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A method is p resented for obtainin g t he back sca ttered rad iation intensity from an 
idea lized t arget ill uminated by a beamwid th limited source us ing th e concept of d ifferential 
r efl ectivity . In genera l, th is concept provides a met hod for detennining the fields refi ected 
from a body illuminated by an a rbit ra ry sou rce or a ntenna p:,ttern wh en t he re fl ection co­
e ffici ents for a plane wa ve incident on the bod y are known o r approxim:tted. F res nel's 
reflection coe ffici en ts a rc cla im ed to be appropria te a pprox imat ions for t he class of co nvex 
targets characterized by eit her a la rge radius of curvature or con isting of lossy ma te ri a l. 
In the appli cation of t his method to the case of a la rge sph erica l body, co ns idera ble computa­
tional simplification results . Appli ca tion of resul ts to a ppropriate experim ental data y ields 
a m inimum va lue of 1.53 for t he a verage d ielectr ic constant of t he moon 's urface material. 
E xtension of t he mcthod to sta ti s t ical p roblcms is ind icated. 

1. Introduction 

In recent years numerous at tempts haNe been made to obtain information on the proper­
t ies of sti ch distant bodies as t he moon a,nd neighboring planets [Beckmann , 1963). A major 
method il1lTol \·es analyzing and in t.erpreting t he backscattered rfLdar return from these bodies. 
This bfLckscattered radar return may be analyzed from a number of different aspects, depending 
on the nature of informlLtlon sough t. Through statistical analysis, sll ch information as pulse 
ensemble lwerages for discrete t imes during the return as well as autocorrelations, cross correla­
t ions, and variances thereof may be found. But even for a body as close as the moon, the 
information t hat can be obtained from such analyses will represent gross averages oyer large 
areas of the body. 

Information of particular interest is the value of each of the electromagnetic properties, 
such as EO, f.l , and fT, which even in simple nonstatistical problems are extremely difficult to 
separate from each other. However, this separation can be achieved when the data is eXltlllined 
in the light of some simplifying theory capable of predicting the return for sharply defll1ed 
ideal conditions. An analysis of the return data together with the theoretical solLi tion should 
then yield average values for the electromagnetic quantities sought. 

This paper presents a solu t ion describing the radar return from a simple geOlnetric shape 
and an application of t his solu tion to the case of an idealized moon. In the case of the moon, 
the idealization is llece sary to cle-eJnphasize the contribu tion of factors such as roughness and 
local variations in electromagnetic properties. The deri \'H,t ion of the integral representing the 
radar return i rigorou , but certain simplifying assumpLions are necessary to cany out the 
integration in closed form. 

1 This work sponsored by tho Nationa l Aerona utics and Space AdministraLion und er Grant NsG J ~9-6J. 
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2. Theory 

2.1. Concept of Differential Reflectivity 

A concept which will prove useful in the development of the theory outlined in this paper 
is that of "differential reflectivity." This is a dyadic quantity. When this dyadic is multi­
plied by a differential surface area and the vector field incident on that area, there results an 
expression of the contribution of that surface element to the scattered field at an arbitrary 
observation point. The differential reflectivity is a function of the following: 

(1) Location and orientation of the surface with respect to the observation point. 
(2) Properties of the two media separated by the surface. 
(3) Frequency of the incident radiation, "'. 

For the case of steady state incident radiation the reflected Hertzian potential field, for instance, 
may be described by 

(1) 

--; --; 

where rl and ro denote the coordinates of the field point and the surface points, respectively; 
--; --; --; --; 

ll j(ro, "', t) is the incident vector field at the surface So; and ~(rl' ro, w) is the dyadic differential 
reflectivity. 

Consider now that the radiation incident on a surface is from a pulsed, "conical" source . 
A "conical" source is understood to be one whose radiation is limited to a cone of vertex angle 
a. Within the cone the electric and magnetic fields are uniform over any spherical surface 
centered on the source. Exterior to the cone they are identically zero. Let the source radiate 
between times t= O and t= T a sinusoidally varying carrier wave of angular frequency "'0. 
At some later time the outwardly traveling wave impinges on an infinite plane surface (z = O 
in fig. 1) which separates all of space in to two semi-infinite regions, each of which is filled with 
a homogeneous medium. The portion of the plane intercepted by the cone is given by So. 
The intensity of the backscattered field at an arbitrary observation point is desired. 

z Q 

y 

FIG U RE 1. Reflection geometry. 

x 
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If one replaces the incident wave packet with an infinite set of steady state (conically 
b ounded) incident waves ob tained by means of the F ourier tr ansform, one may solve for the 
con tribu tion of a typical member of the family of steady state waves and, finally, sum up or 
in tegrate these con tribu tions over the whole family to ob tain the solu tion to th e original 
problem. It may be obser ved that Weyl's method of expansion in to plane waves [Stratton, 
1941, pp . 577- 582] is not applicable to the beamwidth limited case. 

Using the expression for the differential refiectivi ty, the con tribution to the total field at the 
observation point due to a conical bounded typical member of the family of steady sta te waves 
can be written as 

-->--> If -->--> -->--> 
LlII, (r!, Wo, w) = ~ ~ (T! , To , w) · II i(To, wo, w)dSo (2) 

..>, 

A -.:; -.:; -4 ---+ 

where ah, 1'0, w) is the differential refiecti\'ity and IIi (1'0, wo, w) is the complex phasor for the inci­
den t field due to the s teady state wave of angular frequency w. The time dependen t total 
scattered fi eld is t hen 

(3) 

2.2. Theory of Differential Reflectivity 

Wi th atten tion focused on only on e member of the family of steady state waves, a deriva­
tion of the theory in vol ving the concep t of differen tial reflectivi ty will now be shown . Let the 
H ertz vector due to the componen t steady state in cident wave be described by 

(4) 

--> 
for all poin ts 1'0 on the surface So. On t he rem aind er of the infini te plane surface i t is iden tically 

--> ..... 
zero. H ere ar -is the unit vector in t he II i direction, Co= Co(w) and relates to the source 

--> --> --> 
strength , k2 = k2(W) is the propagation constau t in the incident medium, and Ro= 1'o - 1's, where 
--> 
1's is the r adius vector from the origin to the source poin t . 

If the origin is taken in the infinite plane surface (the x-y plane) of which So is a region, and 
the source has the rectangular coordinates (0, 0, zs) as sh own in fi gure 1, so that 

..... ..... 
II -I t -I"~ 1- /,.2+ 12+ Z2 "' 0 - U /) i- ' ''(''U "U /I 

there can be wri tten 

(5) 

where 
R~= ,/X~2+y~2 +Z; . 

Using the Fourier in tegral expansion one may write 

'" 
o (xo- x~) o (yo-Y~) = 4~2 f f C i ll (:O-J ~ ) + iHVv-V~)dudv (6) 

--> 
so that the inciden t field at each poin t, 1'0, of thc ur fuce is given by 

'" 
II (7' w t) =_C - _e - ' c (J, eiU(XO-I~)+j"!O-Y~) dv.dv dx'dy ' --> --> - i wi If ik,n ' [r[ --> ] 

j 0,· 47r2 H~ .. " 0 0 Q. 
(7) 

So 
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If now 1'= "'X~+Y~+z~ there can be obtained by analytic continuation the expression 

(s) 

where 

---t ---t 

The expression (8) which reduces to (7) for 1'= 1'0 is subject to the following interpretation: it 
can be considered to be the field due to an infinite collection of plane waves, symmetrically 
distributed about the local normal to the incident wave front , which combine at a point on the 
reflecting surface to yield the net incident field due to the original source. The propagation 
constant associated with each of the plane waves is so determined that the entire collection adds 
to a two-dimensional delta function at the point in question. 

Consider now a Hertzian plane wave having a propagation vec tor with components 
---t 

[n, v, .Jk~- (U2+V2) 1 and polarization in the direction a .. to be reflected from the surface. The 
reflected plane waye will be described through the use of a dyadic reflection coefficien t 
A ~ 

V (u, v). At an obseITation point Q(1'l) the totalreflected field due to illumination of the surface 
So by the infinite set of plane waves will be given by 

(9) 

where 

Comparison with (1) yields the differential reflectivity 

'" 
A 1 If A . 0 = 47T2 V(u, v)e!wrdudv. (10) 

A 

The form of the components of the reflection coefficient V will depend on the nature of the 
surface So. If the surface is spherical they may be derived from Mie's solution for a plane wave 
incident on a sphere [Stratton , 1941, pp. 563- 567]. For an infinite plane surface they reduce 
to the ordinary Fresnel reflection coefficients. 

2.3 . Derivation of the Components of ~ 

For purposes of computation it will prove useful to evaluate the vector quantity 

(lJ ) 

Referring to figure 1, let there be defined two coordinate systems having their origins at the 
point P on the reflecting surface. The Q system will be defined by the orthogonal set of unit 

---t ---t -> ---t -> ---t -> 
vectors at, aT and an and the K system by the orthogonal set ap, aN a.nd an. Here an is the 

-> -> 
positive unit normal to the reflecting surface, aT is in the direction of the projection of Hl on 

-> ---t ---t ---t 

the tangent plane through P , and at= aTX an • The vector ap is in the direction opposite to 
-> -> -> -> 

that of the projection of k2 on the tangent plane and aN= an X ap. 
These two reference systems are in addition to the primary reference system in which , in 

a generalized problem, the surface normal changes direction as one traverses the surface under 
considera tion. 
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The vector (11) n1fl y be resolved as follows: 

(12) 

--> --> --> --> 
where a"Co= apCp+ aNCN+ aI1CI1 ' For plane IT-waves refiec ting fro lll an infini te plane sUl'Ltce 
it can be shown tllat 

(13) 

.. . ("\/u2+ r2) . . , . le i wherc a = angle of Jl1 cld encc = sm - 1 k~ , and n = ll1dex of refntCLJOn = k;' In this case V pp 

" and VNN are identical with the Fresnel r efiection coeffic ients_ Off-diagonal components of V 
are identically zero b y virlue of the choice of reference system . 

Let 
u = }.. cos {3 = k2 sin a cos {3 

v= }.. sin {3= lc2 sin a sin (3 

:rl- :r~ = PI cos 'PI 

YI-Y~ = PI sin 'PI 

PI = R I sin 81 

zl = R I cos 81_ 

On substitution in to (12) one obtains 

Also one can obtain 

=~t ~ i '" [jl (}.. ) J O(}..PI ) + j~(}.. ) J2( }..P I) ]eizjk2 cos a}..d}.. 

(14) 

(15) 

+~T 4.('r r'" (fl (}.. ) JO (}..Pl ) - j2(}.. ) J 2 (}..PI ) ]e i Z]k2 cos a}..d}.. (16) 
7r .J 0 

where 

748- 159--65----12 

fl( }..) = V pp[u(}..) l+ V NN[a(}.. )] 

l 2(}.. ) = V pp[a(}..)] - V NN [a(}..) J 
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--- -- - -

-4 -4 -4 -4 -4 -4 

C{= (at · a~)eo= (at ·ap) Cp+ (at' aN) O¥ 
-4 -4 -4 -4 -4 -4 

Cr= (a r ·a~) Co= (a r ·ap) Cp+ (a r • aN) eN' 

-4 -4 

Approximate evaluation of ~ n and ~ 1' as given in (15) and (16) may be made by use of 
the saddle-point method [Brekhovskikh, 1960] which, under the assumption k2Rl sin 2 81> >1, 
yields 

(17) 

-4 A -4 

From the expression ~ = (]" . a~Co we now find 

(18) 

as t he components of the differential reflectivity with respect to the designated coordinate 
system. 

Similar results may be obtained for surfaces of arbitrary curvature by use of the appro­
priate form of the reflection coefficient. It is realized that evaluation of the reflection coefficient 
" V for a plane wave incident on an arbitrary surface may be a problem in itself. 

2.4. Discussion on tJ 

The differential cross section derived above is readily applicable to the problem of scat-
-4 

tering from an infinite plane surface. It is noted from the form of the vector ~ that the field 
strength at right angles to the surface normal is zero due to the cos 81 factor . In line with 
our original assumptions then , a plane surface can be considered as a collection (infinite) of 
independent secondary so urces without mutual coupling. This is a remarkable result inas­
much as seldom in 3-dimensional electromagnetic scattering problems can neighbor-to-neighbor 
interactions be ignored. If, now, a portion of the surface illuminated has the cross-sectional 
profile shown in figure 2, it is apparent that there will be a contribution to the fields at both 
Band C due to the secondary source at A and vice versa. The strength of the secondary 
sources everywhere on the surface will thus be affected. The possibility of secondary reflec­
tions such as occur at B may be negated by requiring that the bodies illuminated be convex. 

The situation at C cannot be so simply disposed of. However, it can be seen that if the 
radius of curvature of the surface is large, the contribution at C due to the source at A will 
be small. In addition, if the material composing the target body is lossy, the attenuation 
suffered in traversing the path A to C will be so high that the re-radiation from the C surface 
element due to the illumination of the A surface element will be negligible. The method 
outlined herein is, therefore, an excellent approximation for the solution of scattering problems 
involving large convex bodies or any highly lossy convex body. 
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F IGURE 3. Geometry /01' reflection jTom a sphere. 

FIG URE 2. Reflection from nonplanal' sUlface. 

3. Application to the Idealized Moon 

An application of the method to the case of a large spherical object such as the moo n can 
easily be m ade wi th the aid of a few approximating assump tions. In par ticular , the spherical 
obj ect will be assumed to be a smooth sphere of large radius, a, and composed of a homogeneous 
lossless substance. Geometry per tinen t to the problem is shown in figure 3. The origin of the 
spherical coordinate system is located at the cen ter of the sphere wi th the so urce and the r e-

7r 
ceiver being located at T= D and 0= 0. Addi tionally, let 0= '2 and '1' = 0 define the positive 

x-axis; and 0= 0 defule the positive z-axis. 
Let the so urce be an electric dipole orien ted in the x-direction so that 

where Eo is the distance from the source to a poin t on the surfa,ce of the sphere. 
seen th at 

0,= -00 sin 'I' 

Or= -00 cos 'I' cos 0 
On= OO cos 'I' sin 0 

(19) 

I t is readily 

(20) 

R ealizing that the proper reflection coefficien ts to use in this case would be those obtained 
from Mie's solution to the problem of a plane wave incident on a sphere, the assump tion is now 
made that due to the very large radius of the sphere compared to the wavelength of the incident 
radia tion, these reflection coefficien ts may be replaced by their limiting values as the radius of 
the sphere increases withou t limit. These limiting values are, ipso facto, the Fresnel reflection 
coefficients as given in (13). 

From (1), (18), and (20) there is ob tained 

--t eik2Ro eik2RJ 

+an cos 'I' sin oV pp(Ot) 1 II; ---:tr: sin Odod<p (21) 
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where RI is as before, the distance from a point on the surface to the observation point. If in 
this expression one replaces RI by Ro so as to obtain the backscattered field at the position of 
the source one finds, on performing the integration over cp, that (21) vanishes. However, as 

-> -> 
will be shown, the E and H fields at this poin t do not vanish. We will then be able to compute 
the net power incident on an antenna of given effective area. 

-> -> 
The elementary far field contributions to the E and H fields at the observation point are 

given by 
-7 -7 -) -t 

BE(R I ) == -k~aRX (aR X Bl1r) 

-> -> ~ 

BH(R I ) = wk2E2(aR X orrr) (22) 
where 

-> -> -> 
aR= a r sin (JI + an cos (JI 

and 

One obtains, on making the indicated substitutions and integrating over cp, the remaltung 
-> -> 

components of E and H 

(24) 

and 

(25) 

where Ro~ D and 01 "", 0 have been used as approximations since D> > a. 
In order to obtain numerical results for the problem at hand, the Fresnel reflection coeffi­

cients Vpp and VN N are replaced at this point by the expressions 

where 

and 

p 1 
L3= 1_h +h: 

L4= - [ L3h+n 
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FIGURE 4 . Comparison oj e.'wct and approximate 
reflection coe,Uicient s. 
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where (}o is that angle satisfying the relation Vpp ((}b) = 0. The approximation is based on match­
ing the curves Vpp (O) versus () a nd VNN(O) versus () ftt three p oints, nftmely, at (} = Oo, 0= 90°, 
and O= (} b. Figure 4 hows the approximate reflection coefficients V~p and V'~'N in relation to 
t,he exact coefficients for the case: 

Let now 

(28) 

where 

On substitution of the expressions for V;>p and V;'N there results, after integration and dropping 
1 

of terms involvino' I)owers of 2k hio·her than the first o - 2a eo ' , 

(29) 

wherejo=2p and 

}(Oa) = 2L3 cos5 Oa+ 2L4 cos4 Oa+( L 1- L 3+ 2) cos3 Oa+(L z- L 4) cos2 Oa-2 cos Oa. (3 0) 

From the relation 

- -)-) 

S = t Re (E X II*) (31) 

is obtained 

(32) 
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where F(Oa) ]2(Oa)+16-2101(Oa) cos [2k2a(l-cos Oa)] and S is the average steady state power 
returned for a fixed beam width 202a of illumination, corresponding to an illuminated area of 
the spherical surface subtended by the polar angle Oa (measured at the origin) . The angles 
Oa and 02a are shown in figure 5. 

N ow it is desired to evaluate C~ in terms of normal radar quantities in order to 0btain the 
power received P T by the radar. If P T is the peak power radiated by the antenna, GT is the 
gain of the transmitting antenna over an isotropic antenna, and GSD is the gain of a short dipole 
over an isotropic antenna (=3/2) , then the power which must be radiated by the short dipole 
(WSD ) to yield the same power density in the main lobe is given by 

WSD= PTGT = 2PTGT. 
GSD 3 

(33) 

Then [Stratton, 1941] 

(34) 

The received power, P T , is given by 

P = SGnA2 

T 47r (35) 

where Gn is the receiving antenna gain over an isotropic antenna and A is 
frequency Ul. 

the wavelength at 

Using (32), (33) , and (34), (35) becomes 

P r G7,GR A2(7ra2) F(Oa) 
(47r)3D 4 - 4- ' (36) 

It can be observed that tbe third term of F (Oa) as given in (32) is extremely sensitive to 
variations of Oa. This is because of the large value of k2a for a body of the size of the moon 
at microwave frequencies. Figure 6 shows F(Oa) plotted versus Oa for three distinct situations: 

S 

cos [2k2a(l-cos Oa )]= 1,0,- 1. (37) 

0 

ILLUMINATED 
REGION 

FIGU RE 5. Beamwidth-limited illwnination. 
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Noting that F CBa) converges to only one value for Ba= 900, (3 6) becomes 

(38) 

The last term in (38) is just the radar scattering cross section of a sphere, that is the power 
reflection coefficient, p 2, lim es the geometrical cross section, rra2. The first part of (38) is jus t 
the standard two way radar range equation [Kerr, 1951]. Therefore, the results tha t arc ob­
tained in this paper using the concept of differential reflectivity are identical with those obtained 
under the same conditions using the Mie solution. However, using the method presented 
in this paper one can obtain the steady state power returned for any specific antenna pattern 
including partial illumination of the moon . This cannot be done by any other known m ethod. 

4 . An Application to Experimental Data 

Since it is often possible to obtain information about the transient solu tion o[ a problem 
from its steady state solution, a n attempt is m ade here to predict the possible transient solution 
of the problem und er co nsideration without performing th e integration indicated in (3). 
Letting Ba be co nsid ered as a function of time i t is seen tha t fa in FCBa) is independ r:m t of tim e 
and will be accepted by the receiver; f(B..,) , is a slowly varying function of time and would, no 
doub t, show up in the receiver ou tput. The last term , bein g a high frequency term (of the 
order of the transmi tted fr equency), would not be passed through the receiver because of its 
band pass characteristics. The ri se time of th e first two term s, however, would be too high 
for an ordinary radar receiver, and the ini tial portion of the return signal would be limi ted by 
the step response or the receiver a nd/or the transmitted waveform . 

In addition , in the practical case of return from th e moon , roughness over the first few 
Fresnel zones would cause a co nsiderable modification in the received initial slope giving, 
possibly, an ensemble average slope of the r eceived pulses less than that of the receiver s tep 
response. J n any case the maximum of the average returned power in an experiment should 
be indicative of average electromagnetic properties of the moon's surface for the assumpti on 
that th e surface roughness i negligible. If the roughness were not negligible, the maximum 
average value would be less than that for the case involving no roughn ess. Correspo ndin gly, 
the average electro magnetic proper ties obtain ed by matching the maximum ensemble average 
of actual returns with the maximum indicated by this theory ([or a smooth moon), would 
yield th e minimum average values for th e actual moon. 

The received power will now be calculated and applied to the data obtained from a pulse 
radar lunar reflections experiment by Mathis [1963]. By the previous discussion only the 
DC and slowly varying terms of F(Ba) will be used in the computation of Pro The r adar 
parameters of ':\1athis ' experiment are listed in table 1. The maximum valu e of F(Ba) is 

Then (36) becomes 

and on letting 

D= 2.34 X 105 miles 

a= l.08 X 103 miles 

P rmax(dBm ) = - 77.3+20 10glO p. 
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Now using Mathis' [1963] maximum value for P rm ax of -96.8 dBm, one obtains [pi = 0.106 ,md 

upon letting iJ.! = iJ.2 

(42) 

This yields a mlUlmum average value of E for the material composing the moon's surface. 
Thus Eavg = 1.53Eo, a value which is consistent with th03e obtained by other investigators. 

Antenn a 

T AB I, E 1. Trinidad test sile mdar parameters 
[Mathis, 1963] 

84 ft parabolic dish on Az-El mount 
37.5 dB gain 
2.25° beamwidth 
Transmit onc po larization 
Receive transmitted and orthogonal pol a rization 

Transmitter Continental electronics AN /F.PT- S 

Receivers 

425.0 Mc/s 
2000 !,sec pulse 
30 or 30.2 pulses/sec 
2.5 MW peak power (nomin al ) 
R ectangul a r pul se 

No ise fi gure 5.5 dB m ax imum 
F requency stabili ty- l pa rt in 10 in 33 InSCC 
Gain stabili ty- O.25 dB in 4 hr 
Dynamic ra nge- 40 dB (l inea r) 
Bandwidth 4.7 kc/s 

5 . Conclusions 

This paper has presen ted an exact solution to beam-limited reflections of a conically 
bounded spherical wave from a semi-infinite plane through the use of the differential reflectiy­
ity. In general, the use of differential reflpctiyity provides a method for decomposing the 
radiation from an arbitrary source into an infinite se t of plane wans at each point of the 
illuminated area so that, in order to determine the reflected fields, only the reflection coefficients 
for a plane wave incident on the body need be known or approximated. It hf1S been quali­
tatively shown that the approximate reflection coefficients for a com'ex body with either a 
large radius of curvature or consisting of a lossy medium are the Fresnel coefficients. 

The theory has been applied to the case in which f1 beam-limited spherical wave is inciden t 
on a smooth sphere. The steady state backscattered power returned from the sphcre is obtained. 
The time average steady state power returned displays very rapid fluctuations with the in ereasp 
in the number of Fresnel zones illuminated. Upon matching this expression for ayerage 
power with the appropriate experimental data as obtf1ined from the moon , the minimum valu e 
for the average dielectric constant is found to be l.53. 

This method, using the differential reflectivity, proves to be a useful tool which can aJso 
be applied directly to the case of aco llstic scattering:. With the use of high-speed digital 
computers, the restrictions imposed herein merely to facilitate compu ta tion can be easily 
relaxed. The method may also be easily modified so as to incorporate s t atistical yariations 
in any electrical or geometrical parameters. 
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