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Two antenna capacitance problems a re solved in this paper. The motivating problem 
was to determine the capacitance of a biconical antenna of circular cross section immersed in 
a magneto-ionic medium. This is solved by reducing it to the secondary problem of deter
mining the capacitance of a biconical antenna of elliptic cross section in an isotropic medium. 
The latter is solved using the sphero-conal coordinate system. 

1. Introduction 

Satellite and rocket borne experiments carried out 
jn the ionosphere utilize antennas for various 
purposes in ways which require an understanding 
Df the effects of the ionospheric environment on the 
:antenna impedance. In particular, many experi
ments are operated at frequencies and altitudes such 
that the anisotropic properties of the ionosphere 
come strongly into play. Examples occur in the 
reception of cosmic noise in the topside of the 
ionosphere at frequencies near 1 Mc/s [Walsh et al., 
1963] and in the use of impedance probes to measure 
:ambient electron densities [Herman, 1964]. In terms 
of the well known ionospheric parameters 

x = (plasma frequency/operating frequencyF, 
Y = gyro frequency/operating frequency, and 
Z = collision frequency/operating freq uency 

it turns out that over a large part of the XY2 plane 
the capacitive part of the impedance is dominant. 
This capacitance can be thought of as made up 
approximately of parallel capacitances across the 
space charge sheath, i.e., from antenna surface to 
undisturbed plasma, and between the two parts of 
the antenna at different potentials. This latter 
capacitance has been computed in the literature by 
neglecting the modification of the embedding plasma 
due to the sheath [Herman, 1964; Kaiser 1962; and 
Balmain 1964]. Kaiser has considered a biconical 
antenna and Balmain a cylindrical one, while 
H~rman's res~lt is rough eno~l&h to r~quire only a 
thm symmetncal antenna wIth no further shape 
details. 

To carry out his analysis of the conical antenna 
Kaiser [1962] employed an approximate mathe
matical procedure whose accuracy is difficult to 
assess. The purpose of this work is to obtain an 
exact solution for the same physically simplified 
problem ; that of a conical antenna in a plasma, 
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neglecting the sheath. This clears the way for evalu
ating the effects of the sheath by removing the effects 
of the approximate mathematics. The latter are 
negligible when the antenna axis is oriented along 
the earth's magnetic field H, but become significant 
if the antenna orientation approaches 90° to H . 
Both the present results evaluated for thin cones 
as well as Kaiser's and Balrnain's [1964] results are 
all quite different from those of Herman. The pri
mary reason is that Herman [1964] incorrectly as
sumed that the value of the integral over the antenna 
surface of the electric field vector E is not different 
when the antenna is in free space from its value when 
the antenna is immersed in a plasma. 

Interest in biconical antennas of circular eros 
section stems in part from the fact that a thin 
biconical antenna approximates a thin cylindrical 
antenna and is easier to treat mathematically. In 
an isotropic medium the capacitance per unit length 
(along a generator) of an unterminated biconical 
antenna has the pleasant property of being constant 
and is given by 

'irE 'irE 
c= "" ---

lIn tan ~ I In G) (1) 

for small {3. Here {3 is the semiangle of the cone and 
E is the dielectric constant. The capacitance of a 
biconical antenna of circular cross section but finite 
length l measured along the generators is then simply 

C=cl 

if fringing is neglected. 
The plan of this paper is to first work out the 

analogous formulas for the case of a cone of elliptical 
cross section. This is done in section 2. Then in 
section 3 the reduction of the capacitance problem 
for a biconical antenna of circular cross section in 
anisotropic plasma to the problem solved in section 
2 is carried out. This is an application to the present 
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FIG U RE 1. Elliptic cone in isotropic medium. 

FIG U RE 2. The sphero-conal coordinate system. 

problem of a procedure given in Landau and Lifshitz 
[1960]. 

Since use is made in section 2 of the rather little 
known sphero-conal coordinate system, a brief 
discussion of the form of the coordinate surfaces 
and their analytic representation is included, largely 
following the work of Kraus and Levine [1961]. 

2. Capacitance of Elliptic Cone in Isotropic 
Medium 

Consider the boundary value problem 

02V 02V 02V 
0X~+0X~ +0X~=0 (2) 

and V = ± Vo on the surface of the elliptical cone 

(3) 

as shown in figure 1; A2, A3 are positive and we assume 
A2> 1. 

It is clear from the symmetry of the problem 
that the equipotentials are elliptic cones and the 
lines of force meridian lines. The natural coordinate
system in this case is the sphero-conal system_ 
Hobson [1931] and Kraus and Levine [1961] have 
given clear and concise treatments. The sphero
conal system uses concentric spheres and two sets 
of elliptical cones as the three sets of mutually 
orthogonal surfaces. The concentric spheres are 
given by 

Xi+X~+X~=r2 . (4) 

The two sets of cones are shown in figure 2 and are 
given by 

X~ X~ X~ 
7+ }.£2_h2-ZZ_}.£2= O, (5) 

Xi_ X~ _ X~ - 0 
1'2 h2-v2 l2-V2 -

Here land h are arbitrary constants and for each 
value of }.£, system (5) represents an ellipse for 
constant X 3 with its major axis in the X I X 3 plane. 
Similarly for each value of v system (6) represents 
an ellipse for cons tan t XI with its major axis in 
the X IX 3 plane. The relation between the (XI> 
X 2, X 3) and (r, }.£, v) systems is given by 

X _ r!J.v 
1- hl 

(7) 

The cone of our problem given by (3) can be made 
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to :fi t the notation of (5) jf for con venience we tak e 
.u2= 1 and equa te coefficients to obtain 

(8) 

The coordinates (7', }J. , v) are s till not \'el'Y con
ve nient for our purpose . Kra us a nd Levine [1961] 
h ave defined an equivalent set of polar coo rdinates 
( 7', e, <p) to replace (7', }J. , v) with ranges of values 

o ~ e ~7r , 0 ~<p~27r , 7';:::: 0. 

H ere e is the angle between the positive X 3 axis and 
t he generator drawn through an end of the mi nor 
axis of the ellipse described by (5). Similarly, <p is 
the angle between the positive XI axis and the gen
erator drawn through an end of the minor axis 
described by (6). Figm-e 2 may be used as an aid 
to visualize these sm-faces. The following r elations 
can be es tablished 

where 

v IL2 - }J. " 

cos <P=7i,' cos e=-y L2-h2 

h2 
k' 2 

F 

X2 = 7' sin e sin <P, 

tan2 t cos2 e d k2- 1-k'2 
" 2 an - . l + tan- I: cos e 

(9) 

The semiangles of I: and 1:' sub tended by the foci 
of the ellipses of systems (5) and (6) at the origin 
respecti vely are given by 

h d' tal1€ = (l2 7")1 /2 e,an tan€ - b- cos 
(l2_ h2) 1/2 

h cos <p 

We summarize the salient geometrical features of 
t he sphero-conal system. The surfaces 7' = const. 
a re spheres centered at the origin. The e= const. 
8m-faces are elliptic cones belonging to system (5) . 
S imilarly, <p = const. sm-faces are elliptic cones belong
ing to system (6). The equations of these surfaces 
can be found by eliminating }J., v in (5) and ( 6) with 
the help of (9). Two such intersecting surfaces are 
shown in figure 2. The line indicated as "common 
generator" is a line of intersection. This common 
generator traces out the elliptic cones of system (5) 
by rotating around the X3 axis and when this gener
ator lies in the X 2X 3 plane it makes an angle e with 
the X 3 axis . This same generator traces out the 
elliptic cone of system (6) by rotating aro und the 
XI axis making an angle <p with the XI axis when i t 
lies in the X 1X 2 plane. F in ally , when k= l , the 
system degenerates in to the familiar spherical system 
in the following fashion. As k-J> l, the ellip tic cones 
given by e= const. become more and more circular . 
In the limi t when k = l, €= o implying that the foci 
h ave coalesced and we have cones of revolution. 
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As for the <p = const. surfaces, as k-J> l , the major 

axis becomes longer and when k = l , I:' =~ meaning 

that the foci have moved out to infini ty, and the 
ellip tical cone degenerates into a plane. 

In terms of these coordinates the cone of our 
problem is the surface e=eo where 

(10) 

The Laplace and gradien t operator are gl\Ten by 

Co nsidering the Laplace equation we note that in 
the present problem there is no variation of V with 
respect to 7' and <po Integrating we get 

Vee) =A f O (I - F cos2 e) - 1/2 de+ B. (13) 
Joo 

The cons tants A and B can be determined from the 
boundary conditions 

Solving for A a nd B we get 

F("!.-e k) . ') , 
v(e)= Vo ~ . 

F(~- eo , k) 
(15) 

Here F is the incomplete ellip tic integral of the first 
kind given by 

The surface ch arge density is obtained with the help 
of the gr adient operator (12) applied to the potential 
function (15) . For this problem D = D . 10= cr and 

(17) 



It ~s seen that, in spite of the cp independence of 
V, 17 IS cp dependent. The elemental area is given by 

r(k2 sin2 8o+k'Z sin2 cp)1/2 
dn (1 k'2 2 )1 / 2 drdcp. (18) - cos cp 

Integrating Dover 0:::; cp::; 27T', 0:::; r:::; 1 and dividing 
by 2Vo, yields the capacitance c per unit length 
measured in the radial direction 

2K'E (19) 

In the above .result K' is the complete elliptic integral 
of the first kmd of modulus k'. Here a cone of unit 
length is interpreted as that portion of the cone 
enclosed by a sphere of unit radius. For the co
ordinate system we are using, cones of this descrip
tion are suitable because integration in r will be 
particularly simple. 

3. Capacitance Problems in Anisotropic 
Media 

Assuming the static superposed magnetic field to 
be in the z direction, the dielectric tensor (of a mag
neto-ionic medium) has the form 

(20) 

o 
In particular when collisions are neglected 

_ X iXY T 

O'I-I- I _ yz' O'z= I_Yz and 0'3=I-X, 

T w~ WH where .x = "2' Y = - , Wp and WH are plasma and 
W W 

gyrofrequencies. 
T?e capacit~nce :will ~e det~rmined u,sing a quasi

statIcs approXlmatlOn m whlCh electrIc field E is 
deriv~ble from a gradient V (which is valid, strictly 
speakmg, at zero frequency), but using the dielectTic 
~ensor comp~nents evalu~te.d a.t the frequency of 
mteres.t. ThIs. procedure IS Justlfiable, since capaci
tance .IS ess~ntlally a near field quantity, so long as 
the dlmenslOns of the antenna are not large com
pared to the wavelengths of the radiation. This 
will be ~he case in most regions .of the X. - yz plane 
shown III figure 3. However, for certam anoles 8 
between the propagation vector and the superposed 
magnetic field the index of refraction for the ordinary 
mode becomes very large (infinite in the collision 
free case) in regions 7 and 8 and similarly for the 

6 

° o~----~~~~-----L--------L-------~ 

x-

FIG U RE 3. The X - y2 plane. 

extraordinary mode in region 3. The associated 
wav.elengths are then small and near zone or quasi
statlcs approximations become quite questionable. 
Furthermore, the radiation resistance in regions 3, 7, 
and 8 becomes very large [Weil and Walsh, 1964] 
and/rom this point of view one also sees that a quasi
statIcs procedure (which cannot yield radiation) 
cannot be expected to be valid. This will be dis
cussed further in section 4. 

The reduction of the capacitance determination 
for objects in a medium described by a Hermitian 
~ 

K t? a r~lated capacitance problem in an isotropic 
medIUm lS demonstrated in Landau and Lifshitz 
[1960] beginning with the field due to a point charge. 
One has 

\i'·D= eo(x) o(y)o(z) (21) 
and 

Defining an electrostatic potential E= - \i'V and 
substituting in the above equations, we note that the 
mixed derivatives cancel on account of the Hermitian 
nature of the tensor and the equation for the potential 
V becomes 

where 

The transformation 

X' =x, y' = y, z ' = 3: 
q 

(23) 

reduces (22) to a conventional Poisson's equation 

for a point charge of strength e/ qO'I m vacuum 
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(primed spftCe). Thus 

(25) 

The above concept is applicable in capacitance prob
lems since the surface charge den sities must scale in 
the same way as individual charges . 

The capacitance 0 of an object in an anisotropic 
medium may now be determined as follows. First, 
one determines the capacitance 0 ' in vacuum of the 
related object obtained by applying transformation 
(23) . If one assumes that changing from unprimed 
to the primed system and vice versa the potential of 
the body does not change then the total charge re
siding on the surface must change in the same manner 
as for a point charge. Based on this we have 

(26) 

The determina tion of 0 ' is the secondary problem 
referred to in tb e abstrn,ct. 

The procedure employed by Kaiser [1962] was to 
trn,llsform the potentin,l fun ction obtained in the 
primed system back to the unprimed sys tem ; then 
to obtain the total charge by integrating the normal 
component of D over the surface of the original 
antenna. Such a procedure has some drawbacks in 
general. Firs t, the recovery of the potential fun ction 
in terms of the unprimed system can be quite for
midable. Second , D and E will not be parallel in 
the unprimed system thus introducing fur ther 
complications. Both these difficulties are avoided 
by using (26) . 

We now revert to our specific problem . Consider 
a biconical antenna of semiangle (3 whose axis makes 
an angle a with the magnetic field and lies in the yz 
plane as shown in figure 4. 

The problem is to solve 

(27) 

subject to the condition that V ± Vo on the surface 
of the cone given by 

x2+ (- z sin a+ y cos a)2= (z cos a+ y sin a)2 tan2 (3. 

(28) 

Applying the transformation (23) to (27) and (28) , 
we get the following related problem in vacuum 

(29) 

and V=± Vo on the elliptic cone 

x' 2+ (l-sin2 a sec2 (3)y' 2+ q2( I -cos2 a sec2 (3 )ZI2 

- 2(q sin a cos a sec2 (3 )y' Z ' = 0. (30) 
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FIG U RE 4. Biconical antenna in magneto-ionic medium. 

x'. , 

FIG URE 5. Elliptic cone of Telated problem given by (31). 

First, we must reduce (30) to the normal form (3) 
by the usual diagonalization process . Defining a 
new coordinate sys tem ~ , 1/ , t rotated through an 
angle (j from x', y', Z l , as shown in figure 5, we have 
for the equation of the elliptic cone 

(31) 
where 

~ t.. = ± (I + 112) -sec2 (3 (sin2 a + 112 cos2 a) 
{\2, 3 2 

t..2 goes with the upper and t..3 goes with the lower 
sign. If t..2> 1, the elliptic cone (3 1) has the same 
orientation as that shown in figure 1 if we associate 
( ~ , 1/ , n with (x" X2 , X3)' One can th en determine 
eo Ll sing (10). On the other h and if t..2< 1, we see 
from (8) and (9) that k2> 1 and k' 2 is negative 
which is not permissible. This difficulty can be 
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,overcome by rotating the ~, TI coordinates through 
'90 0 but keeping .I fixed. Replacing ~ by -TIl aud 
7J by ~I in (31) we get 

(33) 
where 

Now (33) is in the desired form. Using (10) 

[ (}.,')J-1/2 cos 80= 1+ ~ 

(34) 

At this point it may be pointed out that part of 
the mathematical approximation of Kaiser [1962] 
lies in using, instead of the conal equipotential 
boundaries which correctly appear in the related 
problem, an approximate set of elliptic cylinder 
-equipotentials. In the present analysis the correct 
boundaries are maintained. Approximations are 
put in only at the end in the final formula for capaci
tance to facilitate numerical computations for thin 
·cones. 

Before we apply the results of section 2 to this 
problem, we need an expression for the length of the 
·elliptic cone. Let us assume that the radial length 
{)f the cone in figure 4 is unity. The coordinates 
(xo, Yo, zo) of the tip of a generator are 

xo = sin (3 cos 'I' 

Yo = sin 0: cos (3 + cos 0: sin (3 sin 'I' 

Zo= cos 0: cos (3-sin 0: sin 'I' sin (3 (35) 

where 'I' is the azimuthal angle measured around the 
axis of symmetry ZI (this 'I' is different from the 'I' 
()f sphero-conal system) and varies from 0-271'. If 
(x~ , y~, z~) be the tip of a generator of the elliptic 
-cone then its length is given by 

= ( x~+?10+ ~~y /2 using (23) 

=[I_q2~1 (cos 0: cos (3 - sin 0: sin (3 sin cp)2J /
2 

0::;'1'::;271'. (36) 

We note that the generators of the elliptic cone are of 
different lengths except when 0: = 0. For other 
angles of inclination, we will use an average value 
defined by 

(3 7) 

The above will lead to elliptic integrals. For small 
-cone angles cos (3 ~ 1 and ignoring the 'terms con-

taining sin (3 we get 

( cos2 0:)1/2 
(r~) ~ sin20:+----qz . (38) 

In this ~mall angle case (r~ ) is just the length of the 
cone a}"'ls. 

The following special cases will now be considered. 
Case (1): Axis of cone coinciding with the direction 

of the magnetic field. Here 

Using (19) for the capacitance per unit length of an 
elliptic cone in vacuum and the scale factor (26) 
we get 

71'~00:1(q2 sin2 (3 + cos2 (3 )1/2 

c lIn [ tan (~) ] I 
(40) 

Using trigonomet l'icall'elations we get 

For this special case the exact result has also been 
obtained by Kaiser [1962]. For small values of 
(3 and q the above formula becomes 

c (41 ) 

Case (2): Axis of cone perpendicular to magnetic 
field. Here 0:= 900 , }"2= q2, }"3= tan2 (3 and (r~) ~ 1. 

Here we have two subcases q2> 1 and q2< 1. If 
q2 > 1 

and 

with 

tan (3 
tan 80=-

q 

k2 2 (3+sin2 (3 k '2_ ( . 2 (3 sin2 (3) = cos - - , - sIn - -- . q2 q2 

For small (3 this becomes 

(42) 

(43) 

(44) 

If q2< 1, the rotation of coordinates discussed 
following (32) is used. 

tan 80 = tan (3 
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and 

c 
2I{' ~OCtlq 

FG-~, k) 
(45) 

with 

For small ~ this becomes 

(46) 

As against these Kaiser [1962] obtains 

c 

[ 4q J' In ~(l+q) 
(47) 

Case (3): Axis of co ne making intermediate 
angles wi th magnetic field. 

so that 
2J{' EQCt3 ( . 2 +cos2 Ct)1 / 2 c= s1n Ct -- . 

qF (~-OO , Ie) q2 
(48) 

a-

FIGURE 6. Capacitance as a fttnction of inclination a. 
X~O.835, YZ~3.33, ll ~ lO . 
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4. Numerical Results and Discussion 

In practical situations where only cones of small 
angle are of in terest, the following approximations 
are valid 

so that 

and 

The resulting simplified capacitance formula 

7rEOlX3 • Z + COS- lX -( · )IP 
c= 8 S1l1 lX --. -

q In co t (cf) q-
(49) 

will be utilized in numerical calculations. It must 
be noted that a fur ther approximation of setting 
8o=f3 is not valid. This follows by considering (39) 
and (42). In the former 80 = tan- 1 (q tan (3 ) and in the 

latter lJo= tan- 1 (ta~ (3). Since these values depend 

on q, one cannot set 80 ",," f3. 
As we propose to compare presen t results with 

those of K aiser's [1962], his formul a is giyen below 
for con \'enience 

c (50) 

In entluating numerical results, i t is necessary to 
know the ranges of yalues of qZ for which formula 
(49) is ,·alid. It may be recalled that we were re
quired to solye the followin g partial differen tial 
eq uation 

(27) 

with Dirichlet conditions. In a classical sense we 
have a well posed problem provided (27) is elliptic, 
i.e., qZ> O. In the primed space we ha \re simply to 
solve L aplace's equ ation with V given on real 
boundaries. To take into accoun t complex yalues 
of qZ corresponding to nonnegligible electron-neutral 
collisions in the plasma one can analytically con
tinue the above expressions for c, valid for real q2, 
into the complex qZ plane, a \'oiding the necessary 

branch cuts. H oweyer, the physical meaning of the 
results becomes doubtful as one nears the negative 
real axis where q2<0 and the equation in fact be
comes hyperbolic. This is because qZ< O corresponds 
to the collision free case for X and yz combinations 
which lie within regions 3 and 7 of figure 3. In these 
regions, as previously pointed out, because of the 
shor t wavelengths in certain propagation directions, 
near zone (i.e., quasi-static) approximations are not 
valid. In addi tion , antenna impedance depends 
in tim ately on the curren t distributions and these are 
to be expected to be highly modified in regions 3 and 
7 from those of an electrically short antenna. 

For these reaso ns we would therefore not attribute 
physical signifi cance to the result ob tained by letting 
qZ be negative, namely that there is an imaginary 
part in c corresponding to an apparent radiation 
resistance and real loss of energy from the an tenna 
to the collisionless plasma in regions 3 and 7, in addi
tion to the radiation loss which is found by using 
the full Maxwell equations. 

In accord with the above remarks we will consider 
only regions of qZ> O for numerical results. R epre
sentative values are shown gr aphically in figures 
6 to 8 corresponding to regions 6, I , and 5, respec
tively. In region 5, X > l , consequently capaci tance 
is negati" e meaning that t he antenn a will be induc
tive. From the computed results we see that 
K aiser 's approximation is in agreemen t with the 
presen t results only for angles of inclination lX 

around zero and deviates for increasing angles of 
inclination , reaching a 20 percent difference in some 
cases. 
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