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Extensive numerical resu lts for electromagnetic scatterin g from spheres are presented 
in grap hi cal fo rm. To simulate var ious types of coatings, the surface impedance of the 
sphere is a speeified complex fun ction. It is s hown conclusively that the forward scatter ing 
lobe is almost independent of the characteristics of the coati ng. On the othe r hand , t he 
backseattering a nd side scatterin g are p rofo undly mod ifi ed by changes in the effect ive 
impedance of the coating. 

1. Introduction 

Scattering of electromagnetic wa'oes from spheres is a subj ect which h as permeated the 
literature for over h alf a century. An exhaustive sun"ey of the subj ect is found in a highly 
recommended book by Vtlll de Hulst [1957.] An important collection of inform ative papers 
reporting recent advances is also a ,oailable [Kerker, 1964]. 

D espite th e numerous p aper treating both theoretical and experimenLal aspects, a number 
of unresolved question remain. For example, the efl'ect of coating conducting spheres with 
absorbent material is not entirely understood. Also, the related question of how an inductive
or capacitive-type surface layer modifies the scattering properties h as not been answered 
completely . It is the purpose of this paper to present calculations for scattering from spheres 
under various surface impedance boundary conditions. This relatively simple model h as the 
virtue of displaying many important features in an economical manner. This approach has 
b een used previously by various investigators [Wait, 1956; Hiatt et al. , 1960a, 1960b; 
Garbacz, 1964] who have treated closely related problems. 

2. Formulation 

The spherical model used as a basis for calculation is illustrated in figure 1 with reference 
to a Cartesian coordin ate system (x, y , z). A plane wave is incident from the negative z 
direction and polarized with the electric field Eo in the x direction. With reference to a spherical 
coordinate system (1', e, </» also centered at t he sphere, the scattered field components may be 
written 

-iEo . E '=-- e-,kr (cos </»p (e) 
e kr ' 

(1) 

and 

E '= iEo e- ikr (sin <I»Q(e) 
'" kr ' 

(2) 
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FIG U RE 1. Geometry j or the spherical scatlerer. 

Eo INCIDENT PLANE WAVE 

where k = 27r/wavelength and where P and Q are functions of e only. The latter are defined by 

_ ro 2n+ 1 [ d 1 P~ (cos e)] 
p(e) - L2 ( + 1) Bn de Pn (cos e)+ Cn . e ' 

n ~ l n n Sill 
(3) 

and 

Q(e) ="£, 2n+ 1 [B p~~cose)+c !ipl (cos e)], 
n ~ln(n+ 1) n sm e n de n 

(4) 

where the coefficients B n and On are a function of ka, the circumference of the sphere in wave
lengths, and the surface impedance Z of the sphere. The explicit definition of these coefficients 
Bn and On is given in the appendix where the derivation is outlined. The function P;, (cos e) is 
the associated Legendre function of order n and index 1. 

As indicated above, the solution for the present problem is expressed in terms of the surface 
impedance Z which requires that the total tangential fields at 1' = a are related as follows: 

Ee= -ZHq, and E q,= ZFh (5 ) 

These are often termed the Leontovich boundary conditions when applied to th e interface 
between free space and a highly conducting medium [e.g., ch. 2 in Wait, 1962]. Actually, they 
are a valid representation for other type surfaces such as a dielectric coated conductor or a 
finely corrugated surface, in which cases Z is highly inductive. In the general case, such as 
for a radially inhomogeneous sphere, it is necessary to recognize that surface impedances are 
dependent on mode number. 

For the present discussion, it is assumed that the boundary may be characterized by a 
constant surface impedance Z. This is conveniently normalized by writing 

Z/'r/o=iG, 
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- ----------, 

where 770= 12071" is the intrinsic impedance of free space and G is a dimensionless factor. For a 
purely inductive surface, G is positive real, while for a capacitive surface, G is negative real. 
If the sphere i composed of a homogeneous, highly conducting material, 

l -i 
G~-/- IGI, 

,2 
(7) 

where I GI2 = ~ow/ 0' g in terms of the conductivity 0' g of the sphere, the dielectric constant of free 
s pace ~o, and the angular frequency w. The restrictions inherent in the use of the surface 
impedance require that IGI2< < 1 [Wait, 1962] in (7). 

In the general case of a surface impedance boundary, it is desirable to write 

(8) 

(9) 

where <P is a phase angle. For the inductive boundary <p = 90°, for the capacltlve boundary 
<P = - 90°, whereas, for the homogeneous conductor <p = 45°. It might be mentioned that with 
yarious forms of concentrically stratified conducting spheres <P may be anywhere in the range 
'0 to 90°. Furthermore, certain types of corrugated surfaces loaded with lossy material could 
gi ve rise to effective surface impedances which have phase angles also in this range [Wait, 1962] . 

To present numerical results in an economical manner, two bistatic radar cros sections 
0'. (0) and 0'1.(0) are in troduced which are for E-plane and H~plane scattering. Explicitly, these 
.are defined by: 

(10) 

:and 

(11) 

Using (1) and (2), and dividing by the geometrical cross section, it is seen that (10) f1nd (ll ) 
may be written 

.and 

0', (0) =_4_ IP(O) 12 
71"a2 (ka) 2 , 

0',,(0 ) =_4_ 1 Q(O) 12 
71"a2 (ka )2 . 

(12) 

(13) 

A computer program was devised for the Junctions P(O) and Q(O) . The sphel'icf11 Bessel 
functions 'which are involved in the coefficients En and On were computed by a method clue 
·essentially to Miller [1950]. To sec Ul'e convergence of the series expansions for P(O) and Q(O), 
.at least 2 ka terms were used in the sW11mation. For the graphical accuracy shown in the 
figures, this was more stringent thf1n neceSSf1ry. 

3 . Description of Results 

The numerical results for the two bistatic cross sections are plotted as a function of 0 for 
.a wide vtLriety of situations. The basic parameters are the circumference, ka, of the sphere 
in wavelengths and the complex value of G. 

301 



L 

1.0r-=----------,---------,--,------, 

0.' '---__ -'-L __ ~__'__'_ ______ _'_____---' 

O· 20' 40' SO' 80' 100' 120' 140' 160' IB O' 

8 (DEGREES) 

(Jt81 
7r<i"2 

,·0 
0".(1,1 

- - ~. E-PUINE 

CTnI B ) 
--- - ~' 

01 '------'"--------'--, ---,-, ~~___L--'---__'_____L_...L, ----"-, ----"-, -.J 
o· 20' 40' 60' 80' 100' 120' 14{)' 160' 180· 

e (DEGREE S) 

FIG U RE 2 11 . FIGU RE 2b. 

In figures 2a and 2b, the cross sections are plotted for ka values ranging from 3 to 20 under 
the condition G= O (i. e., perfectly conducting sphere). These particular curves may be com
pared directly with similar plots prepared by Nelson Logan 1 and colleagues . Where the ka 
values are common the data are identical within the graphical accuracy. This would appear 
to be a good check on the computer program for this special case. 

It is evident from the curves in figures 2a and 2b that the forward scattering (i .e., cor
responding to IJ~O) is greatly enhanced over the backscattering. In fact, t he (normalized) 
forward scattering cross sections both become approximately equal to (ka )2 while the (normal
ized) backscatter is approximately unit. Thus, in the forward direction, the sphere is behaving 
as a "black disk," particularly for the larger ka values. On the basis of Huygen's principle,. 
it follows from Van de Hulst [1957] that for small values of IJ , 

CTe(lJ) ~CTh (IJ) ~ (kaF J J e -ik(X cos <!>+V s ln .p) s in 8dxdy , (14)· 

where the integration is over the area of the "black disk." In the case or the sph ere or its 
equivalent circular black disk, the integrations are readily carried out to give 

(15)-

For pure forward scattering (i .e., IJ --O>O) , the square bracketed term involving the J 1 Bessel 
function approaches unity whi ch is a broad maximum. It decreases smoothly to zero at IJ = IJo. 
wben J I(ka sin IJo) = O or wh en ka sin 1J0= 3.832 . For ka = 10 , 15, and 20, the corresponding 
villues or IJo are 22.5°,14.8°, and 11.0°. These correspond quite well to the first minima in the 
calculated curves (fig. 2b) for CTe(IJ ) and CT ,, ( IJ ) in the forward direction. The agreement is better ' 
for t he larger ka values, as expected . 

, These cur ve s appear in the appendix to a monograph by K ing and Wu [1959] . 
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Because o( thc crude physical assw11ptions underlying the appli cation of Huygen 's 
principle, it is not cxpccterl that (15) should be used Jor angles except neal' forward scattering. 
Furthermore, being n. scnhr theory, it does not distinguish between the two wave polariza.tions. 
However, this simple " bl<tck disk" model is parti cularly appropriate for desCTibing th e shape 
and width of the forwf, rCi 111<til1 lobe in the scn,ttering pattern. A furth er demonstration is to 
employ (15) to CcLl culate the vc11ues of 6= 01 where ue(O) and UII (O ) drop to 1/2 of th e cenLml 
maximum at 6= 0. This condition is lea sin 61= 1.6l. For lea = lO, 15, and 20, the correspond
ing values of 0, are found to be 9.3°, 6.1 0 , and 4.6° whi ch, within two significn,J1t figures fu·e 
identical to the curves in figure 2b computed from th e exact seri es solutions. 

It is evident that the curves in both figures 2n, and 2b are highly oscillatory . This results 
from the well-known effect of the "creeping waves." In other words, the two w,wes diffmcted 
around the sphere interact with one another to form an interference pattern. This effect 
has been discussed for perfectly conducting spheres by Van de Hulst [1957], Belkina n,nd 
"VVeinstein [1957], Logan and Yee [1961], and many others. It is further remarked here that 
the interIerence pattern is much more pronounced for E-plane scat tering than it is for H-plane 
scattering. For perfectly conducting spheres, this is also n, very well-known effect and is 
primarily a consequence of relatively low attenuation o[ the creeping wave in the E-pln,ne case . 

For perfectly conducting spheres, it is fin ally remarked that backscattering cross sections, 
for the larger lea va,lues, become very close to the geometrical cross section -rra2 . This is 
pn,rticularly evident [or the curves in figure 2b, as r emarked above . 

The efl' ec t oJ choosing a succession o[ r eal positive 0 values is illustrated in figures 3a to 
5b for the same range of lea values used for the perfectly conducting sph eres (i. e., 0 = 0). As 
mentioned before, a purely inductive boundary is described by r eal positive O. It is very 
evident from these cw-ves that, even for the largest 0 value chosen , the magnitude and shape 
o[ the forward -scatter lobe are not changed markedly . Furthermore, the magni tude of the 
backscattering cross section is only slightly modified from the corresponding curves for 0 = 0. 
The only significant changes in the curves in figures 3a t o 5b from those in figures 2a and 2b 
are the enhancement or the ripples in the E-plane scattering pattern. This is consistent with 
the expected reduction of t he attenuation of the cr eeping wave which results from an 
inductive-type coating [Wait, 1964J. 

OIL-__ --'-'---' __ -'---__ -'-__ ~ _ __..J 

r w w w w 'w ~ ~ ~ ~ 

e (DEGREES) 

FIGURE 3a. 
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4, Digression on Fresnel Reflection Coefficients 

In discussing the numerical results for backscattering from spheres with impedance 
boundary layers, i t is useful to consider first what one may expect on the basis of geometrical 
optics. The concept is extremely simple; it is assumed that the cross sections (T e and (T il are 
individually proportional to IRel2 and IRII12 where the latter are the sqmtre of the Fresnel 
reflection coefficients for E-plane and H-plane scattering, respectively. Thus, within this 
geometrical-optical approximation, 

(16) 
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The refl ection coefficients are defined by [Wait, 1962], 

C-tl Ctl - 1 
R ,= C+ tl and R II= Ctl+ l ' (17) 

where fl = Zjr,o = iG is the normalized surface impedance and C= cos j3 = sin (f}/2) wh ere j3 is Lhe 
local angle of in cidence for the specular ray. 

In terms of the magnitud e I GI and the phase angle if>, i t is seen that, according to geometrical 
op tics, 

and 

(T , [sin (f}/2)-101 cos if> F+lI OI sin <I> J2 
7ra2"'[sin (f}/2)+ 10 1 cos <I> F+lI OI sin <I> )2' 

(T" [10 1 cos <I> sin (f}/2)-1)2 + lI OI sin if> sin (f}/2)F 
7ra2"' lI OI cos <I> sin (8/2) + 1)2 + [10 1 sin if> sin (f}/2)p· 

(18) 

(19) 

It is ra ther interesting to note th at when 0 is real (i.e., if> = 90 0), the right-hand sides of the 
preceding two equations are unity. This is not really surprising as r efl ection takes place 
without loss from a purely r eactive surface. This is also true, of course, when 10 1 = 0, which 
corresponds to the perfectly co nducting surface. 

5. Further Description of Results and Comparisons With Geometric Optics 

It is now wor th while to r eturn and examine the various curves in fi gures 2a to 5b. It is 
eviden t that for the larger ka yalues (i.e., 10, 15, and 20) and for f} in the range 90 ° to 180°, 
(T e/7fa2 and (T".' 7ra2 are wi thin the range 0.6 to 1.5. As expected, of course, geo metric op tics 
ignores the diffracted or creeping waves. 

To illustr ate a m uch more fayorable comparison between the exact theory and geometrical 
optics, we choose a surface impedance which is purely real. Thus, Z = IZ I and 0= - i lGI so 
that the phase angle if> = 0. For this si tuation, t he scattering patterns ar e shown in figures 
6/1 and 6b for the E-plane and H-pla,ne, respectively. The values of 0 ar e indicated on the 
curves. The close agreement b etween the geometrical-op tical calculations and the exact 
theory is clearly evident. It is par ticularly in teresting to note that when 101=1.00, the 
backscatterin g according to geometric optics, is iden tically zero. In other words, the surface 
impedan ce matche the intrinsic impedance of free space. The exact theory for the sphere 
(with ka = 15) shows t hat the b ackscattering cross section is less than 10- 5• It may also be 
obser ved in figures 6a and 6b th at deep null occur whenever 10 1=sin f}/2 in the case of E -ph1ne 
scatter a nd whenever 1/1 01 =sin f}/2 in the case of H-plane sca tter. Under th ese condi tions, 
the Fresnel r eflections have a zero and the corresponding a ngle (f}/2) is the conven tional 
Brewster f1l1 g1e. 

The curves in figures 7a to 9b illustr ate the behavior of the cross sections for values of 0 
which are near -i. It is seen in figures 7a and 7b that even for a ka value as small as 3, almost 
perfect absorption takes place in the backscat ter direction if G= -i. H owever , very small 
changes in the m agnitude of 0 result in an appreciable backscat ter signal wi th a subsequ ent 
shift of a deep null to another angle. Similar effec ts are seen in fLgures 811., 8b , 9a, and 9b 
for larger ka values. In all cases, the forward scattering lobe is virtually un ch anged even 
when the sphere has no backscatter. This is in agreement wi th the r esults of Garbacz [1964] 
for a similar situa tion. 

In fi gures lOa to 10e, cross-sec tion curves are shown to illustrate the effect of varying the 
magnitude of 0 over fairly wide limits. Both E- and H -plane cases are shown for ka values 
of fiv e and fLf teen. In figure lOa, the value of 0 is + 0.50, which corresponds to a highly 
inductive surface. H ere, there is evidence of strong standing waves for the E-pln,nc pattern 
for the whole range of f} . As explained before, this results from the low aLtenuation of the 
creeping waves for the TM (tr ansverse magnetic) waves. On the other hand, the standing 
waves for the H-pl ane pattern are only slightly enhanced by the inductive coating excep t for 
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directions near backscatter. As seen from figure lOb, the effects of inductive coating diminish 
as 0 is reduced from 0.5 to 0.3. Then, of course, as 0 is reduced to zero , the corresponding 
curves would be identical to those shown in figures 2a and 2b. 

A capacitive-type coating corresponds to taking negative real values of O. Cross-section 
patterns are shown in figures 10c, 10d, and 10e for 0 = - 0.1 , - 0.3, and - 0.5, respectively. 
Here, it is interesting to note that the ripples are very small for both E- and H-plane patterns. 
At the same time, the forward scattering lobe is virtually unaffected by changes of 0 right 
through the range from + 0.5 to - 0.5. 

In figures lla to llc, cross-section curves are shown to illustrate the effect of a conductive
type coating material such that z = IZI exp (i7r/4) or 0= (I-i) 101;'·/2 or <p = 45° (which are all 
equivalent sta tements) . It is immediately evident that such a coating has the important 
effect of reducing the scattering cross sections for all directions except in the forward direction. 
Furthermore, the standing wave patterns are generally decreased by the presence of the coating. 
Comparisons between geometric optics and the exact theory for conductive-type coatings are 
shown in figures l2a and l2b for e in the range from 90 0 to 180 0 • The agreement is reasonably 
good. 
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The effect of varying the phase angle c]) is illustrated for ka=5 and [G[= 0.10 in figures 
13a and 13b for E -plane scatter and in figures 14a and 14b for H-plane scatter. Those curves 
show quite clearly th at the greatest reduction in scattering takes place when the surface im
p edance is purely real (i. e., c]) = OO), although marked reductions also occur when the coating 
is of a conductive type (i.e., c]) = 45°). Similar-type curves are shown in figures 15a to 16b 
where ka = 15, but otherwise the conditions are the same. 
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6 . Conclusions 

The numerical results presented graphically in this paper should provide some insigh t 
into the nature of scattering from coated spheres. Of principal importance is the fact that 
forward scattering is hardly influenced at all by the presence of reactive or lossy-type coatings. 
On the other hand, the magnitude of the backscattering cross sections is significantly"modified 
by the magnitude and phase of the effective surface impedance of the coating. .. 
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1 . Appendix. Outline~of [Solution for Scattering of a Plane Wave From a 
Sphere With~ Impedance Boundary Conditions 

The geometry of the problem is defined in terms of spherical coordinates (r, 0, 4» and 
common Cartesian coordinates (x, y , z) with common origin and common polar axis as indicated 
in figure 1. Thus, the surface of the sphere is at T= a and the incident plane waye is defined by 

(A- I) 

(A- 2) 

for a time factor exp (iwt) and where 710= 12071' , The total field can be written as a super
position of TM (transverse magnetic) and TE (transverse electric) waves, Following HalTing-
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ton [1961]' the field components may be written m terms of potent ial functions A and F, 
respecti\'ely, for the two sets. Explicitly, 

E(e)- 1 (02 +k2) A 
T --+. ~ I l , 

U ~ EW U r 

H (e) = _ l_ oA, 
6 r sin () oc/> 

E (h) _ _ __ l _ of, 
8 - l' sin I} OC/> 

f "T(h ) __ l _ 02F 
29 - . , 

?p.w1' 01'01} 

1 02A 
(U+ i Ew)1' sin I) o1'Ocj>' 

H(e)= -.! oA, 
'" l' 01} 

1 02F 
(iJ.Lw)1' sin 1}01'oc/>' 

(A- 3) 

(A- 4) 

(A- 5) 

(A- 6) 

(A-7) 

(A-8) 

(A- g) 

(A- 10) 

(A- H ) 

(A-12) 

The total field in any region is the superposition of the TM and TE waves. For example, 
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The well-known addition theorem [HaningLon, 1961], 

/\ 

eikr COS 8=~ in(2n+ l) In(~I') P n (cos e), 
n=O kl 

(A-l4) 

permits us to write 

E~= cos ¢ sin eE~=Eo C~~,~ ~e (e- ikr cos 0), (A-15) 

+iEo cos ¢ ~ '- ( )J/\ (k )Pl· ( e) 
= (kr) 2 f=i '/, n 2n+ l n r " cos , (A-16) 

1\ 

where the notation is that lI sed by Schelkunofi' [1943]. I n(kr) is a spherical Bessel function 
defined by 

1\ ('lrkr)I /2 I n (kl') = 2 J ,,+1/2 (kl') , (A- 17) 

where I n+I / 2 is a cylindrical Bessel function , p! is an associated Legendre polynomial defined 
here by 

P~I (cos e) = -~e P" (cos e), (A- IS) 

in terms of the Legendre polynomial. The potential function At, which gives rise to E~, is 
easily found to be 

E cos ¢ 00 1\ 
o :z= anJ,,(kl')P~ (cos e), 

p.w n= l 

(A- 19) 
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where 

By a similar procedure, it is found that 

i-"(2n+1) 
n(n+ l ) 

For the region l'> a, it is possible to write 

A = A i+A s, 

where the superscript s is associated with the scattered field. 

FIGURE 13b. 

(A-20) 

" " Clearly, A S find F s mllst contain the spherical Hankel functions H~2) Ckr) in place of the 
J "Ckr) 's, becaLlse the scattered field mLlst behaye as an outgoing wave at infinity. Thus, for 
the region r> a, 

<X> E os </> <X> " " 
A = 2:: A n= - 0 c 2:: [anJn(kr)+ b"H,~2) (kr)]P~!) (cos e), 

1/= 1 }J.W 1/=1 
(A- 21) 

and 
<X> El·-/' <X> " " 

F - "'F - - OSl1'1'", [ J (k ')+ "LT(2)(k)]P (1) ( ) 
- ~ 11 - k ~ an 11 I C"rL" r n COS e , (A-22) 

where bn and Cn are coefficients unknown as yet . 
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It is now conyenient to introduce the concept of wave impedance such that relations 
between the tangential field components at 1'= a are to be prescribed . For example, for a 
TM mode, of order n, we insist that 

E (e)= _ Z (n)[{<e) and rpe) =_1_ E (e) at r= a (A- 23) 
6 rf> 6 Z <n) rf> , 

while for a TE mode, of order n, 

1 H <Ii)= y <n)E <h) and E (h) = _ _ - H <hl at r= a 
6 rf> 6 y <n) rf> • 

These latter four conditions are automatically satisfied if 

J:- OAn= z <n)An] 
UOW 01' 

_. _1_ of''= y <n) F " 
~J.l.oW 01' T ~a 

and 

(A- 24) 

(A- 25) 

(A- 26) 

Employing the boundary conditions on A n and F", defined above, it is a simple matter to 
show that 

(A- 27) 

and 

(A- 28) 

where 
A A 

and 

B = _ J~(ka)-i6nJ,,(ka) 
n " A. 

H~2) I (ka) -i6 n H;,Z) (lea ) 
(A- 29) 

A A 

G,,= 
J ;,(ka) -io"J ,,(ka) 

if (2) I (lea) - io lJ<2) (lea) n n n 

(A-30) 
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The solution of the first part of the problem has now been obtained. Namely, the fields 
may be expressed in terms of the normalized impedance Lln and normalized admittance On. 
Of particular interest are the far-zone scattered fields such that kr > > 1. It is then a simple 
matter to show that 

(A- 3l) 

and 

(A-32) 

where 

P(O) = ~ (2n + 1) [En!l P~ (cos O) + On P~ \COS O)J' 
n~ l n(n+ 1) dO sm 0 

(A - 33) 

and 

Q(O) = ~ (2n+ 1) [En P~ \COS 0) +O,, !l P~ (cos O)J' 
n~ l n( n + 1) Sill 0 dO 

(A-34) 

In order to arrive at an eXplicit solution, it is necessary to obtain formulas fo1' the impedance 
Z ( n) and the admittance Y (n) for TM and TE modes, respectively. This subject has: been dis
cussed in an earlier paper by the author [Wait, 1963] and an equivalent problem has been treated 
by Garbacz [1962]. For purposes of the present paper, it is assumed that ~z(n) = l / Y <n)= z i(a 
specified complex constant independent of mode number n . By definition, Z becomes the sur
face impedance at the boundary r= a as discussed in the main text. 

The authors appreciate the extensive advice of K . P. Spies and L. A. Bel'l'Y in connection 
with the computing work. In particular, the program for the spherical wave functions, as 
developed by L. A. Berry, was used extensively. 
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Note Regarding the Figures 

The vertical scale in a number of the figures is shifted in order to avo id overlapping of the curves when the 
ka value is changed. To prevent confusion, one should remember t hflt cr (O) tends toward 7ra 2 when 0 = 180°. 
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