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The theory of wave propagation in an inhomogeneous compressible plasma is consid-
ered. Cylindrical configurations are chosen such that Maxwell’s equations, when combined
with a (single fluid) continuum theory of fluid dynamics, are separable. It is shown that
general expressions for the fields are superpositions of TM (transverse magnetie), T (trans-
verse electric), and acoustic waves. For oblique incidence, these three wave types are
mutually coupled except in special cases.

1. Introduction

The scattering of electromagnetic waves in free space from an infinite dielectric cylinder
is a problem first solved by Lord Rayleich in 1881 and again by Seitz and Ignatowski in 1905.
Rayleigh [1918] in a later paper discussed the earlier work and gave some numerical results.
The complete generalization of the solution to include the case of oblique incidence was at-
tempted many years later by Wellmann [1937] whose results appear to be incorrect as pointed
out by van de Hulst [1957]. 'The complete solution for oblique incidence on a dielectric cylin-
der was apparently first given only ten years ago [Wait, 1955].

An interesting aspect of the obliquity is that incident TE (transverse electric) waves
will be partially converted to scattered TM (transverse magnetic) waves by the dielec-
tric cylinder. The converse is also true in the case of incident TM waves. However, if the
cylinder becomes perfectly conducting, this conversion process no longer takes place. In
other words, incident TE waves scatter as TE waves and incident TM waves scatter as TM
waves. The following question is now posed: What happens if the surrounding or ambient
medium is a plasma instead of free space? Such a situation might occur in scattering of
electromagnetic waves from metallic eylindrical objects which are immersed in the ionospheric
plasma.

It should be self-evident to many that scattering of electromagnetic waves within a cold
isotropic plasma is not really different from scattering in free space. At least, this is the situa-
tion when nonlinear terms may be ignored. This follows since the cold plasma, in the absence
of a d-¢ magnetic field, may be characterized by a dielectric constant which differs only by a
complex factor from that of free space. Consequently, an incident TE (or TM) wave should
still give rise to a scattered TE (or TM) wave provided the cylindrical scatterer is effectively
a perfect conductor.

An interesting situation arises when the surrounding medium is a warm plasma. As
demonstrated below, it is then found that a perfectly conducting cylinder will convert TE to
TM waves and TM to TE waves. Furthermore, electroacoustic-type modes enter into the
picture. It is the purpose of the present paper to analyze this question employing rather an
idealized cylindrical model. Some related questions are also discussed.
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2. Basic Equations

The plasma medium is regarded to be a one-component electron fluid. That is, ions are
neglected in the equations of motion. Also, it is assumed that signals and perturbations are
sufficiently small for linearized equations to be valid [Oster, 1960; Ginzburg, 1964]. The

average number density of electrons is ny and is taken to be a constant. The pressure deviation
-

of the electrons from the mean is p and their velocity is 2. As usual, the electric and magnetic
-

=
fields are denoted /2 and H, respectively.
Neglecting any dissipative effects such as collisions, the linearized hydrodynamic equation
of motion is written
=

7

ov =2
mng azner—vp, (1)

where ¢ and m are the charge and mass of the electron, respectively. The linearized equation of
continuity, when combined with the equation of state, is

=
WmngV - v= —% (2)
where u is the velocity of sound in the electron gas.
Maxwell’s equations for the electromagnetic fields in the sourceless plasma are given by
i
= d .
VXE=—py >t (3)
and
- aﬁ -
VX /A= € y‘l‘noel', (4)

where ¢ and y, are the dielectric constant and magnetic permeability in free space. In what
follows, all field quantities are taken to vary according to exp (iwt). Furthermore, it is assumed
that the plasma region under consideration is homogeneous.
After a certain amount of manipulation of (1) through (4), it is found that the pressure p
satisfies
(V*+k3)p=0, (5)

2\ 1/2 2

w ® ) e
kpy== <] ——‘;) and wi=-"—
n w €M

where

On the other hand, by making use only of (1) and (4), it is found that the magnetic field is
obtained from
- - )
H=—vXxA, (6)
i
where A satisfies

(v2+k§)xz20, (7)

and where k7= eugw® and (e/e)=1—(wy/w)®. As seen by its definition, eis the dielectric constant
of the plasma. In the case of a cold plasma, the electron acoustic velocity » tends to zero so
that the acoustic wave number £, becomes infinitely large.

It is of interest to note that the pressure deviation p is related to the static pressure p, and
density perturbation 7 by the adiabatic relation

p:’YPUn‘//nO; (‘\‘)
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where v, the classical ratio of specific heats, takes the value 3 for 1 degree of freedom in the
gas. Thus, in terms of the kinetic temperature 7', it is found that

p=3«Tn, 9)
where « is Boltzmann’s constant. In terms of the root-mean square electron velocity w,

p=mun. (10)
For the remainder of this paper, we shall refer only to the pressure deviation p but one should

keep in mind that this is related directly to the density perturbation of the plasma [Cohen,
1961].

On combining (1) and (4) for the harmonic time dependence it is easy to see that

E=l (vxH)— % _up (11)
Tew noe(w*— wd)
and
;:— i (VXZ?)—.—EO vp. (12)
w’me LWMNE

3. General Field Representations

In the present paper, we are particularly interested in obtaining representations which
-
are applicable to cylindrical coordinates (p, ¢, z). Thus, A and p are first expressed in a Fourier

representation in the manner [Wait, 1959]

i =E T, ) ) .
A=S>F. ae” "idhe=iné (13)
N=—0 o —
and
gistc +e : :
= Bne~"dhe=1n¢, (14)
n=—ow J-o

—) . o
where a, and 8, are the respective transforms.
In operational notation, equations (13) and (14) may be written

"
A=T%, (13")
and
p=I'By (14%)

where T' signifies multiplication by exp [—thz—ing] and subsequent integration over /i, and
summation over integer values of n.

In view of (5) and (7), it is seen that a, and 8, satisfy

(V2u2) ct, =0 (15)
and
(Vit-u3)8,=0, (16)

where V2 is the two-dimensional (i.e., transverse) Laplacian operator, while

wW=k2—h,
and

2212 }o

us=Ik;—h’.
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In cylindrical coordinates (p, ¢, 2), it is well known that

10 10> 10 0o n?
V% A _——+ zad)z =P

Therefore, solutions of (15) are cylindrical Bessel functions Z,(u.,p) of order n and argument
w,p. Similarly, solutions of (16) are eylindrical Bessel functions Z,(u,p). In the subsequent
development, it proves to be convenient to use the Bessel functions .J, and the Hankel function
H? as tho two independent solutions. Furthermore, rather than working with the vector

potential 1 it is more convenient to employ the two scalar quantities /£, and 77, in a manner
similar to tlmt used for dielectric media [Wait, 1959].
With some consideration, we now find that

E.=T[v:e,H,+u:A,J, H— [hc"H +hrC, J] (17)
IIz:I‘[uian]n'l'—u%Ban], (18)
and
A A
o—=hlds e G R (19)
where
A

H,=H® (u,p), By= 2 (u,),
A
Jn:Jn(Uep), Jn:']n(upp)7

and a,, A,, b,, B,, ¢,, C, are coefficients which do not depend on the coordinates.
Using the basic equations (1) to (4), it is a straightforward matter to obtain, from (17),
(18), and (19), general expressions for the transverse components of the fields. Thus, we find

E,=T I:inowbn aaﬂ—%@ a4 B, a'] = Tlne, 00,0, (20)
E~=T [-’“‘"“’ b H,—iha, 2242 g g A, 3] azz 0, 20
p o) o) Mmo’e Y
(21)
k2 oH, nh ik, o,
H,— [——b H,—" q, L i 29
o mw  Op  p pow " Op L)
T [ e AT ] (23)
0p  mowp

2 - 5 . -
The components of the velocity » are now found easily by using (12). Thus, for example, the
radial component is given by

o € 1DH aHd, o € op
T e <P fol} > TwMMnye bp (24)
or, explicitly,
2 2
o=t T[ =2 b H, 2 B g, O K g O,
w'me ) ap Low ap
ofl, ., oJ
€q n I
T lwmnge PI:C" dp o (25)
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4. Treatment of Cylindrically Stratified Media

The representations developed above are particularly suitable when dealing with cylin-
drically stratified media. For example, we could deal with a column of a compressible plasma
whose properties varied only in the p direction. The idea would be to represent the region by
a finite number of concentric cylindrical homogeneous regions. In a typical region bounded
in p by p; and p,.y, the electroacoustic velocity is u; and the electron plasma frequency is (w));.
In the region p;iy to pie, the corresponding plasma properties are then designated u,,.; and
(wo) 1. In each region, the field representations would have the form given by (17) to (25).
Thus, in the ith region, the six unknown coefficients are a,,, A,,, b,,, B;,, ¢, and (';,. In the
(z-+1)th region, there is a corresponding set of six coefficients. In principle, the boundary
value problem is solved if six linear equations can be obtained from the boundary conditions
at p=p;.

Under the rather idealized assumption that the waves do not deform the boundary,
kinematic considerations require the continuity of the normal fluid velocity. Thus,

(?)p)ii(l‘p)iﬂ at p=p;. (26)

It is clear that, if this condition were not satisfied, the fluids would separate at the boundary
as pointed out by Field [1956].

A further hydrodynamic-type boundary condition is obtained requiring that the pressure
is continuous. Thus, as indicated by Field [1956],

Pi=Dpiy1 8t p=p,, (27)

which is a requirement imposed by force equilibrium at the boundary. The idealized kinematic
and hydrodynamic boundary conditions have also been used by Yildiz [1963] and Johler [1964]
who considered scattering from a compressible plasma sphere.

Four additional boundary conditions are readily obtained by imposing the usual electro-
dynamic property that tangential electric and magnetic fields are continuous. Thus,

(Ez)t — (Ez)i+1 7]
(E¢)i :(Edz)iﬂ
(HZ)L' == (Ijz)i—f-l

(I]vb)t: (Ifé)i+1_‘

at p=p;. (28)

For P-+1 homogeneous regions, there are only P interfaces. Thus, it would appear, in
general, that insufficient boundary equations are available. Fortunately, however, additional
physical considerations allow us to dispense with some of the coefficients in the outermost and
the innermost cylindrical regions. For example, if the source is in the outermost (0th) homo-
eeneous region, the coefficients (A,),, (B,)o, and (C,), would be known since they are specified
by the form of the incident field. The scattered field in the outermost region would be described
entirely by the coefficients (a,)o, (b,), and (¢,),. On the other hand, in the core or innermost
(P-+1th) homogeneous region, the coeflicients (A,)py, (B,)piy, and (C,)py; are zero since
the fields must be finite at p=0.

5. Application to Rigid Perfectly Conducting Cylinder

As an illustration of this method for handling cylindrical boundary value problems in
compressible plasma, we shall consider a highly idealized situation. The cylindrical boundary
at p=a is regarded as perfectly conducting and rigid. The exterior region p >a is taken to be
a homogeneous compressible plasma with properties # and w,. With these simplifying and
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rather restrictive assumptions, it follows that the required boundary conditions are

0,=0
18,=0) || &b == (29)

The same conditions have been employed by Seshadri et al. [1964] in the study of scattering
of normally incident plane waves from a perfectly conducting cylinder immersed in the com-

pressible plasma. Using (17), (20), and (25), it now readily follows from (29) that, in matrix
form,

wlHl, 0 i & v, a,
g, TiEL ol
2 A 2
_kehu, 2y g k: g, —-S% gl
How a LMY€

— w2, Ay +0—i & hJ,C,

th A —ineod ! Bo—i j(,
— E n4ddn — UhoWeS 5, rz——z/mg nUn ; (30)

mé”“ J.B A% J 0,

How LWMMN €

: e
where the arguments of the Bessel functions are evaluated at p=a and where § = The

column matrix on the right of the previous equation contains the driving terms which are
specified by the form of the incident field. Thus, in principle, the boundary-value problem
is solved since a,, b,, and ¢, are now expressed in terms of known quantities.

A special case of some interest is the cold plasma. The transition to this case is obtained
by letting the velocity u—0, whence k,~>w. From (30), we readily find that

I 4 In(a)

(ln:_'H—n n H(Z)( Uyt ) 1 (31)
and
]n I n(u,a) .
bn 11 B - 1(2)/(” ) Bn‘ ('32)

The first of these equations indicates that if the incident wave is purely T'M and characterized by
If’mc [A J ] ]]mc (33)

then the secondary field is also purely TM and given by

18 =@, J3F), 1BE=), (34)
nh o[ _iki oM, .
[—— ""”":I [FE=li I: e a, op | (35)

Fi—T l:—iha," aél"

nks;
ey g II,,:I 36)
? I:#owp . (
(where the arguments of the Bessel functions are ua).
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Similarly, (32) indicates that if the incident wave is purely TE and characterized by
IBEP=N/8 ||, 1855=0), (37)

then the secondary fields are also purely TE and given by

II‘::F[bnllnly [£;:0; (38)
‘, W . o,
I —r [——b — b,,H,,], Ei—r [,,,,Owbn o ] (39)
I—r [— ik, aﬂ] Fo—r [ e bnzzn]- (40)
op p

As seen above, scattering of electromagnetic waves from a perfectly conducting cylinder
in a cold plasma is identical in form to scattering of electromagnetic waves from a perfectly
conducting cylinder in free space (e.g., as discussed in Wait, 1959). The only change required
is the replacement of the dielectric constant e of the plasma with that for free space .

Another interesting special case occurs when we let the charge density in the medium ap-
proach zero. Thus, setting ¢=0, it is easily found from (30) that

A
I, ()
i, ) LAY
Cp [/},: n [17('3),(“””) ny (4])

where u,= (k,—h*)"? and k,= w/u in terms of the acoustic velocity u for an uncharged medium
of no particles, of mass m, per unit volume. For this case, an incident acoustic wave, whose
pressure perturbation is given by

P=T[Cped(u,p)], (42)
leads to a scattered acoustic wave of the form
==l AL )k (43)

This is the well-known result for pure acoustic scattering from a rigid cylindrical obstacle
[Morse and Feshbach, 1953].

We see from the above that our general solution contains both pure electromagnetic and
pure acoustic scattering as special cases. In the general case, it is easy to see from (30) that a
pure incident TM electromagnetic wave (i.e., 4,70, B,=(C,=0) will generate scattered TM
and TE electromagnetic waves in addition to a scattered acoustic wave. In a similar fashion,
a pure incident TE electromagnetic wave (i.e., B,#0, 4,=(C,=0) will scatter TM and TE
electromagnetic waves and the acoustic waves. Of particular interest is the fact that a pure
incident acoustic wave (i.e., (/,0, A,—B,=0) will generate both the TM and TE electro-
magnetic waves in addition to the acoustic waves.

Consistently, in the development given here, the field functions are preceded by the
Fourier-summation operator I'.  Using this artifice allows us to consider quite general types
of incident fields. For example, if an obliquely incident plane TE wave is considered,

I/re=F, sin 0 exp [ik,p sin 0 cos ¢—ik,z cos 6], (44)

where 60 is the angle which the wave normal subtends with the z axis. Employing a well-
known addition theorem [McLachlan, 1934], it is found that an alternate representation is

+o
Ere=FE,sm 0 > i"J,(k, sin 0) exp |[—ing—1ik,z cos 0], (45)

n=—c
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which may be written in the form
Eze=T{u;AnT n(1ep)] (46)

it uzA,=E, (sin )i", h=Fk,cos 0, and u,=k,sin 6. The operator for this case of plane wave
incidence implies multiplication by exp [—in¢—ik,z cos 6] and subsequent summation over
integer values of n from —o to 4.

The total fields in the compressible plasma exterior to the rigid perfectly conducting cylin-
drical object are thus given by (17) to (25) with the above meaning to the operator I. The
coefficients a,, b,, and ¢, are given by (30) where B,=C,=0 and A, is defined as above.

The explicit form of the fields for obliquely incident plane TM electromagnetic waves or
a plane acoustic wave is obtained in a manner almost identical to the above. The reader
should have no difficulty satisfying himself that this is the case.

A case of some practical importance is when the rigid cylinder considered above is excited
by an electric dipole located at (po, ¢, z5) Where p,~>a. The electric dipole of length ds with
current / is taken to be oriented in the z-direction (i.e., parallel to the cylinder axis). From
earlier work, we know that [Wait, 1959]

to

o= into=s0 f HE (upo) T (up)exp [—ih(z—z0)ldh, (47)

— @

[(l?

87rew =t

Emc

provided p<p,. (For p>>p;, we merely interchange p and p, in the above representation.)
Thus, we may write (for p<p,)

Eiznc:F[Aan@l’ep)]y (48)
where
A="7 Jﬁ H® (u,p,) et"d0e (49)

and T signifies multiplication by exp (—ihz—in$) and subsequent summation over n and
integration over k.

The total fields are now again obtained from (17) to (25) with this general meaning at-
tached to T. Thus, the fields are represented as a Fourier integral and an infinite sum. The
formulas can be greatly simplified in the far field where both k.o and k,p_>>>1. Then the
scattered field integrals may be asymptotically approximated in the manner [Wait, 1959]

Lt
—% I‘F(h)H,(f) (up) exp [—ih(z—z¢)Jdh~exp (inm/2)F (k sin 0) exp (—ikR)/R, (50)

where u=u, or u, and k=k, or k,, which is valid when the function F(h) is relatively slowly
varying. Using this asymptotic relation, formulas for the radiation patterns of the dipole in
the presence of the cylinder are readily obtained.

When the observer is near the cylinder, it is necessary to consider the influence of the pole
singularities of the integrand. For example, F'(h) may have a finite number of complex poles.
Some of these may lead to residue contributions which are identified with axial surface waves.
This would be an important subject for further investigation. It will not be pursued here.
The interested reader may consult a fundamental paper by Samaddar and Yildiz [1964] who
consider the excitation of axially symmetric (i.e., n=0) surface waves in a compressible plasma
cylinder surrounded by free space.

6. Two-Dimensional Situations

Another important special case is when the fields do not depend on z [Wait, 1964a]. This
occurs, for example, if the excitation is a normally incident plane wave or a cylindrical wave
emanating from a uniform line source. In the general formulas listed from (17) to (25), this
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means that 4 is set equal to zero and the operator I' now is defined by
to ‘
p=TB,= > Bn.e”'". (51)
n=—w

It is evident that for z independent fields, (30) be partly decomposed to the set

Hya,——J, A, (52)
and
. . A . . A
ik H, in&H, bo | | —iowk. S B.—in&J.C.
n &k b, A N g I (55)
UT T — %% ¢, _in ¢ J B+~ g0,
a T wmnge wmnoe

5 o A
Here, the arguments of the Bessel functions ./, and /, are k,a while the arguments of .7, and

4 . are k,a.

It is evident from the above that a normally incident TM wave will scatter only a TM
wave even though the plasma is compressible. However, a normally incident TE wave will
scatter both a TE wave and an acoustic-type wave. To illustrate this point more clearly, a
specific case is considered. The incident TE wave is defined by

+m
Hire=H, exp (tk,p cos 0)=H, > i"e""¢J,(k.p), p'*°=0. (54)

N=—owo

By utilizing the matrix equation (53), it is found that the secondary TE electromagnetic wave
is obtained from
+Q)
IE=18l 35, VR JEE (h e, (55)
Nn==—'c0

where

(k) (kpa) S (koa) HP' (kpa) —n*(wo/w) ey (ko) I (kya)

A==, @) (lepa) H? (keea) H® (ke ya) — 12 (wo/ )2 H® (koa) H® (Apa)' (26)
It also follows from (53) that the scattered acoustic wave is to be obtained from
+OJ . »
p=p*°=H, 2] IR JHO ()™, (57)
where :
P (‘)in/w)(wn/w)g(mw/(i) ) (58)
" (k) (bepa) P (eoa) HP (keya) —n2(wo/w) HP (koa) HP (k,a) -

In writing (58) in the above form, the well-known Wronskian relation for Bessel functions has
been utilized. Equations (55) and (57) agree with the results derived directly by Seshadri
et al. [1964]. Their analysis was restricted at the outset to normal (i.e., perpendicular)
incidence.

It 1s easy to see that (56) may be rewritten in the form

A IL:‘\fI[l —A”], (59;1)
where
. I (ko) .
An - ]];II)I(IL a) (Ogb)
and

n*(wo/w)?  oJ,(kea) HY (kya)
(kya)*(ko)? J (kea) HP" (kp) )
2 (wo/w)? HP (kea) HP (ky ,,(1) (59c)

(keya)2 (k@) HY (ka) H' (k,a)
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This shows that for a cold plasma (i.e., k,a— ), A,=A¢, which is the appropriate value for
scattering (at normal incidence) of a plane wave from the perfectly conducting cylinder im-
mersed in a cold plasma whose wave number is k,. If either u/c or wj/w is sufficiently small,
the correction factor A, itself may be very small. To within this approximation, it is not
difficult to show that

o) () (ufe)
A )T (i) HY (ko) (60)

where, as usual, k,—= k(1 —w?/w?)! in terms of the free space wave number k. In most situations,
the factor A, is exceptionally small. For example, in the case of ionospheric plasma u/ec is of
the order of 1075,

7. Concluding Remarks

On the basis of the analysis in this paper, it is evident that TE, TM, and acoustic waves
are coupled in a cylindrically stratified compressible plasma. However, when the fields are
independent of the axial coordinate, the TM waves become decoupled, although the TE and
the acoustic waves are still coupled. Also, in the limiting case of a cold (i.e., incompressible)
plasma, the acoustic wave is not present but there may still be coupling between the TE and
TM electromagnetic waves.

In the analysis in the present paper, the presence of a superimposed d-¢ magnetic field is
ignored. As indicated by Field [1956] and much more recently by the author [Wait, 1964b],
this will cause additional coupling. Furthermore, the influence of nonlinearities in the medium
will greatly complicate matters [Ginzburg, 1964].
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