation constant and characteristic impedance, respectively,
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and ke is the transverse eigenvalue corresponding to the modal index n. (In a cylindrical coordi-
nate representation, ki, is equal to the radial eigenvalue k.) The quantities i/, v,, 1,, and v} are
the modal voltage and current sources which are obtained from the current densities J and M as

follows:

iy= [f dSJi-ept,ig= [ dSJc- e,
s S

' o 77 " o " 7

o= ST dSM, k¥, ol= [[ dSM,- k', ( @)
S S

e—t,n_ﬁtlfll Zt(bn’;tzz_ﬁgn:—ﬁt’rlzxzo’ )

where the integrals are taken over that portion of the transverse cross section which is occupied
by the sources. ¢, denotes a normalized scalar eigenfunction (see beginning of sec. 2.3a).

Equation (5) contains the differential equations for the £ mode voltage and current coeffi-
cients, whereas (6) is for the H mode quantities. Each set contains a term which cross couples
the modes, the coupling coefficient being the same in both cases, namely weoes. Consequently,
the cross coupling is proportional to the degree of gyrotropy of the medium as represented by e
and exists whenever this parameter is nonvanishing. When €, =0, (5) and (6) reduce to the uni-
axial forms [Felsen, 1964] and are uncoupled. For the isotropic medium, €;=¢€; and €2=0, in
which instance the modes are uncoupled and k, =k, as expected. Since €, €, and €3 are func-
tions of z, (5) and (6) are differential equations with variable coefficients. They may be inter-
preted in network form, with V" and I’ representing the voltage and current on an £ mode non-
uniform transmission line; V)" and [, denote the corresponding H mode quantities. In such a
representation the lines are coupled everywhere along their lengths, and are excited by the genera-
tors, in', vn', 1", and v,".

Since € in (2) contains X and Y but not their derivatives, cross coupling in the £ and H mode
representation does not depend explicitly on the rate of variation of the medium. This result is
unlike that obtained from the formulation in terms of ordinary and extraordinary modes in which
the rate of variation enters directly into the coupling terms [Fosterling, 1942; Clemmow and
Heading, 1954]. Consequently, the £ and H mode coupling coefficient is not necessarily large
for large gradients, and the utility of the solution need not be restricted to the slowly varying case.

Upon solving (5) and (6) simultaneously for the modal voltages and currents (subject to as yet
unspecified boundary conditions) and then placing these quantities into (4) we obtain in principle,
the formal solution for the transverse fields. The z components are then derived via [Arbel and
Felsen, 1963]:

Ez A 'l Etn .
LWENE3 N LWE(E3
8)
1 ~ M (
H,=—- EV;:Vt'elﬂ‘F. 2
lwwo oo

Because of the complication introduced by the cross coupling terms in (5) and (6), it is in general
quite difficult to provide explicit expressions for the field components in a nonuniform, gyrotropic
medium. However, by making €; small enough, the equations are amenable to treatment by an
iterative process, as will be demonstrated. It may also be noted [Gross, 1964] that it is possible
to transform (5) and (6) so that the resultant modes are uncoupled and independent when the
medium is assumed uniform but gyrotropic. The solution in this case is the same as that found by
Arbel and Felsen [1963].
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2.2. Iterative Expansion

From (2), it is seen that €; will be small if Y <1 or ¥Y> 1. The expansion will be developed for
the latter case only, but may be carried out in an analogous fashion for the former case [Gross,
1964].

Assuming that Y is a very large but finite constant (i.e., the inhomogeneity rests solely in the
parameter X), we represent the modal voltage and current coefficients in series of powers of 1/Y
as follows (the modal indices n will be omitted for convenience):

sV S In
V_ mE:O Ym’ N mE::O Ym (9)

and a similar expansion is performed for €; and e (e; is independent of ¥). On inserting these
expansions into (5) and (6) and equating terms with equal powers of 1/Y, we obtain a set of dif-
ferential equations for each iterative order. The zeroth order equations are those for the uniaxial
voltage and current coeflicients,

Wy BO=X -k, dl

dz ° we(l—X) ° ? dz_lweoV":l ’

. (10)
dav’ . " " dl} " -1
Ti;“——zwu()]o:v s E_g—;ﬁ (B—k) V) =1",

whereas, the mth order gyrotropic corrections to the uniaxial coefficients are specified by (note:
quantities with negative index vanish identically),

dVh . R1—X) —k

L 70 = 3
dZ l wéo(l—X) ]m 0’
%"_ .wGOV”’l:—wGOX[VI,III—I aF 111’1—3+ . ‘_i(V7:172+V,;1~4+ 0 Q )]
It > (11)
de . ”
I_lwﬂolmzo
dln_ L (o oy 0 = e X[V 4 Vig b +i(Viat Ve )]
dz WLy t m m—1 m—3 L\V m-2 m—4 - )

It is seen that the true sources appear only in the zeroth order solution and that the source for the
mth order coefficients is provided by the voltages of lower order. Since the homogeneous forms
of (10) and (11) are identical, the solutions for any order may be derived from the same Green’s
function, and the £ and H mode equations are no longer coupled. The complete solution may
therefore be obtained, in principle, by an iterative procedure once the uniaxial result has been
determined. It may be mentioned that the H mode coefficients are independent of the medium,

in consequence of the perturbation about the uniaxial case which does not influence the H mode
fields [Felsen, 1964].

2.3 Excitation by a Transverse Electric Current Element

a. Voltage and Current Coefficients

To illustrate the form of the solution obtained from the preceding analysis, we consider the
case of a transverse electric current element located at z=2z' on the z-axis and oriented parallel
to the x-axis. Cylindrical coordinates (p, ¥, z) will be used, where p is the radial distance from
the z-axis in the transverse plane, and s is the angle between the radius vector p and the x-axis.
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In this coordinate system the modal index n is described by the two quantities k; and v which
represents the eigenvalues in the angular and radial domains, respectively, and the normalized
scalar mode function is given by

Gn=(ke/20012 exp ()] (kep), v=0, %1, %2 . . ., 0<k <o

(Felsen, 1964, part 2). For a tranverse current source, located as mentioned above, the only non-
vanishing modes are those for which v==1. Furthermore, a transverse electric current element
gives rise to v, =vj; =0 for all modes, as may be seen from (7). Then with J=%d(z—2")8(p),
where xp is a unit vector in the x-direction and 8(«) is the delta function, we find from (7) (see
also (15)):

il = aldz—2')=F % ;—;a(z—z')

i = a;'ﬁ(z—z'):% \/;—7;_6(7.—2’)

where it is understood that n now signifies the double subscript (k, *1). a, and a] denote the
strengths of the current generators located on the transmission lines at z’.
For the zero order E mode coefficients [V! and I’ , with m=0 in (9)],

mn mn?

(12)

Von(2,2')=—a,Z; (2, 2")
(13)
Ion(z, 2')=—a, T{(z, 2')

where Z) (z, z') and T}(z, z') are voltage and current Green’s functions [Felsen, 1964, sec. 2.3]
for the uncoupled E mode uniaxial ‘transmission lines excited by a current generator of unit strength
at z’. The same expressions apply for H modes, with double primes replacing the single primes.
Since the Green’s functions depend on k; but not on v [see (22) and (23), with k, Y, and Z given
in (6)], the latter index has been omitted in the suffix. In the first order equations, the zero order
voltage coeflicients V¥, and V|, act as continuously distributed current generators, as may be
seen from (11). Thus, the total voltage and current coefficients for the modes n=(k;, =1) are to

0(1/Y),

12

’ 1 k ! ’ ] k [ * " ’ I/ " " ’ "
V=t izk,(z, Z)—5 ‘/§70 f_wX(z V2, (2, 2252, 2')dZ" + O(1]Y?)

'—-lﬁl’ '_i &w_éof‘” NTI' NN (LN 4
1"—¢2,/27T T!(z,2') 2,/277 v | YT 202, 2 dz"+ 001y

(14)
" __ i kl " ’ _1 k! we€y |~ " 7 N AN 4
44 =—3 %Zkt(z, z )+-2— wm Y | X2y (2,22, (2", 2')dZ" + 0(1/Y?)
"__ L kt 7 ’ _]- kt WEq * A I, I/ ’ " ’ ’
In——§ o Tkt 75 )+§ w Y | X(Z’)Tkt(z,z')zkt(z ,2')dZ"+0(1/Y?),
Where multiple signs occur, the upper sign goes with v=+1, and the lower with v=—1. One

observes that the transverse electric source excites gyrotropic corrections of the order 1/Y in both
the £ and H mode coefficients. This behavior occurs also with a transverse magnetic current
source, whereas for longitudinal sources the gyrotropic effects are of higher order [Gross, 1964].

339



For a longitudinal electric current element the first £ mode gyrotropic correction is in the 1/Y?
term, while the total H mode coefficients are of 0(1/Y).
For the nearly isotropic medium (Y << 1), similar results can be derived readily.

b. Field Components

In a cylindrical geometry the vector eigenfunctions are given by

;II\'I,V (P, d’) h;:t v (ps d’) = \/2k,1 e'w’{PO (JV—I(klp) J”*‘(k’p))+ d’o -]l(k’p)}
T (15)

€, (0 W =—hiy, (o, W=¢],, (p, W)Xz

where J, is the Bessel function, and p, and Yo are unit vectors in the p and Y directions, respec-

tively. The field components are obtained from (4), (8), and (14), with Z—> E f dkike; only

v=—o00
the v==1 terms contribute when the z-axis passes through the source. The following expressions
result for the field components in a cylindrical coordinate representation:

Eoy=7 = f dkrkr{"f’“”[m (kip) (Z, (2, 2)+ Zpz, 20+ Jolkep) 2}z, 2) — Z) 2, 2))]

W€ sin s

0510 Y L ton) [~ deX @) @, 21 )+ 2t VLG )

+ Jolkip) f” dZX@) (2} (2, 2)Z0(2", 2') — 20z, V2L z’))]}+0(l/Y2) (16)

where the upper algebraic signs and trigonometric functions refer to E,, and the lower symbols
are appropriate to Ey.

Also,
] ’ e * n " ’ " " " !
E.= %wem ) “dkd2), (k,p){T (z, 2') cos ¢+%°Ldz X Tz, )22 ,z)}+0(1/Y2). (17)
Similarly,
Hpu,=“4l7, dhiky { o l"[Jo (kip) (Thy(z, 2') + Tz, 2') % Jolkip) (T2, 2') = Tfi(z, 2'))]
w OS lll " " ’ J ’ ” " ’ " ’
T sin [Jo (kp) f d2'X (") (T (z, 225, (2", 2')+ Ti(2,2)Z | (@', 2))
Jaokep) f dZ'X(@") (Ti\z, 223 2", 2') —Ti(z, 2") 2, (2", z)] } +0(1/Y?). (18)
Finally,

2=

f dkik2 J (k) {Z (z, z)——f d2"X(Z") 2}z, 22} (2", z’)}-i—O(l/Y?). (19)

27mm0

The zero order expressions (in 1/Y) in these equations yield the uniaxial field components in
terms of uncoupled E and H modes, whereas the first order terms give the first gyrotropic correc-
tions. The solutions for the field components in (16) to (19) must still be regarded as formal since
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it is necessary to substitute for the Green’s functions and carry out the integration. This will be
demonstrated below in a simple example. More complex problems have also been examined
[Gross, 1964] and will be submitted separately.

Since the iterative solution involves a power series in 1/Y, there may be some question con-
cerning its convergence. In view of the complicated nature of the coefficients in the series, a
general statement is difficult and we must trust the expectation that reliable results may be ob-
tained with a few terms when Y is sufficiently large. The following observation is helpful in this
connection: since each integral in the iterated solution contains the factor X(z) (the mth order term
involves an m-fold integration), the mth order term may behave according to (X,,/Y)" where X,,
denotes the maximum value of X(z) in the integration interval. Thus, it is to be anticipated that
the expansion is useful when (X,,/Y) <<1. The restriction (X,,/Y) <1 is well motivated since
this range, but not the complementary one, may be regarded as a perturbation about the uniaxial
case. In certain configurations, such as the semi-infinite medium with monotonically increasing
electron density, X may reach values in excess of Y for distant regions along the z-axis. If slight
losses are included in these cases, it can be shown [Gross, 1964 ] that these regions will not limit
the convergence. Instead the rate of variation of the medium parameters over a free space
wavelength must be made small compared to Y; this condition appears in (44) as + A << 27Y.

2.4. Construction of the Modal Green’s Functions

As noted in sections 2.2 and 2.3, the iterative solution may be built up entirely from the Green’s
functions for the transmission line equations (10) or (11), the functions being identical since these
equations differ only in their source terms. The various Green’s functions have a direct physical
interpretation: Yyu(z, z') and T,"(z, z') denote the current and voltage, respectively, observed at
z due to excitation by a unit strength voltage point source at z’, while Z,(z, z’') and T,/(z, z’) denote
the voltage and current, respectively, observed at z due to excitation by a unit strength current
source at z'. While the transverse electric dipole element discussed above does not give rise to
a voltage source, thereby requiring the use of Z,(z,z’') and T,/(z, z') only, all of the Green’s func-
tions are needed for a description of the field with more general excitation. Since the voltage and
current at a source-free point are connected by the transmission line equations,

= I:KannIn(z, Z’), dl—nS;L): iKnY(-"Vn(Z, Z’) (20)

dVa(z,z")
dz

and in view of the reciprocity relations [Felsen and Marcuvitz, 1956, 1959
T'z,2")=—TWz',2), Yaz,2")=Yuz',2), Zaz,2")=2ZWZ,2), (21)

all of the Green’s functions may be derived from the knowledge of any particular one. In (20),
Kny Zen, and Ye,=1/Z., represent the previously defined propagation constant, characteristic im-
pedance and characteristic admittance, respectively, all of which may be z-dependent (the iden-
tification of these quantities in (10) or (11) is evident). It is usually convenient to determine
either Y,(z, z’) or Z,(z, z'), with the former and latter preferable for the E and H mode problems,
respectively. In terms of Y,(z, z'),

1 4 ' T N S
@Yo dz '@ 7 T ) == g

= 1 &2 ,
= e en D2 o) dzda’ Y %)

Tz, z')= Yu(z, 2')

(22)

Zn(z,2")

with dual relations applicable when Z,(z, z') is given at the outset.
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FIGURE 1. Nonuniform section of transmission line.

The general network problem for the determination of Y(z, z’) is shown in figure 1 (the modal
subscript n is omitted henceforth); in mathematical terms, Y(z, z') satisfies the second-order dif-
ferential equation obtained after elimination of 7" from the transmission line equations:

d_ 1 d N —; /
| ror bt @z e =ine—2), >

The nonuniform transmission line described by the parameters k(z), Z.(z) is assumed to be termi-
nated at z;, and zz by impedances Zr;, and Zrg, respectively, which prescription specifies the bound-
ary conditions at the z-termini of the region covered by (23).2 The construction of the Green’s
function is conventional: we assume that the two linearly independent solutions of the homogeneous
equation (23) are superposed in such a manner as to yield two (current) functions 7;,(z) and Iz(z)
which satisfy the boundary conditions at z;, and zg, respectively. Then

Yz, o) =2eez) g py=pdle_ g dl, (24)
Z.G) 1 1 & P
lK(Z) Ly IR

where z- equals z when z <z’ and z’ when z > 2z, with the converse applying to z-.. The denomi-
nator in (24) (the Wronskian) is a constant. Upon introducing the impedances,

Vi(z) _ dli(z)/dz
I.(z)  ik(2)Ye(2)]L(2)

dlz(z)/dz
ik(2)Ye(2)Ir(z)’

(Z_(Z) =— ) ?(Z) = (25)

seen to the left and right, respectively, of the point z, one may write (24) in the normalized form,
_ 1G] [Tr(z) Ir(2 )]
Z(z )

Y(z,2'

(26)

where
Z(z )=2Z (z )+Z(z ).

The detailed structure of I, and I may be exhibited either in a standing wave [Felsen and
Marcuvitz, 1959] or a traveling wave representation. For the nonuniform transmission line prob-
lem in question, the latter is frequently more convenient and provides an insight into the physical
mechanism of reflection and refraction in a progressing wave. We shall therefore break the total
currents into two parts

IL=I+1I;, Ip=I}+1I; (27)
% Evidently, no mode coupling is assumed to take place at the boundary. This obtains when the regions z < z, and z > z; are occupied by an isotropic or by
a different anisotropic medium (with optic axis along z), as long as the analysis is performed by the E and H mode decomposition.
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with superscripts + and — denoting waves traveling in the (+2z) and (—z) directions, respectively.
While these distinctions become obscured in an inhomogeneous region where continuous reflec-
tions take place, they may be made precise by the requirement that the + wave satisfy the boundary
conditions at z— % (radiation condition) if the medium is infinite in extent, with an analogous
requirement imposed on the —wave at z—> —o. Thus,

dl-(z)/dz
iKY (z)

, Zi) =L @)d: 28)

Ziz) == iKYl (z)

represent the input impedances to the unbounded medium (matched case) seen to the left and right
of z, respectively, and

T= AC) =§(Z) —:Z:(Z) . Ta)= Ix(@) ZZ(Z) —E(Z)
I;(2) Zi(z2)+Z(z) Iz Zi(z) +Z(2) (29)

are the (current) reflection coefficients. The reflection coefficients at any two points may be re-
lated by the identity

- (= I7(2") I} (2) y
= [(z) (30)
r(Z) I(Z ) 17 (Z,) [7 (Z) )

S
with a similar expression for ['(z), and it is then not difficult to show that

Uy G+ Tl @Il [T(e) + T ) l(z)]

Y(z,2") = - S " s (31)
Zi(Z) I} (2)I;(2') =T (zr)[(z) I3 (z') I} (2") ]
P “— —>
where Z;=2;+Z;, and
~o i (2) rery _15(z) ,
11‘( )_If(z,) ’ R(Z)_‘Ii(zk) (Sld)
>

. In (31), the reflection coeflicients are conveniently those at the endpoints (note: Z(zz) = Zrx,
Z(z1) =Z11), and the entire expression may be written out explicitly in terms of the traveling wave
solutions of the homogeneous equation (23). It is noted in this connection that one may put
I; =1y, I} =1}, since only normalized quantities appear in the formula. An analogous result for
the Green’s function Z(z, z’) follows from duality considerations.

Equation (31) simplifies considerably for certain special cases. In an infinitely extended

«— -
region, I'(z;) =1"(zz) =0, and one finds

Y(z,2') = [~ /I‘(z;)j [ (z5) /I (2") ] (32)
Zi(z')

which formula is also deduced directly from (26). In a semi-infinite region (with z;, — —, i.e.

= =)

@) [Tj() +T 2]

Y(z,2") e -
Zi(2') (2"} (2")

(33)
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Returning now to the problem at hand after these general considerations, we see from (10) or
(11) that the homogeneous equations for Y > 1 are

{—d2—+k2 [I—L]}I'ZO for the £ modes 34
22 w(1—X) ’ e
and
2
{%—i—kz [1 —% } V'=0 for the H modes, (34b)

which results follow also from (23) and its dual, in view of the definitions of k, Z. in (6). The travel-
ing wave solutions for the H modes evidently comprise the exponentials exp [iVA2—k2z],
independent of the medium constants, whereas their form for the E modes depend on the details
of the stratification X(z).

3. Application to a Semi-Infinite Medium With Linearly Varying Electron
Density

A simple illustration of the preceding results is now given for the case of a semi-infinite, nearly
uniaxial medium with a linear variation of X with z as shown in figure 2. In a subsequent paper,
it is planned to cover further details of the derivation, together with applications to various other
nonuniform configurations.

The source is taken as the transverse electric current element located at z=2z' in the vacuum
half space z < z,=— ;}— (see sec. 2.3). The independent functions I* and I~ for both £ and H modes
are simple exponentials in the vacuum region (the pertinent equation is the same as (34b) since
X=0). In the linear half space the H mode functions remain unaltered; however, the E mode
differential equation is solved in terms of Whittaker functions. Throughout the entire space,
the H mode Green’s function is

Z”(Z, z') =_w_l"'0—ei\/k2—kj a2 | s (35)

2ViE— k2

a result obtained at once from the dual of (32), with (l_/:"(z') =2Y!=2K"|wpmo [see (6)].
The E mode Green’s function, constructed from (33) (with zx = z;), may be shown to be given by

WE l.\/kz—klel(Zh)_Wf(zb)
Y(z, 2 =———[eiVF*— K3 2=2'| 4 —iVk2—k2z+2' —22,)
R N W Wi ' ! e
for z < z,, and by
, . N Wi(2)
Y(z, z ): lwege —IVk2—k¥z z))
’ ! : 1V kz_k;le(Zb)_f_ W;(Zh) (36b)

| |  SLOPE &

— | X=1+taz
| |

[
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t
f——— FREE SPACE —— X

GYROTROPIC

POINT S()\liRCE MEDIUM

FIGURE 2. Semi-infinite linear model.
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for z> z;,, where z, locates the boundary plane separating the two semi-infinite regions shown
in figure 2. W, and W, are linearly independent Whittaker functions defined by [Slater, 1960]

W](Z)=W_if_ 1 (—LQkZ)

24k°

Wo(z) =W_inf
2.k’

(i2kz) 37)

1
2

where 4 is the derivative of X with respect to z and the primes on W, in (36a, b) denote P The
b

reflected wave in (36a) appears to originate from the image point at 2z,—z’, and the factor multi-
—p

plying thisecond exponential is the reflection coefficient I'(z;), which was derived from a knowl-
edge of Z(z); i.e., of the voltage and current solutions in the plasma half-space. Since Wi(z)
may be shown to satisfy the radiation condition at z— o, and with Z(z,,) =Vk?>—k?|/weo in vacuum, ,
the form of ' (z;) in (36a) follows. The formula in (36b) is obtained at once from the continuity
of Y(z, z’) at z;, and the above-mentioned behavior of Wi(z) at z— .

The uniaxial portion of the far field solution in the vacuum half-space, obtained from an asymp-
totic evaluation, is found to be given by [Gross, 1964].

__ lopo e
Egy = - cos 0 cos Y(1—1") .
e

v dar r

ik el } (38)

Hoy =3, S0 ] -
— Lk . eikr

Hy, = 08 0 cos Y(1—1") .
Erquruzo J

where (r, 0, ) are the spherical coordinates of the observation point relative to the source; Egy,
Eyu, etc., are the spherical field components, and I is the reflection coefficient

s _ ik cos 6 Wi(z) — Wi(zb)
ik cos 0 Wi(zp) + W i(z0)

—i2k(2'—2zp) cos 0. (39)

The angle 6 here is measured from the negative z-axis.
The first order gyrotropic corrections to the far field are found from section 2.3b and turn out

to be [Gross, 1964]:

:—iwl.bo . ’_eikr I
Eoc 4, Sin U7 .
_lop il
Eyc i cos 6 cos Yy / -
H _“_lk ,/_eikr >
6= cos 0 cos P " (40)
—ik . ol
Hyc= 4, Sin 1/ .
J




where

e—izlc(z'—zb) cos 6

gk
7=y W (z)+ ik cos 6 Wi(zp)

fxdz"(l s e V=R —2) W.(2"). (1)
Zb .

To account for the modification due to (40), one may define a new reflection coefficient I},
I=I"—% sec 0 tan (42)

which highlights the skewing of the far field pattern with y. The power patterns are similarly
modified by the gyrotropic correction [Gross, 1964].

The integral in (41) may be evaluated approximately with the assumption of slight losses,
thereby effectively truncating the integration interval. When the rate of variation of X with z is

large, it is found that
4 —i2k(2'—zp) cos 0

A== kY(1+ cos 0)* € (43)

from which

_iopo " s sin Y
4 r (1+cosB)?

Ey; e~ 12k(z'—zp) cos 0 (44)

and similarly for other components. Details of this calculation, as well as of the more involved
small slope approximation, will be presented in a subsequent paper. Although a large slope is
admitted, the inequality + < < kY must be satisfied in order to retain the perturbation character
of the gyrotropic correction.  Graphs of the angle dependent parameters of Eg,, Eg; and Eyg are
shown in figures 3 and 4.
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FIGURE 4. Relative gyrotropic corrections to field
FIGURE 3. Uniaxial field component for the semi-infinite components.
linear model. The ordinate represents the pertinent field quantity, |Egg| or |Eyc|, multiplied by

IheRordmatelre i o dar adr\ (kY .

The ordinate represents |Eg,| in the xz plane multiplied by the factor , (_) <_) the abscissa 6.

the abscissa 6. WHo wpo) \ &I

346



4. Discussion

Figure 3 contains graphs descriptive of |Eg,| versus 6 in the xz plane (y =0°) for various values
of the normalized slope parameter s\, where X is the free-space wavelength. The curves repre-
sent the angular function of Eg, in (38), with the source taken at the boundary (s»z'=—1). Values
of 4\ were selected to demonstrate different characteristics. The +A =0 curve corresponds
to the envelopes of the peaks of the multilobe pattern obtained for small values of sA. The
+A=1[5 curve exhibits a four lobe pattern. This curve was plotted by using an approximation
for I valid when the rate of density variation in the medium is small, and contains nulls that go
to zero. For comparison, a better approximation for the region near 6 =0 is shown by a dashed
curve. The 4A=m curve was plotted using exact values of the Whittaker functions in the ex-
pression for I''. The curve has two lobes and a broader null that does not dip to zero. As 4\
increases further the lobes disappear and the pattern approaches that shown for s\ —> . The
free space curve is also shown for comparison with the 4+ A — « curve.

The multilobe patterns which are found for small values of the slope parameter are typical
of highly reflective media. The pattern for an infinite value of the parameter is similar to the free-
space curve shown in the figure, and is typical of a weakly reflecting region. Even when the
source is moved away from the boundary these characteristics are basically unaltered [Gross,
1964]. The curves show, therefore, that more reflection is obtained for the small slope case,
whereas regions with large slope reflect only a small amount of energy; the rest penetrates deeper
into the medium. These results have also been examined in detail from a physical standpoint,
for example, using ray theory [Gross, 1964], and have been found consistent with such viewpoints.

Figure 4 illustrates the variation of the angular factors of |Eg;| and |Ey;| with @ in their plane
of maximum magnitude, y =90°. These curves are plotted for the large slope approximation and
are independent of the source point z’, since z’ enters only in an imaginary exponential factor. The
phase varies with z’, producing interference or enhancement of the uniaxial field components.
|Eg;| reaches a maximum at = 90°, whereas, |Eyq| is almost independent of the angle for § < 80°
and decreases to zero beyond. The magnitudes shown in the figure are only relative, since the
absolute numerical contribution depends on the value of Y, which is considered suitably large for
the purpose here.

Although |Ey| reaches a maximum at §=90°, it can be shown [Gross, 1964] that the first-
order gyrotropic power is zero at this angle. In fact the Poynting vector is zero throughout the
xz and yz planes where the only contributions from the gyrotropic corrections must be from higher
order terms. It can also be shown that the gyrotropic power peaks in the {y=45° 135° planes
and is independent of z’.  With respect to 6, the power is found to peak at 6 =77° for large values
of »N. These results indicate the skewness of the gyrotropic corrections.
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