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Extensive numerical results for electromagnetic scattering from spheres are presented
in graphical form. To simulate various types of coatings, the surface impedance of the
sphere is a specified complex function. It is shown conelusively that the forward scattering
lobe is almost independent of the characteristics of the coating. On the other hand, the
backscattering and side scattering are profoundly modified by changes in the effective
impedance of the coating.

1. Introduction

Scattering of electromagnetic waves from spheres is a subject which has permeated the
literature for over half a century. An exhaustive survey of the subject is found in a highly
recommended book by Van de Hulst [1957.] An important collection of informative papers
reporting recent advances is also available [Kerker, 1964].

Despite the numerous papers treating both theoretical and experimental aspects, a number
of unresolved questions remain. For example, the effect of coating conducting spheres with
absorbent material is not entirely understood. Also, the related question of how an inductive-
or capacitive-type surface layer modifies the scattering properties has not been answered
completely. Tt is the purpose of this paper to present calculations for scattering from spheres
under various surface impedance boundary conditions. This relatively simple model has the
virtue of displaying many important features in an economical manner. This approach has
been used previously by various investigators [Wait, 1956; Hiatt et al., 1960a, 1960b;
Garbacz, 1964] who have treated closely related problems.

2. Formulation

The spherical model used as a basis for calculation is illustrated in figure 1 with reference
to a Cartesian coordinate system (z, 7, z). A plane wave is incident from the negative z
direction and polarized with the electric field £, in the x direction. With reference to a spherical
coordinate system (r, 0, ¢) also centered at the sphere, the scattered field components may be
written
- —u kb

By==11 - (003 )P ), )
and
Bi="T0 -1 (sin 4)000), @)
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where k=2x/wavelength and where P and @ are functions of § only. The latter are defined by

©  2n+1 . . P}l (cos 6) .
P(@)= Z‘, a1 I:B,, T P} (cos 6)+C, e (3)
and
@ 2 1 0
0= 205 L0, P eos 0) | )

where the coefficients B, and C, are a function of ka, the circumference of the sphere in wave-
lengths, and the surface impedance Z of the sphere. The explicit definition of these coefficients
B, and (,is given in the appendix where the derivation is outlined. The function P} (cos 6) is
the associated Legendre function of order n» and index 1.

As indicated above, the solution for the present problem is expressed in terms of the surface
impedance Z which requires that the total tangential fields at »=a are related as follows:

EgI_ZII(t, al]d E¢:ZIIG. (5)

These are often termed the Leontovich boundary conditions when applied to the interface
between free space and a highly conducting medium [e.g., ch. 2 in Wait, 1962]. Actually, they
are a valid representation for other type surfaces such as a dielectric coated conductor or a
finely corrugated surface, in which cases Z is highly inductive. In the general case, such as
for a radially inhomogeneous sphere, it is necessary to recognize that surface impedances are
dependent on mode number.

For the present discussion, it is assumed that the boundary may be characterized by a
constant surface impedance Z. This is conveniently normalized by writing

Z[n,=1Q, (6)
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where 7,=1207 is the intrinsic impedance of free space and @ is a dimensionless factor. For a
purely inductive surface, @ is positive real, while for a capacitive surface, G is negative real.
If the sphere is composed of a homogeneous, highly conducting material,

1—1
G~ — |G 7
1 @

where |G*=¢w/o, in terms of the conductivity o, of the sphere, the dielectric constant of free
space ¢, and the angular frequency w. The restrictions inherent in the use of the surface
impedance require that |G@*< <1 [Wait, 1962] in (7).

In the general case of a surface impedance boundary, it is desirable to write

Z=|Z|e®, ®)
01

G=—i|Gle", ©)

where ® is a phase angle. For the inductive boundary ®=90°, for the capacitive boundary
b= —90°, whereas, for the homogeneous conductor ®=45°. It might be mentioned that with
various forms of concentrically stratified conducting spheres ® may be anywhere in the range
0 to 90°. Furthermore, certain types of corrugated surfaces loaded with lossy material could
give rise to effective surface impedances which have phase angles also in this range [Wait, 1962].

To present numerical results in an economical manner, two bistatic radar cross sections
a.(0) and ¢,(0) are introduced which are for Z-plane and FH-plane scattering. Explicitly, these
are defined by:

drr?| By
01(0) T] o (]0)
and
4| B, ?
on(6) ==" [wgd’I] : (11)
~( $=90°

Using (1) and (2), and dividing by the geometrical cross section, it is seen that (10) and (11)
may be written

0",((9)7 4 ) 9

a2 7{/6(1)1 l[ (0)1 ) (12)
and

0’)1(0)7 4 - 9 h

i (o |Q(0) [ (13)

A computer program was devised for the functions () and @Q(6). The spherical Bessel
functions which are involved in the coefficients B, and (), were computed by a method due
essentially to Miller [1950]. To secure convergence of the series expansions for °(0) and ((6),
at least 2 ka terms were used in the summation. For the graphical accuracy shown in the
figures, this was more stringent than necessary.

3. Description of Results

The numerical results for the two bistatic cross sections are plotted as a function of 6 for
a wide variety of situations. The basic parameters are the circumference, ka, of the sphere
in wavelengths and the complex value of G.
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In figures 2a and 2b, the cross sections are plotted for ka values ranging from 3 to 20 under
the condition G@=0 (i.e., perfectly conducting sphere). These particular curves may be com-
pared directly with similar plots prepared by Nelson Logan! and colleagues. Where the ka
values are common the data are identical within the graphical accuracy. 'This would appear
to be a good check on the computer program for this special case.

It is evident from the curves in ficures 2a and 2b that the forward scattering (i.e., cor-
responding to 0~0) is greatly enhanced over the backscattering. In fact, the (normalized)
forward scattering cross sections both become approximately equal to (ka)? while the (normal-
ized) backscatter is approximately unit. Thus, in the forward direction, the sphere is behaving
as a ‘black disk,” particularly for the larger ka values. On the basis of Huygen’s principle,.
it follows from Van de Hulst [1957] that for small values of 8,

o, (0) gU’I((g) ~ (ka)sze—ik(z cos ¢+v sin ¢) sin ed.I'd:I/, (14)

where the integration is over the area of the “black disk.” In the case of the sphere or its.
equivalent circular black disk, the integrations are readily carried out to give

a.(0) O'h(o)z(ka‘)z [w]z (15)

Ta® (ka sin 0)

For pure forward scattering (i.e., 6—>0), the square bracketed term involving the .J; Bessel
function approaches unity which is a broad maximum. It decreases smoothly to zero at 6=46,.
when J,(ka sin 6,)=0 or when ka sin 6,=3.832. For ka=10, 15, and 20, the corresponding
values of 6, are 22.5°, 14.8°, and 11.0°.  These correspond quite well to the first minima in the
calculated curves (fig. 2b) for ¢,(0) and o,(0) in the forward direction. The agreement is better-
for the larger ka values, as expected.

1 These curves appear in the appendix to a monograph by King and Wu [1959].

302



Because of the crude physical assumptions underlying the application of Huygen’s
principle, it is not expected that (15) should be used for angles except near forward scattering.
Furthermore, being a scalar theory, it does not distinguish between the two wave polarizations.
However, this simple “black disk” model is particularly appropriate for describing the shape
and width of the forward main lobe in the scattering pattern. A further demonstration is to
employ (15) to calculate the values of §=6, where ¢,(6) and ¢,(0) drop to 1/2 of the central
maximum at 6=0. This condition is ka sin ,—=1.61. For ka=10, 15, and 20, the correspond-
ing values of 6, are found to be 9.3°, 6.1°, and 4.6° which, within two significant figures are
identical to the curves in ficure 2b computed {rom the exact series solutions.

[t is evident that the curves in both ficures 2a and 2b are highly oscillatory. This results
from the well-known effect of the “‘creeping waves.” In other words, the two waves diffracted
around the sphere interact with one another to form an interference pattern. This effect
has been discussed for perfectly conducting spheres by Van de Hulst [1957], Belkina and
Weinstein [1957], Logan and Yee [1961], and many others. It is further remarked here that
the interference pattern is much more pronounced for /-plane scattering than it is for /{-plane
scattering. For perfectly conducting spheres, this is also a very well-known effect and is
primarily a consequence of relatively low attenuation of the creeping wave in the Z-plane case.

For perfectly conducting spheres, it is finally remarked that backscattering cross sections,
for the larger ka values, become very close to the geometrical cross section wa?. This is
particularly evident for the curves in ficure 2b, as remarked above.

The effect of choosing a succession of real positive @ values is illustrated in figures 3a to
5b for the same range of ka values used for the perfectly conducting spheres (i.e., G=0). As
mentioned before, a purely inductive boundary is described by real positive G. It is very
evident from these curves that, even for the largest @ value chosen, the magnitude and shape
of the forward-scatter lobe are not changed markedly. Furthermore, the magnitude of the
backsecattering cross section is only slichtly modified from the corresponding curves for G=0.
The only significant changes in the curves in figures 3a to 5b from those in figures 2a and 2b
are the enhancement of the ripples in the Z-plane scattering pattern. This is consistent with
the expected reduction of the attenuation of the creeping wave which results from an
inductive-type coating [Wait, 1964].
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Ficure 3a. Ficure 3b.
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4. Digression on Fresnel Reflection Coetficients

In discussing the numerical results for backscattering from spheres with impedance
boundary layers, it is useful to consider first what one may expect on the basis of geometrical
optics. The concept is extremely simple; it is assumed that the cross sections o, and o, are
individually proportional to |R,[* and |,[> where the latter are the square of the Fresnel
reflection coefficients for F-plane and FIH-plane scattering, respectively. Thus, within this
geometrical-optical approximation,

a, ; ag,
| B.[* and r(’tlzz\R,, s (16)
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The reflection coefficients are defined by [Wait, 1962],

i . OA—1

A and B,=-

= CAFT

(17)
where A=Z7/n,—=1@ is the normalized surface impedance and C'=cos g=sin (6/2) where g is the
local angle of incidence for the specular ray.

In terms of the magnitude |@| and the phase angle &, it is seen that, according to geometrical
optics,

o, _[sin ( 70/27);|77(‘0\ (blzr 1(7@1721 (18)
xa®  [sin (6/2)F|G| ¢ sin ®J? ‘
and
o,, [|@] cos ?.Sll}, (8/2)—1P+[|G| sin @ ellng[‘))l 19)
1G] cos ® sin (6/2)+1P+[|G| sin ® sin (6/2) s

It is rather interesting to note that when G is real (i.e., ®=90°), the right-hand sides of the
preceding two equations are unity. This is not really surprising as reflection takes place
without loss from a purely reactive surface. This is also true, of course, when |@|=0, which
corresponds to the perfectly conducting surface.

5. Further Description of Results and Comparisons With Geometric Optics

It is now worth while to return and examine the various curves in figures 2a to 5b. It is
evident that for the larger ka values (i.e., 10, 15, and 20) and for 6 in the range 90° to 180°,
o/ma? and ¢,/ma* are within the range 0.6 to 1.5. As expected, of course, geometric optics
ignores the diffracted or creeping waves.

To illustrate a much more favorable comparison between the exact theory and geometrical
optics, we choose a surface impedance which is purely real. Thus, Z=|Z| and G¢=—1|G| so
that the phase angle ®=0. For this situation, the scattering patterns are shown in figures
6a and 6b for the F-plane and F-plane, respectively. The values of @ are indicated on the
curves. The close agreement between the geometrical-optical calculations and the exact
theory is clearly evident. It is particularly interesting to note that when |G|=1.00, the
backscattering according to geometric optics, is identically zero. In other words, the surface
impedance matches the intrinsic impedance of free space. The exact theory for the sphere
(with ka=15) shows that the backscattering cross section is less than 107% Tt may also be
observed in figures 6a and 6b that deep nulls occur whenever |G|=sin 6/2 in the case of E-plane
scatter and whenever 1/|G|=sin 6/2 in the case of FH-plane scatter. Under these conditions,
the Fresnel reflections have a zero and the corresponding angle (6/2) is the conventional
Brewster angle.

The curves in figures 7a to 9b illustrate the behavior of the cross sections for values of @
which are near —1. It is seen in figures 7a and 7b that even for a ka value as small as 3, almost
perfect absorption takes place in the backscatter direction if G=—i. However, very small
changes in the magnitude of @ result in an appreciable backscatter signal with a subsequent
shift of a deep null to another angle. Similar effects are seen in figures S8a, S8b, 9a, and 9b
for larger ka values. In all cases, the forward scattering lobe is virtually unchanged even
when the sphere has no backscatter. This is in agreement with the results of Garbacz [1964]
for a similar situation.

In figures 10a to 10e, cross-section curves are shown to illustrate the effect of varying the
magnitude of @ over fairly wide limits. Both - and FH-plane cases are shown for ka values
of five and fifteen. In figure 10a, the value of G is +0.50, which corresponds to a highly
inductive surface. Here, there is evidence of strong standing waves for the /-plane pattern
for the whole range of 0. As explained before, this results from the low attenuation of the
creeping waves for the TM (transverse magnetic) waves. On the other hand, the standing
waves for the I/-plane pattern are only slichtly enhanced by the inductive coating except for

748-159—65——11 305
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directions near backscatter. As seen from figure 10b, the effects of inductive coating diminish
as @ is reduced from 0.5 to 0.3. Then, of course, as G is reduced to zero, the corresponding
curves would be identical to those shown in figures 2a and 2b.

A capacitive-type coating corresponds to taking negative real values of G. Cross-section
patterns are shown in figures 10¢, 10d, and 10e for G=—0.1, —0.3, and —0.5, respectively.
Here, it is interesting to note that the ripples are very small for both /- and /-plane patterns.
At the same time, the forward scattering lobe is virtually unaffected by changes of G right
through the range from 0.5 to —0.5.

In figures 11a to 11c¢, cross-section curves are shown to illustrate the effect of a conductive-
type coating material such that Z=|Z| exp (ir/4) or G=(1—1)|G|/y2 or #=45° (which are all
equivalent statements). It is immediately evident that such a coating has the important
effect of reducing the scattering cross sections for all directions except in the forward direction.
Furthermore, the standing wave patterns are generally decreased by the presence of the coating.
Comparisons between geometric optics and the exact theory for conductive-type coatings are
shown in figures 12a and 12b for 6 in the range from 90° to 180°. The agreement is reasonably

good,
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The effect of varying the phase angle ® is illustrated for ka=5 and |G|=0.10 in figures
13a and 13b for E-plane scatter and in figures 14a and 14b for /H-plane scatter. Those curves
show quite clearly that the greatest reduction in scattering takes place when the surface im-
pedance is purely real (i.e., #=0°), although marked reductions also occur when the coating
is of a conductive type (i.e., ®=45°). Similar-type curves are shown in figures 15a to 16b
where ka=15, but otherwise the conditions are the same.

307



kO =15, E-PLANE.
1.0 .
S
~
\
\ G =0.50
\
(
\\ _ %. £- PLANE
\
\ \\ Th(8)
\ \ i 7. H-PLANE
\‘ w7 ko5 Z
o= il
= | \
= || \
L‘T ) ‘l \\
\
| \
. | | LS
etf) | o (8) et = N A
— | LT R <\ \
! it ! ' \
\ \
| \
10t i e ’
\ \
1)
[¥ \
I \\ \
1 4 \ \'
\
10 AT N N PR
AN
W
! 1
3 Iy
’ (o
1
1
1
ls |
- |
0l e e - {1 O O T i 4
! . 200 a0 60° 80° 100°  120°  140°  180°
i | \ ] | | | 6 (DEGREES)
0 2° 40 60° 80° 100° 1200 4 ¢ 180*
8 (DEGREES)
Ficure 9a. Ficure 10a.
10.0 |
| ka:15, H-PLANE
‘ 19—
| S G :0.30
| \,
1.0 o ——— o.xlj) . E-PLANE
i WARY o
I \ \ Ty (8)
[ \ —_—— , H=PLANE
| \\ \ 72
\
; 10— \r ko
| |
\ | |
0"} ‘l \
\
1 \ L
Lookasis o\ X
R | iy - S -
I ni8) o9 ] S s =~
a2 1702 1.0 B \\
| i N
| i
Vi
1
e I b
Y
[ \/ /
| v . /
| \ /
\ I y
s ~ N /
| % NS N S AENAE N
0-3
15
0.1 — . —
0 200 a0 60° 80° 00° 1200 140°  160°  180°
6 (DEGREES)
[ —
0 2 0
6 (DEGREES)
Ficure 9b.

Ficure 10b.
6. Conclusions
The numerical results presented graphically in this paper should provide some insight
into the nature of scattering from coated spheres. Of principal importance is the fact that
forward scattering is hardly influenced at all by the presence of reactive or lossy-type coatings.

On the other hand, the magnitude of the backscattering cross sections is significantly modified
by the magnitude and phase of the effective surface impedance of the coating.
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7. Appendix. Outline of [Solution for Scattering of a Plane Wave From a
Sphere With'Impedance Boundary Conditions

The geometry of the problem is defined in terms of spherical coordinates (r, 6, ¢) and
common Cartesian coordinates (z, 7, z) with common origin and common polar axis as indicated
in figure 1. Thus, the surface of the sphere is at 7=a and the incident plane wave is defined by

Ezi::Eog—ikz:Eoe—ikr cos 0, (A__l)
I];:@b e—ikz:B ¢~ ikt cos o, (A_Q)
Mo Mo

for a time factor exp (iwt) and where n,=1207. The total field can be written as a super-
position of TM (transverse magnetic) and TE (transverse electric) waves. Following Harring-
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ton [1961], the field components may be written in terms of potential functions A and F,
respectively, for the two sets. Explicitly,

Bo——1—(Z+ir) 4, (A-3)
c-+iew \Or?
Hée):r siln 0%%1, (36)
B = T siln 0 gf’ (6=1)
Hp :al& R (A=8)
k= (a—f—iewl)r sin 6 ba:ép’ (4-9)
Y — _% %f;l, (A-10)
Bp=1 3 (4=t
e 1 O°F (A-12)

¢ = (ipw)r sin 6 0rd¢
The total field in any region is the superposition of the TM and TE waves. For example,

Ey=E©+E®. (A-13)

0 — S | Or— _— e -
=

16/ 0.05

(8)
el
ma*

6 (DEGREES) 6 (DEGREES)

Ficure 11b. Ficure 1llec.
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The well-known addition theorem [Harrington, 1961],

P “’”—Z " (2n4-1) = "(k’) P, (cos ), (A-14)

permits us to write
Ei=cos ¢ sin 0E'=F, 0‘2’2)"’ O (g tkr wws0), (A-15)
e S i @nt DI PY (cos 9), (A-16)

A
where the notation is that used by Schelkunoff [1943]. oJ,(kr) is a spherical Bessel function
defined by

A N2
J,L(Icr):<%> Tusns k), (A-17)

where J,.1 is a cylindrical Bessel function, P! is an associated Legendre polynomial defined
here by

—2.P, (cos ), (A-18)

o1 .
P} (cos 0)= Y.

. . . . . . . Vi .
in terms of the Legendre polynomial. The potential function Af, which gives rise to £, is
easily found to be

Al Lo cos ¢ & Z J,,(kl)P (cos 0), (A-19)

Mw n=1
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where
a " (2nA41)
"~ n “n(nt1)
By a similar procedure, it is found that
) i sm
Jp— = PLies > anu(k)P: (cos 0). (A-20)

For the region r>a, it is possible to write
— At 4,
JA=IiE 5
where the superseript s is associated with the scattered field.

A
A Clearly, A* and F* must contain the spherical Hankel functions H (kr) in place of the
J.(kr)’s, because the scattered field must behave as an outgoing wave at infinity. Thus, for
the region r>a,

A:il A,—— E‘)l‘jz”’ > (@ (k) +bu 12 (k) PO (cos 6), (A-21)
and
© 3 ) A A
=32 By =P S (0, T (k) eI ()P (cos), (A-22)
n=1 n=1

where b, and ¢, are coefficients unknown as yet.
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It 1s now convenient to introduce the concept of wave impedance such that relations
between the tangential field components at r=a are to be prescribed. For example, for a

TM mode, of order n, we insist that

Ef=—ZmHY and H? =—— E¢ at r=a,

7(n)
while for a TE mode, of order n,
e . 1
1 (=Y ALY D) pyig | 1l — —v@ HMatr=a.

These latter four conditions are automatically satisfied if

1 04, _ZmA,
L€ow or
and
i bl’,, —Y®F,
’L,uow r r=a

(A-23)

(A-24)

(A-26)

Employing the boundary conditions on A, and F,, defined above, it is a simple matter to

show that
17" (2n+1)
n(n+1)

*(2n+1)
n(n+1)

bn:+ Bn;

and

=- Ch,
where

A . A
_ Ju(ka)—iA, T, (ka)
197 (ka) —in, 12 (ka)

and
Jn(ka) —1id,J, (ka)

(‘v": A 9
][,(Lz) ’ (]ca) —16, HP (ka')

where k= (equo)tw, A,=Z™ /5o, and 8,=Y "y,
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Frcure 15a. Frcure 15b.

The solution of the first part of the problem has now been obtained. Namely, the fields
may be expressed in terms of the normalized impedance A, and normalized admittance é,.
Of particular interest are the far-zone scattered fields such that k»>>>1. Tt is then a simple
matter to show that

Ej~+ kE)"e-l“ cos ¢ P(0) ~n,H, (A-31)
and
1By .. . -
By~ —27 ¢~ sin ¢Q(0) = —moH, (A-32)
where ) . :
(2n+1 d ., n (cos )7 .
PO)= nzln(n+l) I:B"d_BP" (e0s8)5-C5 sin ¢ (A-33)
and )
(2n—|—])|: P, (cos 0 . ] B
Q)= nzln n+1) sin 6 +C d0P (cos 0) (A-34)

In order to arrive at an explicit solution, it is necessary to obtain formulas for the impedance
Z™ and the admittance Y™ for TM and TE modes, respectively. This subject has been dis-
cussed in an earlier paper by the author [Wait, 1963] and an equivalent problem has been treated
by Garbacz [1962]. For purposes of the present paper, it is assumed that 2™ =1/Y" =7 is"a
specified complex constant independent of mode number n. By definition, Z becomes the sur-
face impedance at the boundary »=a as discussed in the main text,

The authors appreciate the extensive advice of K. P. Spies and L. A. Berry in connection
with the computing work. In particular, the program for the spherical wave functions, as
developed by I.. A. Berry, was used extensively.
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Note Regarding the Figures

The vertical scale in a number of the figures is shifted in order to avoid overlapping of the curves when the
ka value is changed. To prevent confusion, one should remember that ¢(6) tends toward ra? when 6=180°.
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