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Two. components of the radar cross section of a plasma body at the plasma frequency 
are consIdered. These are the specular reflection and the creeping wave components. 
The specular component is obtained by use of the Fresnel reflection coefficient and the 
creeping wave component from that for the perfectly co nducting body which is adjusted 
by means of a loss attenuation factor. 

The method is applied to the sphere and the resulting cross ections compare favorably 
witl~ those obtained using the exact solution. These methods can be applied to smoot h 
bodiCs other than those of spherical shape and to dielectric-constants other than zero 
provided the creeping wave component for the perfectly conducting body is known. 

1. Introduction 

The radar cross section of plasma bodies at a fre
quency equal to the plasma frequency is controlled 
by means of the loss mechani m. The manner in 
which it is controlled is to be demonstrated in this 
paper by consideration of lossy homogeneous plasma 
spheres. 

The exact boundary solution for the scatterino' of 
electromagnetic waves from a spherical body "'has 
been treated [Mie, 1908]. The exact solution is to 
be used to verify the approximate solutions for this 
plasma. body at the plasma frequency. Many 
apprOXImate solutions for conducting bodies have 
appeared recently which involve a specular reflection 
and a wave known as the creeping wave [Franz and 
Depperman, 1954 a and b; Reller and Levy, 1959] 
whlCh travels around the body and then radiates in 
the direction of the tangent as illustrated in figure 1 
for the case of backscatter. 

1 The work reported in this paper was supported in part by Contract Number 
AF 33(616)--8039 between Research Technology Division, Air :Force Avionics 
Laboratory, Wnght-Patterson Air Force Base Ohio and The Ohio State 
Uni versity Research Foundation. ' 

FIGURE 1. Creeping wave path. 

It is this treatment that leads to an understanding 
of the scattering mechanisms at the plasma fre
quency. The attenuation factor for the Zenneck 
wave traveling along a lossy planar interface shown 
in figure 2 is to be used to estimate the loss intro
duced into the creeping wave component. This 
yields approximately the magnitude for this CO Lll
ponent, once its magnitude is known for the con
ducting body. The characteristics of the creeping 
wave and the Zenneck wave in general differ. How
ever the magnitude of the attenuation factor is 
proportional to the percentage of energy propagating 
in the lossy medium. These two types of ,vaves 
have field distributions near the boundary that are 
similar and thus it is postulated that the introduc
tion of finite conductivity would cause approxi
mately the same percentage of energy to flow within 
the lossy medium and thus yield approximately the 
same attenuation factor due to the loss mechanism. 
The validity of this approximation is demonstrated 
by the Mie solution as noted previously. An alter
native more rigorous approach would consist of a 
solution for lossy bodies paralleling the creeping 
wave solution for the perfectly conducting bodies. 
Such an approach certainly merits consideration, 
and in this connection, Wait [1964] gives an excellent 
summary of the cases that have been treated in this 
manner in his treatment of a radial dipole over a 
sphere. 

---/Trr// r// ////T/T// 

FIGU RE 2. Wave propagating along lossy intelface. 
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FIGU RE 3. Radar cross sections of lossy plasma spheres . 

Also the creeping wave solution would be appli
cable only to such classical shapes as the sphere and 
cylinder. The present approach is comparat.ively 
independent of geometry since the method was 
evolved for a planar interface and applied without 
modification to the sphere once the creeping wave 
for the perfectly conducting case isknown. (See fig. 2.) 

A sinlpler alternate approximate solution would 
take the form of the radar cross section of the per
fectly conducting body times the square of the re
flection coefficient but this solution is not always 
effect.ive. 

2. Approximate Solutions 

The simplest solution for the radar cross section is 

(1) 
where 

<T = radar cross section, 
<T '" = radar cross section of the perfectly con

ducting body of the same size and shape. 

R= ~~~=Fresnel reflection coefficient, and 

where 
'Y = propagation constant, 
w= angular frequency, 
e' = dielectl'ic constant, 
e;= e' /eo 
eo= dielect ric constant of free space, 
s = conductivity, 
/L = permeability, 

,so= w -J /Leo= phase factor of free space, and 
ET = e; -je'; = the complex dielectric constant. 

The complex dielectric constant 

where 

2 ' • s 
ET= n = ET-J - ' 

WEO 

= e;(l-j tan 0) 

s 
tan o= loss tangent = - ,' 

we 

(4) 

The approximation of (2) assumes that all of the 
energy transmitted into the body is absorbed. The 
remainder of the energy is then reflected by the 
body acting as though it were a perfect conductor. 

n = the complex index of refraction . (2) The results of this approximate solution are 
compared in figure 3 with those obtained from the 
boundary value solution for three cases; eT= O
jO.l, 0-j1.0, and 0- j4.0. These three cases are 

The complex index of refraction n is defined by 

• 'R 1- -J' 2 ' 'Y = J,son= Jl-'o'Yer= ]W/LS- w fJ.e 

. r- ~ , . S = Jw'Y/Leo Er-J -
weD 

for a wave incident on a lossy plasma sphere with a 
frequency equal to the plasma cutoff frequency. 

This first order approximation may be improved 
(3) by considering the reflection mechanisms individ

ually. The specular component of scattered fields is 
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readily calculated by multiplying the scattered 
field obtained from geometrical optics by the square 
of the reflection coefficient or 

simply 7rr. The approxim ate radar cross section 
may be written as 

/-y;-= ~2 + ;- -a,..T 

(5) and 
~(Jmax ", / tL~(JODt '\ (fcwe (10) 

(11 ) where 

asp= specular component of radar cross section, and 
aoDt = geometrical optics radar cross sec tion of the 

perfectly conducting body. 

The geometrical radar cross section for a sphere is 
the well-known 

(6) 

where r is the radius of the sphere . This equation is 
valid for this component for all radii exclusive of the 
region of Rayleigh scattering. 

The magnitude of the component of the scattered 
field due to the creeping wave can be found from the 
maxinllull and minimum values of radar cross 
sec tion of the perfectly conducting sphere. For the 
radii where these m axima occur, the specular 
component and creeping wave component are in 
phase. This yields 

(7) 
where 

acw = component of radar cross section due to 
the creeping wave, and 

am ax = maximum radar cross section for perfec tly 
conducting body. 

Similarly 
(8) 

where 

am In = minimum radar cross section for perfectly 
conducting body. 

Note that acw is a function of radius. 
The creeping wave field is attenuated by absorp

tion in addition to attenuation by radiation if the 
conductivity is not infinite. The absorption attenu
ation factor is taken approximately to be equal to 
the attenuation factor of a wave traveling along the 
in terface illustrated in figme 2. The attenuation 
factor for this case is [Ramo and Whinnery, 1947] . 

(9) 

where 

/Jo= phase factor of ambient medium, 
fJ = relative dielectric constant of the ambient 

medium, and 
82 = conductivity of the body. 

The attenuation factor is a = 107r, 7r, and 7r/4 nepers 
per wavelength for f T equal to 0- jO.1 , 0-j1.0 and 
0- j4.0, respectively. The path of the creeping 
wave contributing to the monostatic radar cross 
section is illustrated in figme 1. Its path length is 
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where 

aJ:ax is the maximum radar cross section of a 
lossy sphere , 

o{:, in is the minimum radar cross section of the 
lossy sphere. 

This method h as been used to obtain values for the 
maxima and minima for the three cases. The 
results are indicated in figme 3. The attenuation 
of the creeping wave is such that its contribution is 
negligible for fT= 0- jO .1 and this is in agreement 
with the exact solution shown in figure 3. The 
agreement between this approxima te solution and 
the exact solu tion is remarkable for all cases. 

It is to be emphasized that the r adii associated 
with these computed values has not been obtained 
from the approximation . To date no successful 
method has been obtained for determining the ch ange 
of the phase of the creeping wave component due 
to the finite value of the conductivity. 

3. Conclusions 

Two approximate solu tions for the r adar cross 
section of th e plasma body at the plasma frequency 
h ave been presented. In both ca cs, it is the loss 
mechanism that controls the r adar cross sec tion of 
such bodies. The simplest approximation does pre
dict th e average magnitude but does not properly 
predict the varia tions about that average . 

These variations may be predicted by the intro
duction of a loss mechanism in the creeping wave 
co mponent. An approxim ate form for the attenua
tion of the creeping due to loss h as been given and 
its yaliclity demonstrated by means of example. 
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