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A method is presented for obtaining the backseattered radiation intensity from an
idealized target illuminated by a beamwidth limited source using the concept of differential
reflectivity. In general, this concept provides a method for determining the fields reflected
from a body illuminated by an arbitrary source or antenna pattern when the reflection co-
efficients for a plane wave incident on the body are known or approximated. Fresnel's
reflection coefficients are claimed to be appropriate approximations for the class of convex
targets characterized by either a large radius of curvature or consisting of lossy material.
In the application of this method to the case of a large spherical body, considerable computa-
tional simplification results. Application of results to appropriate experimental data yields
a minimum value of 1.53 for the average dielectric constant of the moon’s surface material.
Iixtension of the method to statistical problems is indicated.

1. Introduction

In recent years numerous attempts have been made to obtain information on the proper-
ties of such distant bodies as the moon and neighboring planets [Beckmann, 1963]. A major
method involves analyzing and interpreting the backscattered radar return from these bodies.
This backscattered radar return may be analyzed from a number of different aspects, depending
on the nature of information sought. Through statistical analysis, such information as pulse
ensemble averages for discrete times during the return as well as autocorrelations, cross correla-
tions, and variances thereof may be found. But even for a body as close as the moon, the
information that can be obtained from such analyses will represent gross averages over large
areas of the body.

Information of particular interest is the value of each of the electromagnetic properties,
such as € u, and o, which even in simple nonstatistical problems are extremely difficult to
separate from each other. However, this separation can be achieved when the data is examined
in the light of some simplifying theory capable of predicting the return for sharply defined
ideal conditions. An analysis of the return data together with the theoretical solution should
then yield average values for the electromagnetic quantities sought.

This paper presents a solution describing the radar return from a simple geometric shape
and an application of this solution to the case of an idealized moon. In the case of the moon,
the idealization is necessary to de-emphasize the contribution of factors such as roughness and
local variations in electromagnetic properties. The derivation of the integral representing the
radar return is rigorous, but certain simplifying assumptions are necessary to carry out the
integration in closed form.

! This work sponsored by the National Aeronautics and Space Administration under Grant NsG 129-61.
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2. Theory
2.1. Concept of Differential Reflectivity

A concept which will prove useful in the development of the theory outlined in this paper
is that of “differential reflectivity.” This is a dyadic quantity. When this dyadic is multi-
plied by a differential surface area and the vector field incident on that area, there results an
expression of the contribution of that surface element to the scattered field at an arbitrary
observation point. The differential reflectivity is a function of the following:

(1) Location and orientation of the surface with respect to the observation point.
(2) Properties of the two media separated by the surface.
(3) Frequency of the incident radiation, w.

For the case of steady state incident radiation the reflected Hertzian potential field, for instance,
may be described by

> - N = - -
IL (7, w, t)=ffa(7‘1, To, w) I (ry, w, t)dS, (1)
So
- -
where 7, and 7, denote the coordinates of the field point and the surface points, respectively;
- - -

=
II,(ro, w, t) 1s the incident vector field at the surface Sy; and ¢ (ry, 7y, @) is the dyadic differential
reflectivity.

Consider now that the radiation incident on a surface is from a pulsed, ‘“conical” source.
A “conical” source is understood to be one whose radiation is limited to a cone of vertex angle
a. Within the cone the electric and magnetic fields are uniform over any spherical surface
centered on the source. Exterior to the cone they are identically zero. Let the source radiate
between times /=0 and ¢t=7" a sinusoidally varying carrier wave of angular frequency w.
At some later time the outwardly traveling wave impinges on an infinite plane surface (z=0
in fig. 1) which separates all of space into two semi-infinite regions, each of which is filled with
a homogeneous medium. The portion of the plane intercepted by the cone is given by S,.
The intensity of the backscattered field at an arbitrary observation point is desired.

Ficure 1. Reflection geomelry.

X direction
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If one replaces the incident wave packet with an infinite set of steady state (conically
bounded) incident waves obtained by means of the Fourier transform, one may solve for the
contribution of a typical member of the family of steady state waves and, finally, sum up or
integrate these contributions over the whole family to obtain the solution to the original
problem. It may be observed that Weyl’s method of expansion into plane waves [Stratton,
1941, pp. 577-582] is not applicable to the beamwidth limited case.

Using the expression for the differential reflectivity, the contribution to the total field at the
observation point due to a conical bounded typical member of the family of steady state waves
can be written as

AL (1, o, ©): f fa()l 7o, @) - TLy(7o, wp, ©)dS 2)

A D - o

where o (ry, 7, ) is the differential reflectivity and I1,(r), wy, w) is the complex phasor for the inci-
dent field due to the steady state wave of angular frequency w. The time dependent total
scattered field is then

H ('l. wy, 1) = fm =t [f[“(’xy To. @) 'IIi(?o,v Wy, w)(l*go:l do. (3)

2.2. Theory of Differential Reflectivity

With attention focused on only one member of the family of steady state waves, a deriva-
tion of the theory involving the concept of differential reflectivity will now be shown. Let the
Hertz vector due to the component steady state incident wave be described by

eik2Ro

II(z, w, t)ku Co I - ¢

)

= 4

for all points 7 on the surface S;.  On the remainder of the infinite plane surface it is identically
- -

zero. Here a, is the unit vector in the II; direction, (,=((w) and relates to the source
N

strength, k,=k,(w) is the propagation constant in the incident medium, and Ry=r,—r,, where
=

rs is the radius vector from the origin to the source point.
If the origin is taken in the infinite plane surface (the z-y plane) of which S; is a region, and
the source has the rectangular coordinates (0, 0, z,) as shown in figure 1, so that

- > ;
[ A2 2 -~
Ro=|ry—r=+ai+15+22
there can be written

= = = ) zk Ro
I, (ro, @, €)= asCoero" j f . (o) 8o —1) )

where ‘
Ho—as vl

Using the Fourier integral expansion one may write

8(xo—x0)8(Yo—1Yo) = [f fuCzo=19) +ir W=k Jy dp (6)

.
so that the incident field at each point, 7y, of the surface is given by

- = (J—lwt (}M)[\ ,
11, (7o, w. t) rf [[[ @y Coetv@o—Tg Tivto= "dudv] dxody;. (7)
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If now r=yz2+12+ =2 there can be obtained by analytic continuation the expression

oS - ~1wt 11\ Ix’
IT;(r, w, t)— ff [ffa Coe™Vidudp :I dxody, (S)

Wi=u(oro—10) +-0(yo—yo) — 2o ks — (w?+2%).
- >

The expression (8) which reduces to (7) for r=r, is subject to the following interpretation: it
can be considered to be the field due to an infinite collection of plane waves, symmetrically
distributed about the local normal to the incident wave front, which combine at a point on the
reflecting surface to yield the net incident field due to the original source. The propagation
constant associated with each of the plane waves is so determined that the entire collection adds
to a two-dimensional delta function at the point in question.

Consider now a Hertzian plane wave having a propagation vector with components

where

rea . 7 o By . . . . . -
[, v, VE2—(u?++?)] and polarization in the direction @, to be reflected from the surface. The
reflected plane wave will be described through the use of a dyadic reflection coefficient

A «
V' (u, ). At an observation point @(r;) the total reflected field due to illumination of the surface
Sy by the infinite set of plane waves will be given by

z], w, t)= rf ([ ffI (u, z)e”‘rdudz] |:a (0 1{0 - e”’“‘]) dxodiys (9)

W, =u(x,—z0) +v(y1—o) +21vVk3— (W +17).

where

Comparison with (1) yields the differential reflectivity
: - ff V(u,v)erdudo. (10)

The form of the components of the reflection coeflicient V will depend on the nature of the
surface S,. If the surface is spherical they may be derived from Mie’s solution for a plane wave
incident on a sphere [Stratton, 1941, pp. 563-567]. For an infinite plane surface they reduce
to the ordinary Fresnel reflection coeflicients.

2.3. Derivation of the Components of ¢

For purposes of computation it will prove useful to evaluate the vector quantity
Z— f V(u v) - a Coe™rdudv=c - a,,(0 (11)

Referring to figure 1, let there be defined two coordinate systems having their origins at the

point P on the Ieﬂe(‘tlng surface. The @ system will be defined by the (uthog()nal set of unit
> o -5 o

vectors a,, a, and a, and the K system by the orthogonal set ap, ay and a,. Here a,l is the
- -

positive unit normal to the reflecting surface, @, is in the direction of the projection of R, on
R

=
the tangent plane through P, and a,=a,Xa,. The vector ap is in the direction opposite to
- > > o

that of the projection of k; on the tangent plane and ay=a, < ap.

These two reference systems are in addition to the primary reference system in which, in
a generalized problem, the surface normal changes direction as one traverses the surface under
consideration.
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The vector (11) may be resolved as follows:

: ff(ll g2l (Y ()Iu £ (IU(/’ + ff(LVvVN(Y ("Vl r ([71([1/

+ [‘{aﬂ]"( ,,/)i“'r([’ll(lz‘:fi‘,%—f‘.—{—i (12)
J e 2 N n

- - - -
where a,(y=apCp+ay(’'y+a,C,. For plane II-waves reflecting from an infinite plane surface

it can be shown that
2 2 o
< )n cos a—/n*—sin’ «

<*>n2 ¢0s a++/n*—sin®
1231

<’ul> COS a—-y n2—sin? a
M2

’\\(a
<u1> Sa+\'lb —sin a
Mo

X'YPP (0{) - I/YIITI< )

(13)

ke
ks
= . . . ~ . 5 R A
and Vyy are identical with the Fresnel reflection coefficients. Off-diagonal components of 1
are identically zero by virtue of the choice of reference system.
Let

\ 11"—{—72

where a=angle of incidenc o—mn“( e )) and n=index of refraction—-- In this case Vpp
2

u=N\ cos B=k, sin « cos 8

p=NX\ sin B=Fk, sin a sin B

I —24=p; COS ¢y

Y1—Yo=p1 SIN ¢,

=iy S, (X

21=DR,; cos 6. (14)

On substitution into (12) one obtains

=3

Z an 4 2 f VM a()\)] l:f ¢ \py €08 (9] —B8)+iztks cos adﬁ:] AN

= (*" . "
v unlae(N) |- To(Npy) €712 €05 AN, (15)

Also one can obtain

2=2+2;
T P N
= (—7; J; [N Jo(Npy) +fo(N) 2 (Npy) Jei51F2 €05 ang\
+;r ( fo [ )\)JO )\p1 f2(>\)e]2()\p1)]e”1k cos a)\d)\ (16)
where

JiN=Vppla(N) |4V yvla(N)]
f2(N) =V ppla(N) | =V anla(N)]
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-S> o - > - o
Cr= (az '(lr) 00: (az '(ZP) Cp+ (al . (1‘\') Cy
- > - > - >
Or: (a’r : (l,,) («VO: (G, ' (lp) (YP_I_ (a’r . a;\') C\"
- -
Approximate evaluation of ¥, and X, as given in (15) and (16) may be made by use of

the saddle-point method [Brekhovskikh, 1960] which, under the assumption kR, sin® 6, >>1,
yields

SN
Z:"‘a” é;rz T/PP(B}> T CcOS 6107,
n 1
e N N R, _
ZTZGl 2—7;2‘ V N’N(al) T COS 01( ,+a, ‘(Z:? ! PP(el) T CcOSs 01( e (1/)
) 1 ~ 1

. 2 A
From the expression E=g-a.(;, we now find

a;=0 1Z]
ky et
o,,:ﬁ ! A‘N(el) ﬁ cos 0,
k

2 70 o cos 8
or=azV L @
T T PP(] ]{1 1

k2R

R,

ky -, :
Tnn=— _—ﬁ I PP(al) COos 01 (18)

as the components of the differential reflectivity with respect to the designated coordinate
system.

Similar results may be obtained for surfaces of arbitrary curvature by use of the appro-
priate form of the reflection coefficient. It is realized that evaluation of the reflection coefficient

A . . .
V for a plane wave incident on an arbitrary surface may be a problem in itself.

2.4. Discussion on &

The differential cross section derived above is readily applicable to the problem of scat-

tering from an infinite plane surface. It is noted from the form of the vector = that the field
strength at right angles to the surface normal is zero due to the cos 6, factor. In line with
our original assumptions then, a plane surface can be considered as a collection (infinite) of
independent secondary sources without mutual coupling. This is a remarkable result inas-
much as seldom in 3-dimensional electromagnetic scattering problems can neighbor-to-neighbor
interactions be ignored. If, now, a portion of the surface illuminated has the cross-sectional
profile shown in figure 2, it is apparent that there will be a contribution to the fields at both
B and C due to the secondary source at A and vice versa. The strength of the secondary
sources everywhere on the surface will thus be affected. The possibility of secondary reflec-
tions such as occur at B may be negated by requiring that the bodies illuminated be convex.

The situation at C cannot be so simply disposed of. However, it can be seen that if the
radius of curvature of the surface is large, the contribution at C due to the source at A will
be small. In addition, if the material composing the target body is lossy, the attenuation
suffered in traversing the path A to C will be so high that the re-radiation from the C surface
element due to the illumination of the A surface element will be negligible. The method
outlined herein is, therefore, an excellent approximation for the solution of scattering problems
involving large convex bodies or any highly lossy convex body.
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Ficure 3. Geometry for reflection from a sphere.

Ficure 2. Reflection from nonplanar surface.

3. Application to the Idealized Moon

An application of the method to the case of a large spherical object such as the moon can
easily be made with the aid of a few approximating assumptions. In particular, the spherical
object will be assumed to be a smooth sphere of large radius, @, and composed of a homogeneous
lossless substance.  Geometry pertinent to the problem is shown in figure 3. The origin of the
spherical coordinate system is located at the center of the sphere with the source and the re-

. . .. m™ o ., .
ceiver being located at »=10) and 6=0. Additionally, let =5 and ¢=0 define the positive

z-axis; and =0 define the positive z-axis.
Lot the source be an electric dipole oriented in the z-direction so that

- ST
g 9
H»~:-(1 = (19)
'z 0 ]1)0
where £, is the distance from the source to a point on the surface of the sphere. It is readily
seen that

(C,=—Cysin ¢
Ch= ( b COS ¢ cos 0
C,=(C, cos ¢ sin (20)

Realizing that the proper reflection coeflicients to use in this case would be those obtained
from Mie’s solution to the problem of a plane wave incident on a sphere, the assumption is now
made that due to the very large radius of the sphere compared to the wavelength of the incident
radiation, these reflection coefficients may be replaced by their limiting values as the radius of
the sphere increases without limit. These limiting values are, ipso facto, the Fresnel reflection
coeflicients as given in (13).

From (1), (18), and (20) there is obtained

II,: —00 ¢ kz ffcos 0 Ia, sin oV yy (6, )+a, cos ¢ ¢os 0V pp(6;)

zh,leo elkglfl

R,

(’

+an ¢os ¢ sin 0V PP(B[)] sin 0dode  (21)
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where R; is as before, the distance from a point on the surface to the observation point. If in

this expression one replaces R, by R, so as to obtain the backscattered field at the position of

the source one finds, on performing the integration over ¢, that (21) vanishes. However, as
-

will be shown, the £ and H fields at this point do not vanish. We will then be able to compute

the net power incident on an antenna of given effective area.
- -
The elementary far field contributions to the £ and / fields at the observation point are

given by

SE(R,) = —KanX (ag>s1L,)

- - -
0H(R)) = whkes(ag X 611,) (22)

where

= = -

ar=a, sin 0,-+a, cos 6,
and
-
L= 0 cos 0 [a, sin oV W(BlH—a cos ¢ cos 0V pp(6,)

iko Ry ezlmlio

DR

€

—i—an cos ¢ sin 0V ,5(6,)] sin 0dfde.  (23)

One obtains, on making the indicated substitutions and integrating over ¢, the remaining

- -
components of £ and 7

E,(Ry) ="

k3 o iZaRo(6)
f >— sin 0, cos 0,[V pp(8)) cos 20,4V vy (6,)]db, (24)
0

2 D?

and

ra2wkie;(y (M o220l

H(Bo) ="~ . — sin 6, cos 6,[V pp(8)) cos 26,4V yx(6,)]d6; (25)

where ;= D and 6, =6 have been used as approximations since D> ">a.
In order to obtain numerical results for the problem at hand, the Fresnel reflection coeffi-
cients Vpp and Vyy are replaced at this point by the expressions

Vpp=Ls cos? §+ L, cos 6-+1

Vin=L; cos? +L, cos 6—1 (26)
where
L,=—0.7
el
Le=7 313,
—I:L h+1]
— ohty
— Vo (0) =12 if (27)
P=V NN\ *1_{_nl M= M2 2{
and
h=cos 6,
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where 6, is that angle satisfying the relation V,,(0,)=0. The approximation is based on match-
ing the curves Vpp(0) versus 0 and Vyy(0) versus 6 at three points, namely, at §=0°, §=90°,
and §=6,. Figure 4 shows the approximate reflection coefficients V., and V,, in relation to
the exact coeflicients for the case:

w— o, o1 —gps—0rand =15

Let now
E L @?Coks 7/
“T o2
Awkie,(y

YR

H,~ 1 (28)

where

0a )
I=—1 f ei#2(D=acos bgip 0, cos 0,[V pp(0;) cos 20,+V yn(6,)]db,
JO
On substitution of the expressions for Vpp and Vay there results, after integration and dropping
PP NN ; g g
. . 1 .
of terms involving powers of i higher than the first,
2

¢ i2kaD

A —i2kga cos 6, . —i2koa
= 2t [e ? f(aa) fOe 2 ] (29)
where f,=2p and
S(8,) =2L; cos’ 0,+2L, cos* 0,4 (L,—L;+2) cos® 0,+ (L,—L,) cos® 0,—2 cos 6,. (30)
From the relation
— - -
S=1Re (E X H*) (31)
1s obtained
5 wekiC5a®
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where F(0,)=1%(0,)+f5—2/,f(8.) cos [2k.a(1—cos 6,)] and S is the average steady state power
returned for a fixed beamwidth 26,, of illumination, corresponding to an illuminated area of
the spherical surface subtended by the polar angle 6, (measured at the origin). The angles
6, and 6,, are shown in figure 5.

Now it is desired to evaluate Cf in terms of normal radar quantities in order to obtain the
power received P, by the radar. If P, is the peak power radiated by the antenna, G; is the
gain of the transmitting antenna over an isotropic antenna, and G is the gain of a short dipole
over an isotropic antenna (=3/2), then the power which must be radiated by the short dipole
(Wsp) to yield the same power density in the main lobe is given by

—~])T(;T::2I)T(;T-

Wsp= 33
SD GSI) 3 ( )
Then [Stratton, 1941]
3Wsp
Cr= . ;
* 4wt sy mes &Y

The received power, P,, is given by

:§GRV

)
£ 47

(35)

where G is the receiving antenna gain over an isotropic antenna and X\ is the wavelength at
frequency .
Using (32), (33), and (34), (35) becomes
PrGrGpN(ma?) F(6
P,(6,) f__AT_,,,T’?#_) F(0), (36)
(4m)*D 4
It can be observed that the third term of #(6,) as given in (32) is extremely sensitive to
variations of 6,. This is because of the large value of k. for a body of the size of the moon
at microwave frequencies. Figure 6 shows F(6,) plotted versus 6, for three distinct situations:

cos [2k,a(1—cosb,)]=1,0,—1. (37)

ILLUMINATED
REGION

RELATIVE AMPLITUDE

r 72
Lo - f(ea)_

FiGure 5. Beamwidth-limited illumination.

: . : T T
(0]
0O 10 20 30 4 50 60 70 80 90

Oy = (Degrees)

Ficure 6. Relative amplitude of the envelope of
S versus 8,.

326



Noting that F(6,) converges to only one value for §,=90° (36) becomes

PG GpN° :
P,(90°) ——Z 4753 ]’)% - (p*ma®). (38)

The last term in (38) is just the radar scattering cross section of a sphere, that is the power
reflection coefficient, p? times the geometrical cross section, ma®. The first part of (38) is just
the standard two way radar range equation [Kerr, 1951]. Therefore, the results that are ob-
tained in this paper using the concept of differential reflectivity are identical with those obtained
under the same conditions using the Mie solution. However, using the method presented
in this paper one can obtain the steady state power returned for any specific antenna pattern
including partial illumination of the moon. This cannot be done by any other known method.

4. An Application to Experimental Data

Since it is often possible to obtain information about the transient solution of a problem
from its steady state solution, an attempt is made here to predict the possible transient solution
of the problem under consideration without performing the integration indicated in (3).
Letting 6, be considered as a function of time it is seen that £, in #(6,) is independent of time
and will be accepted by the receiver; f(6,), is a slowly varying function of time and would, no
doubt, show up in the receiver output. The last term, being a high frequency term (of the
order of the transmitted frequency), would not be passed through the receiver because of its
band pass characteristics. The rise time of the first two terms, however, would be too high
for an ordinary radar receiver, and the initial portion of the return signal would be limited by
the step response of the receiver and/or the transmitted waveform.

In addition, in the practical case of return from the moon, roughness over the first few
Fresnel zones would cause a considerable modification in the received initial slope giving,
possibly, an ensemble average slope of the received pulses less than that of the receiver step
response. In any case the maximum of the average returned power in an experiment should
be indicative of average electromagnetic properties of the moon’s surface for the assumption
that the surface roughness is negligible. If the roughness were not negligible, the maximum
average value would be less than that for the case involving no roughness. Correspondingly,
the average electromagnetic properties obtained by matching the maximum ensemble average
of actual returns with the maximum indicated by this theory (for a smooth moon), would
yield the minimum average values for the actual moon.

The received power will now be calculated and applied to the data obtained from a pulse
radar lunar reflections experiment by Mathis [1963]. By the previous discussion only the
DC and slowly varying terms of /(0,) will be used in the computation of £,. The radar
parameters of Mathis’ experiment are listed in table 1. The maximum value of /(6,) is

l ﬁ+fz(ea)]ma\:8p2 (39)

GrGePN? .,
)fmax:‘ '(7;—17;1;‘&7;4 ) (2p'7r(1,2) (40)

Then (36) becomes

and on letting

Pr=25X10°W

D=2.34<10° miles
a=1.08 < 10% miles
Gr=Gr=37.5 dB
P, (dBm)=—77.3420 log,, p. (41)
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Now using Mathis’ [1963] maximum value for Pr__of —96.8 dBm, one obtains |p =0.106 and
upon letting w;=ps

_1+40n| &

e Al g gya 1S 42)
" 1ol \/52 :

This yields a minimum average value of e for the material composing the moon’s surface.
Thus e,,=1.53¢;, a value which is consistent with those obtained by other investigators.

Tasre 1. Trinidad test site radar parameters
[Mathis, 1963]

|
Antenna, 84 ft parabolic dish on Az-E1 mount

37.5 dB gain

2.25° beamwidth

Transmit one polarization

Receive transmitted and orthogonal polarization

Transmitter Continental electronics AN/FPT-5
425.0 Mc/s

2000 psec pulse

30 or 30.2 pulses/sec

2.5 MW peak power (nominal)
Rectangular pulse

Receivers Noise figure 5.5 dB maximum

Frequency stability—1 part in 10 in 33 msec
Gain stability—0.25 dB in 4 hr

Dynamic range—40 dB (linear)

Bandwidth 4.7 ke/s

5. Conclusions

This paper has presented an exact solution to beam-limited reflections of a conically
bounded spherical wave from a semi-infinite plane through the use of the differential reflectiv-
ity. In general, the use of differential reflectivity provides a method for decomposing the
radiation from an arbitrary source into an infinite set of plane waves at each point of the
illuminated area so that, in order to determine the reflected fields, only the reflection coefficients
for a plane wave incident on the body need be known or approximated. It has been quali-
tatively shown that the approximate reflection coefficients for a convex body with either a
large radius of curvature or consisting of a lossy medium are the Fresnel coefficients.

The theory has been applied to the case in which a beam-limited spherical wave is incident
on a smooth sphere. The steady state backscattered power returned from the sphere is obtained.
The time average steady state power returned displays very rapid fluctuations with the increase
in the number of Fresnel zones illuminated. Upon matching this expression for average
power with the appropriate experimental data as obtained from the moon, the minimum value
for the average dielectric constant is found to be 1.53.

This method, using the differential reflectivity, proves to be a useful tool which can also
be applied directly to the case of acoustic scattering. With the use of high-speed digital
computers, the restrictions imposed herein merely to facilitate computation can be easily
relaxed. The method may also be easily modified so as to incorporate statistical variations
in any electrical or geometrical parameters.
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