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The theory of wave propagation in an inhomogeneous compressible plasma is consid­
ered. Cylindri cal configurations a re chosen such that Maxwell 's equations, when combin ed 
\\'ith a (s in gle fluid) continuum t heory of Liuid dynamics, arc separable. It is shown that 
ge neral express ions for t he fi elds arc superposit ions of TM (transverse magnetic), TE (tr ans­
verse electric), and acoustic waves. For obli que incidence, t hese t hree wave types a re 
mutually coupled excep t in special cases. 

1. Introduction 

The scattering of electromagnetic waves in free space from an infinite dielectric cylinder 
is a problem fu'st solved by Lord Rayleigh in 1881 and again by Seitz and Ignatowski in 1905. 
Rayleigh [191 8] in a later paper discussed the earlier work and gave some numerical results . 
The complete generalization of the solution to include the case of oblique incidence was at­
tempted lTl.any years later by Wellmann [1937] whose results appeal' to be incorrect as pointed 
out by van de Hulst [1957]. The complete solution for oblique incidence on a dielectric cylin­
der wa apparently first given only ten years ago [Wait, 1955J. 

An in teresting aspect of the obliqui ty is that incident TE (transverse electric) waves 
will be partially converted to scattered TM (transverse magnetic) waves by the dielec­
tric cylinder. The converse is also true in the case of incident TM waves. However, if the 
cylinder becomes perfectly conducting, this conversion process no longer takes place. In 
other words, incident TE waves scatter as TE waves and incident '1'M: waves scatter as TM 
waves. The following question is now posed: What happens if the surrounding or ambient 
medium. is a plasma instead of free space? Such a situation might occur in scattering of 
electromagnetic waves from metallic cylindrical objects which are immersed in the ionospheric 
plasma. 

It should be self-evident to many that scattering of electromagnetic \\>aves within a cold 
isotropic plasma is not really different from scattering in free space. At least, this is the situa­
tion when nonlinear terms may be ignored. This follows since the cold plasma, in the absence 
of a d-c magnetic field, may be characterized by a dielectric constant which differs only by a 
complex factor from that of free space. Consequently, an incident TE (or TM) wave should 
still give rise to a scattered TE (or TM) wave provided the cylindrical scatterer is effectively 
a perfect conductor. 

An interesting situation arises when the surrounding medium is a warm plasma. As 
demonstrated below, it is then found that a perfectly conducting cylinder will convert TE to 
TM waves and TM to TE waves. Furthermore, electroacoustic-type modes enter into the 
picture. It is the purpose of the present paper to analyze this question employing rather an 
idealized cylindrical model. Some related questions are also discussed. 
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2 . Basic Equations 

The plasma medium is regarded to be a one-component electron fluid. That is, ions are 
neglected in the equations of motion. Also, it is assumed that signals and perturbations are 
sufficiently small for linearized equations to be valid [Oster, 1960; Ginzburg, 1964). The 
average number density of electrons is no and is taken to be a constant. The pressure deviation 

-'> 

of the electrons from the mean is p and their velocity is r. As usual, the electric and magnetic 
-'> -'> 

fields are denoted E and H , respectively. 
Neglecting any dissipative effects such as collisions, the linearized hydrodynamic equation 

of motion is written 
-) 

OV -'> 
mno ot = noe E - IlP , (l} 

where e and m are the charge and mass of the electron, respectively. The linearized equation of 
continuity, when combined with the equation of state, is 

where u is the velocity of sound in the electron gas. 

and 

Maxwell's equations for the electromagnetic fields in the sourceless plasma are given by 

-) 

-) oH 
Il X E =-/1o ­

ot 

(2) 

(3) 

(4) 

where to and /10 are the dielectric constant and magnetic permeability in free space. In what 
follows , all field quan tities are taken to vary according to exp (iwt ). Furthermore, it is assumed 
that the plasma region under consideration is homogeneous. 

After a certain amount of manipulation of (1) through (4), it is found that the press ure p 
satisfies 

(5) 
where 

On the other hand, by making use only of (1) and (4), it is found that the magnetic field IS 

obtained from 
-) -'> 

H =-\1 X A , (6) 
-) 

where A satisfies 

(7) 

and where k ;= t/1oW2 and (E/Eo)= 1-(wo/w)2 . As seen by its definition, E is the dielectric constant 
of the plasma. In the case of a cold plasma, the electron acoustic velocity u tends t.o zero so 
that the acoustic wave number k1l becomes infinitely large. 

It is of interest to note that the pressure deviation p is related to the static pressure po and 
density perturbation n by the adiabatic relation 

p = 'fPon /n o, 
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where "I, the classical ratio of specific heats, takes the value 3 for 1 degrec of freedom in the 
gas. Th ll S, in terms of the kinetic temperature T, it is found that 

(9) 

where K is Boltzmann's constant. In terms of the root-mean square electron velocity u, 

p= mu2n. (10) 

For the l'emainder of this paper, we shall refer only to the pressure deviation p but one should 
keep in mind that this is related directly to the density perturbation of the plasma [Coh en, 
1961]. 

On combining (1) and (4) for the harmonic t ime dependence it is easy to see that 

(11) 

and 

(12) 

3. General Field Representations 

In the present paper, we are particularly in teres ted in obtaining represen tations which 
-t 

are applicable to cylindrical coordin ates (p , cf>, z) . Thus, A and p are first expressed in a Fourier 
l'epresentation in the mflnner [Wait, 1959] 

(1 3) 

and 

(J 4) 

where ~n and (3" are the respective transforms. 
In operational notation, equations (13) and (14) may be written 

(J 3' ) 

and 
(14' ) 

where r signifies multiplication by exp [- ihz- in¢] and subsequen t integration over h, and 
ummation over in teger values of n . 

In view of (5) and (7), it is seen tha t ~" and (3" satisfy 

and 

where v~ is the two-dimcnsional (i. e. , transverse) Laplacian operator, wlile 

a nd 
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In cylindrical coordinates (p, 4> , z), it is well known that 

1 0 0 1 02 1 0 0 n 2 

\77=- - p - +- -=- - p - - - . pOp 0 P p2 Oct>2 pop 0 P p2 

Therefore, solutions of (15) are cylindrical B essel functions Z n(u.p) of order n and argument 
Uep. Similarly , solutions of (16) are cylindrical Bessel functions Z n(u pP). In the subsequent 
development, it proves to be convenient to use the Bessel functions I n and the H ankel function 
H~2) as the two independent solutions. Furthermore, rather than working with the vector 

--> 
poten tial A, it is more convenient to employ the two scalar quantities Ez and Hz in a manner 
similar to that used for dielectric media [Wait, 1959] . 

With some consideration, we now find that 

(17) 

(18) 

and 

(19) 
where 

and an, A n, bn , E n, Cn, On are coefficients which do not depend on the coordin ates. 
Using the basic equations (1) to (4), it is a straightforward matter to obtain, from (17), 

(18), and (19), general expressions for the transverse components of the fields. Thus, we find 

E [ . b oHn nh IT + . B oJn nh A J]+ ie [ l:t'r + 0 J/\ ] </> = r ~ fJ.oW n ---:;;-- - - an J. n ~fJ.oW n ----:;;-- - - n n --2 - r nCn J. n n n n , 
u p p u p p mw ~p 

(20) 

/\ /\ 

E = r [ - n fJ.oW b H -iha oHn_ "2fJ.Ow B J -ihA OJn] _ _ e_ r [c oHn+ c OJn] , 
P p n n n Op p n n n op mw2~ n op n OP 

(21) 

(22) 

H - r [ -·hb oHn+nk; H -·'B oJn+nk; AJ]. 
p - '/, n A a n n '/, /~ n A n n 

up fJ.OWP u p fJ.OWP 
(23) 

The components of the velocity 15 are now found easily by using (12). 
radial component is given by 

Thus, for example, the 

e (10Hz OH</» ~o op v - - -- - --- - - - -----
p - w2m~ p oct> OZ iwmno~ op (24) 

or, explicitly, 

= _ _ e_ r[- i n k2b H _ in k2B J +k;h oH,,+ lc;h A OJ,,] 
Vp 2m e nne n n an A n A W ~ P P fJ.oW u p fJ.oW u p 
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4 . Treatment of Cylindrically Stratified Media 

The representations developed above are par ticularly suitable when dealing with cylin­
drically stratified media. For example, we could deal with a column of a compressible plasma 
whose properties varied only in the P direetion. The idea would be to represent the region by 
a finite number of concenLric cylindrical homogeneous regions . In a typical region bounded 
in P by Pi and PHI , the elecLroacoustic velocity is U i and the electron plasma frequency is (woh 

In the region PH I to Pi+2, the corresponding plasma properties ar c then de igrmLed U i+l flnd 
(WO)i+I. In each region, the field representations would have the form given by (17) Lo (25). 
Thus, in the ith region , the six unknown coefficients are a in, A in, b in, B in , Ci n, and ('in . In Lhe 
(i+ l) th region, there is a corresponding set of six coefftcients. In principle, Lhe bound/try 
value problem is solved if six lin ear equations can be obtained from the boundary conditions 
at P= Pi. 

Under the rather idealized assumption that the waves do not deform the boundary, 
kinematic considerations require Lhe continuity of the normal fluid velocity. Thus, 

(26) 

lL is clear that, if this condi tion were no t sa Lisfied, the fluids would separate at the boundflry 
as pointed out by Field [1956]. 

A further hydrodynamic-type boundary condition is obtained requiring that the pressure 
is continuous. Thus, as indicated by Field [1 956], 

P;= PH! at p= p" (27) 

which is a requirement imposed by force equilibrium at t.he boundary. The idealized kinematic 
and hydrodynamic boundary conditions have also been u<oed by Yildiz [1963] and Johler [1964] 
who considered scattering from a compressible plasma sphere. 

Four additional boundary condi tions are readily obtained by imposing the usual electro­
dynamic property that tangen tial electric and magnetic fields are continuous. 'rhus, 

(H Z)i = (H z) HI 

(H q,)i= (H q, ) i+ l 

at P= Pi . (28) 

For P + 1 homogeneous regions, there are only P interfaces . Thus, it would appear, in 
general, that insufficient boundary equations are available. Fortunately , however , addi tional 
physical considerations allow us to dispense with some of the coefficients in the outermost and 
the innermost cylindrical r egions. For example, if the source is in the outermost (Oth) homo­
geneous region, the coefficients (A n) o, (B n)o, and (0")0 would be known since they are specified 
by the form. of the incident field . The scattered field in the outermost region would be described 
entirely by the coefficien ts (a,.)o, (b,.)o, and (c n)o. On the other hand, in the core or innermost 
(P + !th) homogeneous region, the coefficients (An)p+l ' (B n)p+I' and (On)P+l ar e zero since 
the fields must be finite at p= O. 

5. Application to Rigid Perfectly Conducting Cylinder 

As an illustration of this method for handling cylindrical boundary value problems in 
compressible plasma, we shall consider a highly idealized situation. The cylindrical boundary 
at p= a is regarded as perfectly conducting and rigid. The exterior region p> a is taken to be 
a homogeneous compressible plasma with properties U and wo0 With these simplifying and 
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rather Tp.3trictive assumptions, it follows that the required boundary conditions are 

(29) 

The same conditions have been employed by Seshadri et al. [1964] in the study of scattering 
of normally incident plane waves from a perfectly conducting cylinder immersed in the com­
pressible plasmH-. Using (17), (20), and (25), it now readily follows from (29) that, in matrix 
form, 

_ nil, JIn 
a 

_ k~hue H~ 
J.l.oW 

" o ig MIn 

ing Ie~ H 
a n 

bn 

Cn 

" -u~JnAn+ O-i g hJ"Cn 

nil, JnAn-iJ.l.owJ~Bn-im g !inC" 
a 

k~hue J'A _ ing k~ J B +~ J", C 
nn nn - nn 

J.l.oW a ~wmnoe 

(30) 

where the arguments of the Bessel functions are evaluated at p= a and where g =~. The 
mWE 

column matrix on the right of the previous equation contains the driving terms which are 
specified by the form of the incident field. Thus, in principle, the boundary-value problem 
is solved since an, bn, and Cn are now expressed in terms of known quantities. 

A special case of some interest is the cold plasma. The transition to this case is obtained 
by letting the velocity u ---?O, whence Ie p---? en . From (30) , we readily find that 

(31) 

and 

(32) 

The first of these equations indicates that if the incident wave is purely TM and characterized by 

(33) 

then the seco ndary field is also purely TM and given by 

(34) 

Es- r [ _ nil, f7] f7S-r [ _ i k; MIn] 
q,- a n '- n ' '-q,- a n A ' P J.l.oW u p 

(35) 

Es-r [ ., OFIn] E7s- [nk~ f:T ] 
p- -t ~an Tp , '- p- r J.l.owp an '- n (36) 

(where the arguments of the Bessel functions are ua). 

252 



Similarly, (32) indicates that if the incident wave is purely TE and characterized by 

then the secondary fields are also purely TE and given by 

H~=r[bJ:ln ], E~= O, 

lIS r [ nh b H] Es [ . b OFfn] <P= --;; 11 n , 1 q,= r ~J1.oW n Tp , 

(37) 

(38) 

(39) 

(40) 

As seen above, scattering of electromagnetic waves from a perfectly conducting cylinder 
in a cold plasma is identical in form to scattering ot electromagnetic waves from a perfectly 
conducting cylinder in free space (e.g., as discussed in Wait, 1959). The only change required 
is the replacement of the dielectric constant € of the plasma with that for free space f O' 

Another interesting special case occurs when we let the charge den sity in the medium ap­
proach zero. Thus, setting e= O, it is easily found from (30) that 

(41) 

where u p= (k!- h2)lf2 and k p= w/u in terms of the acou stic velociLy u for R,n un charged medium 
of no particles, of l11f1SS m, per unit volume. For this case, an incident acousti c wltve, whose 
pressure perturbation is given by 

(42) 

leads to a scattered acoustic wave of the form 

(43) 

This is the well-known result for pure acoustic scattering from a rigid cylindrical obstacle 
[Morse and F eshbach , 1953]. 

We see from the above that our general solu tion contains both pure electromagnetic and 
pure acoustic scattering as special cases. In the general case, it is easy to see from (30) that a 
pure incident TM electromagnetic wave (i.e., A n;F O, B n=On=O) will generate scattered TM 
and TE eler; tromagnetic waves in addition to a scattered acoustic wave. In 11, similar fashion, 
a pure incident TE electromagnetic wave (i. e., B n ;FO , A n= On= O) will sca tter TM and TE 
electromagnetic waves and the acoustic waves. Of particular interest is the fact that a pure 
incident acoustic wave (i.e., On;F O, A n= B n= O) will generate both the TN! and TE electro­
magnetic waves in addition to the acoustic waves, 

Consistently, in the development given here, the field functions are preceded by the 
Fomier-summation operator r. Using this artifice allows us to consider quite general types 
of incident field s. For example, if an obliquely incident plane TE wave is considered, 

E~nc=Eo sin 0 exp [ikeP sin 0 cos ¢ - ikez cos 0], (44) 

where e is the angle which the wave normal subtends with the Z axis. Employing a well­
kn own addition theorem [McLachlan, 1934], it is found that an alternate representation is 

+ '" 
E~nc= E o sin 0 .::B i nJ n(ke sin 0) exp [-in¢-ilcez cos e], (45) 

n=- oo 
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which may be written in the form 
(46) 

if u~An=Eo (sin O)in, h= ke cos 0, and ue= ke sin O. The operator for this case of plane wave 
incidence implies multiplication by exp [-incp-ikez cos 0] and subsequent summation over 
integer values of n from - 00 to + 00 • 

The total fields in the compressible plasma exterior to the rigid perfectly conducting cylin­
drical object are thus given by (17) to (25) with the above meaning to the operator r. The 
coefficients an, bn, and en are given by (30) where B n= Cn=O and A n is defined as above. 

The explicit form of the fields for obliquely incident plane TM electromagnetic waves or 
a plane acoustic wave is obtained in a manner almost identical to the above. The readel' 
should have no difficulty satisfying himself that this is the case. 

A case of some practical importance is when the rigid cylinder considered above is excited 
by an electric dipole located at (Po, CP o, zo) where po>a. The electric dipole of length ds with 
current 1 is taken to be oriented in the z-direction (i.e. , parallel to the cylinder axis). From 
earlier work, we know that [Wait, 1959] 

+00 

E~nc= i slds ~ e-in ("'-"'O) fH~2)(uPo)Jn (up) exp [- ih(z - zo)]dh, 
7r€W n= - co 

(47) 

provided P< Po. (For P> Po, we merely interchange p and Po in the above representation. ) 
Thus, we may write (for P< Po) 

(48) 

where 

(49) 

and r signifies multiplication by exp (- ihz-incp) and subsequent summation over nand 
integration over h. 

The total fields are now again obtained from (17) to (25) with this general meaning at­
tached to r . Thus, the fields are represented as a Fourier integral and an infinite sum. The 
formulas can be greatly simplified in the far field where both keP and kpp> >1. Then the 
scattered field integrals may be asymptotically approximated in the manner [Wait, 1959] 

+00 

-~ J F(h)H~2) (up ) exp [- ih(z-zo) ldh~exp (in7r/2)F (k sin 0) exp (- ikR)/R, (50) 
_ co 

where U=Ue or Up and k= ke or k p, which is valid when the func tion F(h) is relatively slowly 
varying. Using this asymptotic relation, formulas for the radiation patterns of the dipole in 
the presence of the cylinder are readily obtained. 

When the observer is near the cylinder, it is necessary to consider the influence of the pole 
singularities of the integrand. For example, F(h) may have a finite number of complex poles. 
Some of these may lead to residue contributions which are identified with axial surface waves. 
This would be an important subject for further investigation. It will not be pursued here. 
The interested reader may consult a fundamental paper by Samaddar and Yildiz [1964] who 
consider the excitation of axially symmetric (i.e. , n=0) surface waves in a compressible plasma 
cylinder surrounded by free space. 

6. Two-Dimensional Situations 

Another important special case is when the fields do not depend on z [Wait, 1964a]. This 
occms, for example, if the excitation is a normally incident plane wave or a cylindrical wave 
emanating from a uniform line source. In the general formulas listed from (17) to (25), this 
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means that h is set equal to zero and the operator f now is defin ed by 

+00 
p = f{3n= .:8 {3ne- inq, . (51) 

n=-oo 

It is evident that for z independent fields, (30) be partly decomposed to the se t 

(52) 
and 

(53) 

Here, the arguments of the Bessel functions I n a nd H n are kea while the arguments of I n and 
A 

H n are kpa. 
It is evident from the above that a normally incident TM wave will scatter only a TM 

wave even though the plasma is compressible. However, a normally incident TE wave will 
scatter both a TE wave and an acoustic-type wave. To illustrate this point more clearly, a 
specific case is considered. The incident TE wave is defined by 

+'" 
H~nc=Ho ex'P (ikeP cos 0) = IIo .:8 ine-inq,J n(keP), p,nc= o. (54) 

n=-oo 

By u tilizing the matrix equation (53), it is found that the secondary TE electromag netic wave 
is ob tained from 

where 

+'" 
H~c= IIo .:8 inAJl,~2)(leep)e-inq" 

n=-co 

(leea) (lepa)J~(leea) H~2) I (lepa) -n2(wo/w) 2Jn(kea)II~2) (lcpa) 
(leea) (kpa) H,~2 ) I (leea) II~2) ' (lepa) -n2 (wo/ w)2 H~2) (leea) II~2) (lepa) 

It also follows from (53) that the scatter ed acousLic wave is to be obtained from 

where 
(2in/7r) (wO/w)2 (mw/e) 

(55) 

(56) 

(57) 

(58) 

In writing (58) in the above form, the well-known IiVronskian relation for Bessel functions has 
been u t ilized. Equations (55) and (57) agree with the resul ts derived directly by Seshadri 
et al. [1964] . Their analysis was restricted at the outset to normal (i.e., p erpendicular) 
incidence. 

It is easy to see that (56) may be rewritten in the form 

where 

and 

A C = n 
J~(kea) 
H~2) ' (leea) , 

1- n2(wo/w)2 I n(leea) H~2)(le7Ja) 
(kl,a)2(leea)2 J~(leea) H~2)' (lcpa) 

1- Lln = ------"n72 ("'---w-'--o/-,-'w'-,-)7-2 --'---c1=I""~2c'--) (07k-ea'-,-)-----O:l:""{ n=(2)"--:(-7-1c p---'a'-:-) 

1 (le pa)2(leea)2 II~2) ' (kea) H,~2)' (lcpa) 
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This shows that for a cold plasma (i.e. , kpa----?oo), An= A~, which is the appropriate value for 
scattering (at normal incidence) of a plane wave from the perfectly conducting cylinder im­
mersed in a cold plasma whose wave number is ke• If either u/c or wo/w is sufficiently small, 
the correction factor Ll n itself may be very small. To within this approximation, it is not 
difficult to show that 

(2n2/7r) (wo/ w)2( u/c) 
(kea)2J~(kea) H~2) I (kea) , (60) 

where, as usual, ke= k(1 -wUw2) ~ in terms of the free space wave number k. In most situations, 
the factor Lln is exceptionally small. For example, in the case of ionospheric plasma u/c is of 
the order of 10- 3• 

7 . Concluding Remarks 

On the basis of the analysis in this paper, it is evident that TE, TM, and acoustic waves 
are coupled in a cylindrically stratified compressible plasma. However, when the fields are 
independent of the axial coordinate, the TM waves become decoupled, al though the TE and 
the acoustic waves are still coupled. Also, in the limiting case of a cold (i.e ., incompressible) 
plasma, the acoustic wave is not present but there may still be coupling between the TE and 
TM electromagnetic waves. 

In the analysis in the present paper, the presence of a superimposed d-c magnetic field is 
ignored. As indicated by Field [1956] and much more recently by the author [Wait, 1964b], 
this will cause additional coupling. Furthermore, the influence of llonlinearities in the medium 
will greatly complicate matters [Ginzburg, 1964] . 
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