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In the standard simple treatment of magneto-ionic theory the effect of collisions is
allowed for by assuming that an electron experiences a retarding force proportional to its
velocity, and the two complex refractive indices of an ionized medium are then given by
the Appleton-Hartree formula. Ixperiments have shown, however, that the collision
frequency is approximately proportional to the square of the electron’s velocity, and proper
allowance for this, using the Boltzmann equation, leads to a modification of the Appleton-
Hartree formula which was given by Sen and Wyller. In this tutorial paper the same
modified formula is derived, but by a different method which, it is hoped, can be followed
by readers not intimately familiar with the previous literature. Some numerical results
are presented in which the modified and unmodified formulas are compared. It is concluded
that the standard Appleton-Hartree formula can be used without modification for nearly
all radio propagation problems in the ionosphere, provided that the correct effective value
of the collision frequency is used. The modifications may be important, however, in the
theory of wave interaction and for waves of very low frequency whose wave normals are
perpendicular to the earth’s magnetic field.

1. Introduction

The two refractive indices for radio waves in an ionized medium are given by the Appleton-
Hartree formula [Appleton, 1932; Ratcliffe, 1959]. They are, in general, complex numbers
whose values are affected by the collisions of the electrons in the medium with other particles.
In the simplest treatments, this is allowed for by the method of Lorentz [1952, sec. 120 and
note 57; see also Ratcliffe, 1959, ch. 4, 5] in which it is assumed that an electron of mass m
experiences a retarding force —mpv proportional to its velocity v, where » is the effective
collision frequency and is assumed to be a constant. But experiments (Huxley, 1959; Phelps
and Pack, 1959] show that the average number of collisions » which an electron makes per unit
time with other particles, depends on the electron velocity v, and when this is allowed for, a
more elaborate treatment of magneto-ionic theory is needed. The effect of collisions of elec-
trons with neutral molecules and with charged ions is somewhat different [Ginzburg, 1964].
In the lowest part of the ionosphere the concentration of molecules is so great that collisions of
electrons with molecules dominate, and collisions with charged ions can be ignored, and only
this case is considered in the present paper. There is good evidence [Huxley, 1959; Phelps
and Pack, 1959] that the average number of collisions of an electron with molecules per unit
time is proportional to the square of the velocity.

This problem has already been discussed by Molmud [1959] and more fully discussed by
Sen and Wyller [1960] whose results are the same as those given here. Thus there is nothing
new in the formulas derived in the present paper, but the method of derivation is different.
Sen and Wyller used a coordinate system with oblique axes, and they allowed for the harmonie
time variation of the radio wave fields by including real factors cos «t and sin wt.  In the present
paper we use orthogonal axes and a complex time factor exp (iw ¢) as was done, for example,
by Allis [1956], and these lead to considerable simplification.

The results are important in studying the propagation of radio waves in the lowest part of
the ionosphere. In one kind of experiment Gardner and Pawsey [1953] have observed the
reflection of vertically incident radio waves from small discontinuities of electron density in
the height range 65 km to 90 km. By measuring the ratio of the reflected amplitudes for the
ordinary and extraordinary rays it was possible to deduce the effective collision frequency.
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But Belrose and Burke [1964] have shown that the results are significantly different for the
simplified Lorentz theory and for the more exact theory, which leads to the formulas of Sen
and Wyller. The more exact theory may also be important when studying the reflection of
waves of very low frequency from the ionosphere, for in some published work [Budden, 1955;
Barron and Budden 1959] the simple Lorentz treatment was used. The modifications intro-
duced by the more exact theory have been discussed by Johler and Harper [1962] and by Wait
[1962, appendix B]. But recently Deeks (private communication) has calculated the reflection
coefficients of the ionosphere for a range of very low frequencies, using both the modified and
unmodified formulas, and finds that the differences are negligible (see sec. 9 below).

The treatment given both by Sen and Wyller and in the present paper is based on the
Boltzmann equation, which is set out in section 3. It is simplified by assuming that the field
of the radio wave is very small and gives only a small perturbation f; of the distribution func-
tion. This leads to a linear equation for f; given at the end of section 3. It contains a term
which allows for collisions, and is discussed in section 4 where it is expressed as an integral—
the collision integral. The equation for £; is then solved in section 5, and the solution is used
in section 6 to derive the electric susceptibility matrix of the medium. From this the refrac-
tive indices can be derived, and this is done first for an isotropic medium in section 7. The
application to the full magneto-ionic theory is discussed in section S where Sen and Wyller’s
modifications to the refractive indices and wave polarizations are derived. Some numerical
results are presented and discussed in section 9. When the field of the radio wave is stronger,
some of the terms which are neglected in the simple theory are no longer small, and the con-
sequences of this are very briefly reviewed in section 10.

2. Notation

The formulas in this paper are valid in any system of self-consistent rationalized units.
The principal symbols are as follows:
B—=magnetic induction of superimposed constant magnetic field.
c=velocity of electromagnetic waves in free space.
E=-clectric field of radio wave, components I, 2, E..
e=charge of electron.
f=Boltzmann distribution function for electrons.
H=magnetic field of radio wave, components H,, I{,, ..
J=current density.
K=Boltzmann’s constant.
k=uw/e, 27 divided by wavelength in free space.
m=mass of electron.
N=number of electrons per unit volume.
N,,=number of molecules per unit volume.
n=refractive index.
n=vector of length » in direction of wave normal.
P=1J/iw, electric polarization.
r=nposition vector, components z, v, z.
d*r=dzxdydz.
T=absolute temperature of electrons.
{=time.
U=1—1iZ.
Ueft: 1 _iZeff-
v=electron velocity vector, length », components v,, v,, v..
AdBv=dv,dv,dv..
X=Ne?/egma?.
Y=¢B/wm, vector of length Y.
Z=v(v)/w.
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v,/w, effective value of Z used in standard magneto-ionic theory.
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Zy,=characteristic impedance of free space.
e=scalar dielectric constant.
e=tensor dielectric constant, with elements ¢, (1, 7=, 7, 2).
€1, €, e=principal axis values of dielectric constant; e; refers to axis parallel to B.
f=angle between vector Y and wave normal.
v=collision frequency, a function of electron velocity.

2
Vm:§><avemge value of », when voco®.

¢
py po, pr=wave polarizations in magneto-ionic theory.
w=27 Xfrequency of wave.
grad,=vector operator in ordinary space, with components 0/0x, 9/9y, 0/0z.
grad,=vector operator in velocity space, with components 0/dv,, 0/dv,, 0/dw..

3. Linearized Boltzmann Equation

We consider a neutral, ionized, homogeneous medium containing N electrons and N
positive ions per unit volume, and with neutral molecules whose concentration N, is very
large compared with N so that electron-electron and electron-ion encounters can be ignored.
A molecule is very massive compared with an electron so that as a first approximation the
molecules can be assumed to be infinitely massive and at rest. Thus the state of the medium
:an be described by the Boltzmann distribution function f(r, v) for the electrons. There is
a superimposed constant magnetic field of induction B. The function f must satisfy the
Boltzmann equation

U v orad. fta erad. £
at—f-vhl(ul,’/—lahmdv_/ > (1)

[see, for example, Chapman and Cowling 1958, ch. 3] where a is the acceleration imparted
. o.f . .
to an electron by all forces except encounters. The term —a’%/ is assumed to arise only from
electron-molecule encounters.
The acceleration is given by

amﬁ{E+vAB} @)

where E is the electric field of the radio wave, which is assumed to be so weak that the force
exerted on an electron by the magnetic field H of the wave can be neglected. It is now further
assumed that when E is zero, and when the electrons have reached a state of equilibrium,
the function f is given by the Maxwellian distribution function

N2 KT :

fo@)= <W{TI’> exp (—muv*/ [ (3)
L. 3 8 oy 9./o .

This is independent of time so that both Y and 5 ATe zero. In the ionosphere the electron

concentration N in (3) is a function of the height z and might give a contribution to the term
v-grad, /in (1). But it can be shown that the order of magnitude of this term is small enough
to be neglected for frequencies greater than about 1 ke/s, though it could possibly become
important in the ELEF range (less than about 1 ke/s). Thus we shall assume that N is in-
dependent of r so that the medium is homogeneous.

It follows from (3) that grad, f,is a vector parallel to v. Thus its scalar product with
the term vAB in (2) is zero. The field E is assumed to be very small, and when it is present
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the function f undergoes a small change so that we now have
f(vy r, t) :j0+f1(v7 r, t) (4)

where the perturbation f; is so small that squares and products of f, and E can be neglected.
If these results are used in (1) we obtain

afl efl

+v grad, fl-l-—— E grad, fo—i—— (vAB) grady f1= (5)

This equaticn is linear in E and f,. The electric field E and magnetic field H of the radio
wave must satisfy Maxwell’s equations which are also linear. We seek a solution of the
equations which represents a monochromatic wave of angular frequency w. It follows from
the linearity of the equations that a solution exists in which f;, E, and H all vary harmonically
in time with angular frequency w. This may be allowed for by assuming that each of them
includes a complex time factor exp (iwt) which is customarily omitted from the equations,
and when interpreting the complex f;, E and H it is understood that the real parts are to be

taken. Thus in (5) we may set

Do 0)

O.f1
ot

In magneto-ionic theory we seek a solution which represents a plane monochromatic
wave. Thus f,, E, and H all contain a factor

is considered in the next section.

exp i(wt—kn - 1) (7

where the vector n has the direction of the wave normal and (complex) magnitude equal to
the refractive index. If this is used in the second term of (5) it gives

V- gl'ildr f1=—7:]{n 0 Vfl. (8)

This term depends on how f; varies in space, and its effect on the results is sometimes called
“spatial dispersion” [Ginzburg, 1964]. It is very small compared with (6) provided that

n<<efve 9)

Now in magneto-ionic theory we are usually concerned with refractive indices of the order of
unity or less, whereas the number of electrons whose velocity » is comparable with ¢ is very
small.  Thus (9) is satisfied and we may neglect the spatial dispersion term (8). By retaining
the term (8) it is possible to study plasma waves in the medium, but this is not part of classical
magneto-ionic theory. The term (8) also leads to Landau damping which is negligibly small
for radio waves when 7 is of order unity. This term has a very small effect on the polarizations
and refractive indices of magneto-ionic theory [see Ginzburg 1964, sec. 12]. In the rest of
this paper it is neglected, except for a brief mention at the end of section 5.
The third term in (5) can be evaluated from (3) and gives

e e
P E grad, fi= KT E - vf. (10)

With these simplifications (5) gives

f

oy KTE vfo-l— (vAB) - grad flf (11)

This is the form of the linearized Boltzmann equation which will be used in the rest of this paper.
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4. Collision Integral

The Boltzmann distribution function f(r, v) is defined so that
f(r, v)d'rd’v (12)

is the number of electrons in the small volume d°r of ordinary space, having velocities within
the small cell @*v of velocity space. Thus the electrons of this small group all have a velocity
very close to a given value v. ~ When one electron of the group makes a collision it is removed
from the cell @®v. Other electrons in different cells make collisions which sometimes result in
an electron moving into the cell d®v. It is these two processes which contribute to the term

o.f . ; i
-57 and an expression for this must now be derived.

It is assumed that a collision is practically instantaneous so that E and f, do not change
appreciably while it is occurring. Thus the duration of a collision must be very small compared
with 1/w. This is believed to be true for electron-molecule encounters when o refers to a radio
wave of low or medium frequency. It may not be true for electron-ion encounters or for very
high frequencies and microwaves. The problem is then more difficult and it is not always
possible to use the Boltzmann equation in these cases.

The molecules are assumed to be infinitely massive and at rest. Thus an electron which
approaches a molecule is deflected by the encounter but the magnitude of its velocity is un-
changed. It jumps from the cell ’v to another cell #*v” on the same sphere, of radius », in veloc-
ity space. Suppose that there is a molecule at the point M in ordinary space (fig. 1), and that
an electron is approaching it along the line AB parallel to the velocity v. The volume of the
cell %r in ordinary space, though small, is very large compared with the region represented by
ficure 1. This cell thus contains a large number N,, °r of molecules, where N,, is the number
of molecules per unit volume. An electron which makes an encounter with one of these mole-
cules remains in the cell &°r in ordinary space, though it jumps to a different cell in velocity
space. Now imagine a plane drawn through M normal to AB, and take polar coordinates
b, « in this plane with origin at M, radius b and angle « measured from some reference line MC.
The radius b is called the impact parameter. Then PQRS is a small area bdbda of this plane.
The probability that an encounter occurs in time df, with an electron approaching the area
PQRS, is equal te the probability that there is an electron in the volume bdbdavdt of ordinary
space, so that the probability is

F(v)d*vbdbdawdst.

FiGcure 1. Direct encounter of an electron with velocity
v approaching an infinitely massive molecule at rest
at M

The thick line represents the path of the electron.
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After the encounter this electron has a new velocity v/ where »’=» but v'v. The probability
of this kind of encounter for all the molecules in the volume d%r is

Noof (V)APvd'rbdbdoudt. (13)

Electrons also enter the cell d?v through collisions which are called “inverse encounters.”
There will clearly be some electrons which, after an encounter, are traveling with velocity v
so that they are then in the cell @*v. Some examples are illustrated in figure 2b, in which the
electrons initially have a velocity v/ or v/ or v//” all with the same magnitude » but with direc-
tions which may be anywhere within the solid angle 47. Of these we consider only those
electrons whose final velocity vector v, when projected backwards, intersects the area P’Q’R’S’
of figure 1, which lies near the peint with polar coordinates b, a+=x. Thus for these collisions,
the impact parameter b is the same as for the direct encounter considered in (13), and the angle
through which the electron is deflected is the same for both cases. Hence the initial velocity
vector v/ of the inverse encounter must be the same as the final velocity vector v/ for the direct
encounter, and the electron orbits for the two encounters are identical in shape, though differ-
ently oriented in space. The process of counting these inverse encounters is exactly the same
as counting the direct encounters, which led to (13). If a small change is made in v so that it
remains within the cell &*v of velocity space, then there is a resulting change in v/ which remains
within a corresponding cell d*v'.  Now the volumes d*v and ¢*v’ of the two cells are equal.
This can be seen by expressing v and v’ in spherical polar coordinates, »,9,¢ and z{yz?’,w’ respec-
tively, using as polar axis the bisector of the angle between v and v/. Then v=0v", § =19', o=
¢+ whence d*v=10? sin ddvddde=d*v'. 'This is a special case of the principle of detailed
balancing and a formal proof, for a more general type of binary collision, is given by Chapman
and Cowling [1958, sec. 3.52].

The number of electrons leaving the cell d*rd’v in time df is given by (13). The number
entering the cell from the inverse encounters is the same expression with f(v)d®v replaced by
FO)dV =f(v')d?v. The resultant number entering @*vd’r in time dt is thus

N (V) —f(v) Jod®vdPrbdbdadt. (14)

To find
and «. Thus

f . . : .
aaet » equation (14) is divided by d*vdPrdt and then integrated with respect to b

%ﬁ{:m‘ L 2’:[) "LV —F(¥) }bdbda. (15)

This is the collision integral. In the integrand the vector v is a constant, and v/ and v have
5 g )

\

equal magnitudes. But the direction of v’ is a function of b and a.

F1cure 2. In (a) a direct encounter is shown, in which
an electron initially with velocity v leaves the cell d3v
centered on the point v in velocity space.

Some inverse encounters are shown in (b), in which electrons with

various initial velocities v/, v//, v’/ all enter the same cell d3v after
the encounter.
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When the impact parameter b is large, it usually happens that the electron is almost
undeflected by the encounter, so that v'=v and the integrand is very small. This occurs for
electron-molecule encounters, where the forces are of short range, and the integral (15) con-
verges as b increases. Thus the upper limit for b is taken as infinity. But for electron-ion
encounters the inverse square law of force is of longer range and the integral does not converge.
Then the upper limit for b must be assessed by considering the screening effect of the neighbor-
ing plasma. In the present paper, however, these considerations need not concern us since,
following Sen and Wyller [1960], we shall use experimental results to give the final form of the
Q.f

ot
When f(v) is independent of the direction of v, the integrand of (15) is zero. Thus f,(v)
contributes nothing to the collision integral, and the fin (15) may be replaced by f;. Equations
(11) and (15) then give

term

iwfi—gep B Vit (VAB) - grads fi=Now f f LA —h(v) bdbda (16)

which applies for each value of the velocity vector v, and is to be solved to find the function f, (v).

5. Solution of the Equation

Equation (16) must apply at each point v in velocity space and we shall study it for those
points which lie on a sphere of fixed radius ». Then f, is a function of the direction of v, and
may be expanded in a series of spherical harmonies thus

S =fo@) +fu(¥)+fe(M+ . .. (17)

where fi,(v) is a spherical harmonic of order . This is substituted into (16) and the terms
representing harmonics of the various orders are equated. 'The second term in (16) is a spherical

e
KT-
E and v. The polar axis is then the direction of E and may be a complex direction since E in
general represents an elliptically polarized wave [Budden, 1964b].

Now the term fy,(») is independent of the direction of v, so that grad, fi,(») is a vector
parallel to v and thus contributes nothing to the third term of (16). Similarly fi,(») contributes
nothing to the collision integral because f,,(v")=f,,(»). The only spherical harmonic of zero
order in (16) is in the term 7wf;, so that

harmonic of the first order, which could be written — foltv cos 9 where ¢ is the angle between

J1(@®)=0. (18)

Next consider the spherical harmonic of first order f,;(v) which proves to be the most
important term. It may be written

JFu(v)=v-V() (19)

where the vector V depends only on the magnitude of v and not on its direction. Now
gradv(v-V):V+<v- % v/v. (20)

The last term of (20) is a vector parallel to v and contributes nothing to the third term of (16),
which therefore gives
4 e e
e orad. ft v_° . 2
- (vAB) - grady f1; - (vAB)-V . (BAYV)-v (21)

which is a spherical harmonic of the first order. The contribution of (19) to the collision
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integral is

N, oV. f o f " (v —v)bdbda. (22)
0 0

To evaluate this, choose Cartesian axes v,, v,, v, in velocity space so that », is in the reference
direction MC in figure 1, and », is in the direction of v. Suppose that in the encounter the
electron is deflected through an angle x(b). Then the Cartesian components of v/—v are

—» SN X cOS o,—? SiN X sin «, v (cos Xx—1). (23)

Integration of the first two with respect to « gives zero so that only the », component remains
and this is parallel to v. Hence (22) gives

— 2N, oV-v f " (1—cos x)bdb. (24)
JO
Now let
A() =2 f (1—cos X)bdb. (25)
0

This is called the “transport area of cross section” for the encounter. It may depend on ¢,
but is independent of the direction of v. It is determined by the mechanics of an electron-
molecule encounter. For example, it is easy to show that if the molecules are rigid spheres of
radius a, then A==a’.

If each molecule presents an effective area A(r) to the oncoming electrons, then the
probability of an electron encountering a molecule within a path dzis N, Adx. Thus the mean
free path 1is

A©)=1/{NnA(@®)} (26)

and the average number of collisions per unit time is
v (0) =v/A=NAv. (27)

Equation (27) is adopted as the definition of the collision frequency »(¢v). Huxley [1959] has
described experiments which show that A is proportional to »,so that »(v) in (27) is proportional
to %, and this result is used later. If (27) is combined with (25), the contribution (24) to the
collision integral is

—V-w (v) (28)

which is a spherical harmonic of the first order in velocity space. It is shown below that
the spherical harmonics of second and higher order in (17) do not contribute any terms of
first order in (16). Hence the spherical harmonics of first order give

. (2 e
iV - V—ger iE V- (BAV)VAyV - v=0 (29)

which can now be solved to find V. This is done in the following section.

The spherical harmonic of the second order in (17) may conveniently be writtenin tensor
notation thus

Ji2(¥) =W @) ow; (t,5=2, 9, 2) (30)

where W, 1s a symmetric tensor whose trace is zero, and the summation convention for repeated
suffixes is used. The contribution of (30) to the collision integral in (16) is

N, f f (0 —vw,) bdbda @1)

and here the integral can be evaluated by using the same Cartesian coordinate system as was
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used above to evaluate (22). The elements of the integrand of (31) can then be written in terms
of the polar coordinates v, x, « of v/ (compare (23)) and integrated with respect to «. In this
way it can be shown that (31) gives

| . B . .
—NaW, f 2 sint xbb (32)
0

which is a spherical harmonic of the second order and contributes nothing to the first order
terms in (29).

The contribution of (30) to the third termin (16) may similarly be found, since on converting
to tensor notation
0,0, OW

3 (33)

@ o .
ar= {grady f12(v) }k:a‘ {Wy@)vw; } =2Wyo,+
k
and
(V/\B) 'a:ﬂ'jkBjakl’i (34)
where ¢, is the third order isotropic tensor [Jeffreys and Jeffreys, 1956, ch. 3]. Substitution
of (34) into (33) gives for the third term of (16)

:ﬁ{ 2¢;xBWyv0i+ € B; %"J DO OV } (35)
in which the first term is a spherical harmonic of order two, and the second term is of order
four, and there is no term of the first order.

More generally it can be shown that a spherical harmonic of order » in (17) does not
contribute terms of smaller order in the third term of (16). By expressing it as Legendre
funections and associated Legendre functions it can further be shown [Allis, 1956, p. 409] that
it contributes only a spherical harmonic of the same order in the collision integral. Thus the
spherical harmonic terms of order »=2 or greater, in (17), when inserted into (16) give a set of
linear homogeneous equations which do not contain the field E. Since we are only interested
in the disturbances produced by the radio wave field E; we may clearly take the terms fi,(v)
to be zero when r=>2.

It may be noted that this simplification does not occur if the spatial dispersion term (8)
is included, for then the spherical harmonic of first order, f,;(v), when inserted in (8), gives ¢
spherical harmonic of order two. Since f,,(v)=V-v depends on E, as is shown by (29), this
introduces a term depending on E into the second order spherical harmonic component of (16).
Thus it is no longer permissible to take W,;;=0, which leads to some complication, but it is
beyond the scope of this paper.

6. Susceptibility Matrix of the Medium

In the last section it was shown that only the second term of (17) is to be retained and
it is given by (19). Thus the distribution function (4) for electrons becomes

f=htV-v (36)

where the vector V(2) is given by (29). Every term of (29) is the scalar product of v with some
other vector, and since the equation must be true for all v, we may omit the factor-v and obtain

{iwotv(®)) v+% B/\V:I%, £,E. (37)

Now it is convenient to use the standard notation (U.R.S.I. 1956) of magneto-ionic theory,

. . € - . . . .
in which the vector e B is denoted by Y and is antiparallel to B because ¢is a negative number.
" )
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Similarly »/w is denoted by Z. This is slightly different from the usual Z because here »(v)

and Z(») may depend on the electron velocity. Finally we use U(v)=1—1Z. Then (37) gives

) e

JV—1YAV=-—+ f,E. 38

UV—iY A\V=r—pr fo (38)

This is very similar to an equation used in standard magneto-ionic theory [Budden, 1961,

eq. (3.15)] and may be solved in the same way. Choose Cartesian axes with the z-axis parallel
to Y and write (38) in matrix form thus

( U 1Y 0 (V. E,

o . | _e , .
L—?i l 0 T M —,LwKT E_Z/ (39)
0 0 UJ\V, K,

By inversion of the 3 X3 matrix this gives
\Z. 0z —iUY 0 E,
V, e | iU D2 0. % k| (40)
VI Ur-Y?) ' ToKT|
V., 0 0 U—Y? E,

This is more concisely written by using the matrix notation

U? —UY 0
1 v
QiU(UZ—W) 2UY U 0 (41)
0 0 U:—-Y?
so that (40) gives
S €f0
V*inT QE. (42)

The current density vector J in the ionized medium is given in terms of the Boltzmann
distribution function thus
= ffff(v)vde'v (43)

the integral being taken through the whole of velocity space. To this integral the symmetric
function f,(v) contributes nothing so that insertion of (36) gives

J:efff(v-V)v-aFv. (44)

Now use spherical polar coordinates », ¢, ¢ in velocity space and choose the direction of V as
the polar axis. Then the components of (44) perpendicular to V are easily shown to be zero
so that (44) gives

2 T © ©
JJ== ef f f V()o* cos® ¢ sin ﬂd@dﬂdgo:% wef V() -vtdv. (45)
JOo 0 0 < J 0
Instead of J it is convenient to define an electric polarization vector

P=J/iw (46)
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as is done in standard magneto-ionic theory [Ratcliffe, 1959; Budden, 1961]. Then a combina-
tion of (46), (45), and (42) gives

P:€0M & E, (47)
where
4re
M= —3 wzkj’f FoQv'dv (48)

is called the susceptibility matrix of the medium.

In standard magneto-ionic theory it is assumed that » and Z are independent of the electron
velocity », and then Q is independent of » and may be taken outside the integral in (48). Now
Jois given by (3) so that the integral may be evaluated and the result is

M——XQ (49)

which is the same as in standard magneto-ionic theory [Budden, 1961, eq (3.24)] and leads to
the Appleton-Hartree formula.

7. Isotropic Ionosphere

For an isotropic ionosphere the earth’s magnetic induction B is neglected so that Y is
zero and Q in (41) becomes a scalar 1/U. Then the susceptibility M also becomes a scalar M
which is related to the complex dielectric constant e, and the complex refractive index n thus:

. 4 Jo()r
n*=e=1+M= 1—7{07”% 7 f "() (50)

Again if U is independent of » this leads to the standard result
n*=1—X/U. (51)

Now it might be expected that when an electron moves in a gas of infinitely heavy molecules
which are at rest, the probability of its encountering a molecule would depend simply on the
position and direction of its path, and not on its speed. Thus the mean free path would be
independent of velocity, but the average number of collisions made in unit time would be pro-
portional to the velocity. This case has been considered by Margenau [1946] and by Ginzburg
[1964, sec. 6] who gives curves showing how the real and imaginary parts of e depend upon
frequency w.

The true position is less simple because fast moving electrons can more easily excite the
rotational states of molecules, so that significant collisions occur more easily for fast electrons
[Huxley, 1959]. Careful experiments [Crompton, Huxley, and Sutton, 1953; Huxley, 1959;
Phelps and Pack, 1959] have shown that the collision frequency »(») is more closely propor-
tional to the square of the velocity. Hence following Sen and Wyller [1960] it will be assumed
that

y(B) =t 52, (52)

2KT"

By using (3) it can be shown that the average value of » is then g vm. Now let

&

w=v/v,=mv*2KT. (53)
By using this with (3) and (50):
4X (° uPe "du
2—e=1— — B 5
“ =1 3\/7!' ﬁ I‘ZUV,,,/O) ( 4)



This integral may be expressed in terms of standard integrals defined and tabulated by
Dingle, Arndt, and Roy [1956-1957], namely

1 (® uPe*du .
Gp(w)f})‘! J; —UW (()z))
Now (54) is separated into its real and imaginary parts, and with
W=w/vy, (56)
we obtain )
n":ezl%—M:l—X{w263/2(w)+§ 1w Cs 2 (w) } (57)

which replaces the standard formula (51).
When »,/w is very small the integral in (54) may be evaluated approximately by using
a binomial expansion for (1—iur,/w)"! and integrating term by term. This gives

Q5 2 5
n—eml1—X4 1= () ... L _ix (2 L) (58)
4 \ w 2 w

When the formula (51) of standard theory is used, it is assumed that Z can be given an
effective value Z,;; which is independent of electron velocity. Then (51) gives

r=a=1l=(] +Zﬁif> - i‘YZefi/<1 +Z). (59)

If both v, /0 and Z.; are so small that squares and higher powers can be neglected, (59) agrees
with (58) provided that

9 Vi * (60)

Ve[f/w:Ze = B5)

N | O

V/rl/w: 5/ (2w>; Vet —

Thus, for very small values of Z the standard formula (59) is approximately correct provided
that Z and » have the effective values given by (60). Note that v is not the average value
3v,, of v, but is § of this average value. For greater values of Z, (59) is in error and (57)
must be used. To obtain (57) from (59) the real and imaginary parts of e—1 must be multi-
plied by correcting factors K, and K, respectively, so that, with (60)

e=1—K,X/{ 1+25/(4w?) ) —5i K,/{ 2w-+25/(2w) ) (61)

and by equating this to (57)
25 25
Kr=<’w2+-4‘> Csp(w); Ki:<w2+—4—> Cs2(w)- (62)

These two functions are shown in figure 3 plotted with log;, (1/Ze)=logi, (2w) as abscissa.
Similar curves were given by Ginzburg [1964, sec. 6] for the case where »(v) is proportional
to v.

When v,,/o=2%7Z s very large (w very small) the integral in (54) may again be evaluated
approximately by using a binomial expansion for the factor {1+4iw/(u»,)|”" and integrating
term by term. This gives

A

nQ:e~1—% Xw*—1 —g]&w (63)

and by comparison with (61), for small w
25 5
K,'V?, Kl’\-'g (64>

The curves of figure 3 approach these limiting values when Z,y; is large.
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e
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Frcure 3. The correction factors K, and K; used for 3

converting the real and imaginary parts respectively T

of e—1, as computed with the simple formula (59),

to the more accurate values given by (57).
2 Ky

8. Refractive Indices of Anisotropic Ionosphere: Modified Appleton-Hartree
Formula

For an anisotropic ionosphere Y is not zero and the elements of the matrix (48) must be
found. Equation (41) shows that three different integrals are involved in (48) with factors
U? UY, and U?*—Y?1in the integrand. Further, the element M., is identical with M in (50

3 ) 22 )
and is given by (57). The remaining nonzero elements are M,,—M,, and M,,—=—M,,, and
(48) and (41) together show that

M, FiM,,—— (65)

/ f L T
3q?KT ), U£Y &

The two expressions in (65) together with M, comprise the three “principal axis’ values of the
susceptibility matrix (see Budden, 1961, sec. 3.11, and the references given there; 1964a,
sec. 2.8), and the corresponding “principal axis’ values of the dielectric constant matrix are

61:1 -{—ﬂlxxﬂ‘”b'l Uy 62:1 +MIZ+?:MIy) 63:1“|—1M22. (66)

Now assume that »(») is given by (52) and use the variable % defined at (53). Then, with (3),
equations (66) and (65) give

4X 3/2,—u
_1— M (67)
3\77' 1:*:1 ——’Z,UV,,I/OJ

and ¢ is given by (54). The real and imaginary parts of the integralsin (67) may be expressed
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in terms of w, in (56), and of the C integrals given by (55). Thus it is easily shown that

a=1—X [ (4700 Cual w(A+Y) } 42 i ol w1 +T) }]

a=1—X [ A=Y)0* Con{w1=T) |45 iw Cuslw1—1)} |

a=1—X —UJZ G3/2(’w)+g‘ w 5/2(70)] (68)

[note that these €'s are not the same as those used by Sen and Wyller, 1960]. These three
complex numbers, involving six  integrals, are sufficient to determine the polarization and
refractive index for a plane wave. The corresponding values according to standard magneto-
ionic theory are

€1:1—X/(Uefr+y) )
€2— 1 _4Y/(Ue“_}r) (69)
63:1'—A7/Lretf
[Budden, 1964a, sec. 2.8] where Ugi=1—1Z¢ 1s a constant independent of ».
The numbers in (68) determine the constitutive relation for the medium, which may be

written

eE-+-P=D=¢eE=¢,(1-+M)E. (70)

where € is the matrix dielectric constant. With the coordinate axes used in section 6, in which
the z-axis was parallel to the vector Y, the matrix e is given from (66), by

%(61’{‘62) %7.(51“62) O]

€ _%i(ﬁ—éz) %(€1+€2) 0 (71)
0 0 63J

We now seek a solution of Maxwell’s equations which represents a plane wave whose wave
normal makes an angle 6 with the vector Y. There are several ways of doing this, used in
standard works on magneto-ionic theory [Rateliffe, 1959 ; Budden, 1961, 1964a; Sen and Wyller,
1960]. The following derivation is given only in outline, and uses the author’s previously
published method [Budden, 1961, 1964a].

Choose a Cartesian coordinate system in which the z-axis is the wave normal, and the z-axis
is in the plane containing the wave normal and the vector Y. In this system the dielectric
constant e is given by

3(e1te2) cos? O-+e3sin? 0, Ji(e;—e) cos 0, 5(e+e€)—e; sin 0 cos 0
e=| —3i(e;—e2) cos 0, (e te), —31(e;—e) sin 0 . (72)

L(eyte) —essin 0 cos 0,  Yi(e;—e) sin 0, € cos® 0+%(e;+e) sin® 0
For the plane wave, the differential operators with respect to the coordinates are
=—1kn, (73)

and when these are used in Maxwell’s third and fourth equations, they give, respectively

nEz/: '—ZOHIy nEz:ZOHya HZ:O (74)
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and
nZoH,= e, By t-ey By €. B

—nZoH,=ey Byt By te, . B, - (75)
ezzEI+ezyEy+ fzzEz:O

The last equation (75) gives an expression for £, which is substituted in the remaining equations.
The ratio of the two equations in (74) and of the first two equations in (75) then gives

_B,__t (o) ot (o >E (76)
P Ez 1/ erzfzz €r2€zy
€1p— - E A4 e,— E,

so that

_ €22€yr €y Sl (fyyezz_eyzfizﬂ) P
€r2€20—€xc€aT (ezyfzz— ezzfzy) P

77

The ratio p is a complex number which determines the polarization of the wave. Equation
(77) 1s a quadratic equation for p and shows that the wave must have one of two possible
polarizations. If the elements of e from (72) are inserted into (77), then after rearrangement:

Sin2 0{ 26162_63(61+€2) }
cos Oez(e,—€2)

p*+ip +1=0, (78)
This equation must hold both for standard magneto-ionic theory which uses (69), and for a
velocity dependent collision frequency when (68) is used. If (69) is used, (78) may be simplified
and leads to the well-known polarization equation of magneto-ionic theory. In both cases
the product of the two roots is unity so that

PoPzr=— 1 (79)

where the subscripts o, z, denote “ordinary’ and “extraordinary’”. This well-known result

of magneto-ionic theory is therefore unaffected by a velocity dependent collision frequency.
Next 71, from the second equation (74) is substituted in the first (‘qlmli()n (75), and [L'z is

eliminated by using the third equation (75). 1If the resulting equation is divided by £, we

obtain

2 (Ezzen' ez’ezr)_l' p(fzzerl/ frzezu)

nw - (80)
and on using the elements of € from (72), this gives
i es(e1+e2) +1ip cos 963(61—62)_ (81)
(€1 ¢€2) sin? 0-2¢; cos? 0 :

Thus the refractive indices n are found by substituting the solutions of (78) for p into (81),
and this leads to the formula used by Sen and Wyller, namely

o €16:510% 0+ Les(€-F€) (14cos? 0) 4 [sin® 0{ e;eo—2es(e;+€) }2+('(')8206§(61—‘fl_{ji‘f
e (e1+€) sin? +2e; cos? 6

(82)

This gives the Appleton-Hartree formula if (69) is now used, but it gives the more accurate
results of Sen and Wyller if (68) is used. Further, n? satisfies

n*{ 3(e;+€2) sin? 0+4-€; cos? 0} —n?{ ejco SIN? 0+ Fe3(e;+€2) (1-+c0s? 0) } +€1e065=0 (83)
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which shows that n is zero when any one of €, e, or € is zero. Thus in both the Appleton-
Hartree and the Sen and Wyller case the zeros of n are independent of the direction 8 of the
wave normal. If v, is not zero, it is not possible for ¢, e, or e to be zero for any real value of
X, but the zeros occur for complex values of X and are important when studying the contour
integrals in the complex X-plane, as used in the phase integral method [Budden, 1961, ch. 20;
1964a, ch. 5].

9. Results

Many curves were given by Sen and Wyller showing how the real and imaginary parts
of the refractive indices n depend upon X, which is proportional to the electron concentration N.
They applied only to the cases 6=0 and 6= %, that is to purely longitudinal and purely trans-
verse propagation, respectively, and to the single value Y=2.28. For the ionosphere, in
which the electron gyrofrequency is about 1.0 to 1.2 Me/s, this means that their results applied
only to a frequency of about 500 ke/s. In two of their curves they compared the results of
their accurate formula using Z,=0.1, with those of the Appleton-Hartree formula with Z.,=
27m=0.25, as suggested by (60). This would correspond to a value »,,~3>10° sec™! which is
about right for a height of 90 km in the ionosphere. In this case the differences between the
two formulas were significant but small. In other curves they used larger values of Z,, namely
0.5 and 2, and here the differences between the formulas were more marked, although in these
cases they used Z.;—7,, or 2Z. but not 22,

The curves shown here were computed on E.D.S.A.C.2, the digital computer in the
University Mathematical Laboratory, Cambridge. The two complex values of n and p were
found for each set of values of X, V| Z,, and 6 according to the Sen and Wyller formulas, and
according to the formulas of standard magneto-ionic theory using Z.;=57%,/2. The C integrals
in (68) were computed from approximate formulas, given by Hara [1963], which express the
integrals as rational functions with an error less than 0.7 percent.

The program was first checked by recomputing the results given by Sen and Wyller
[1960]. For longitudinal propagation, §=0, the agreement was found to be as good as could
be judged from the printed curves in their paper. For transverse propagation, 6==/2, the
agreement was good for the extraordinary wave, but for the ordinary wave there was serious
disagreement. For this case the refractive index should be the same as for an isotropic
medium as given in section 7. The E.D.S.A.C. program was checked by hand computing a
few values, and was found to be correct.

A series of calculations was then made using §=30°, so that the results would apply for
adio waves traveling vertically upwards or downwards in the ionosphere in temperate
latitudes. The first set of values used was Y=1/2, Z,=0.02, Z.;;=2.5 Z,,—0.05. They thus
apply to a frequency of about 2.5 Mc/s and a value ve;=7.5X10% sec™!, that is to a height of
about 90 km. The results showed that the differences between the two formulas were too
small to show clearly on curves of the kind used by Sen and Wyller. A few typical values
are given in table 1. These suggest that for waves of frequency greater than about 2 Mec/s
and for heights greater than 90 km in the ionosphere, the standard Appleton-Hartree formula
may safely be used with ve,=5v,/2.

TaBLE 1.  Values of polarization p and refractive index n as calculated by the Sen and Wyller formula (SW) and
by the Appleton-Hartree formula (AH), for Y =1/2, 0=230°, Zin=0.02, Ziesx=0.05

p (SW) i p (AH) n (SW) n (AH)
- ] \ [ \
X Wave R ! I ‘ R | 1 R ‘ I R } I
S | |
| |
0.3 ord —0.0065 | —0.9030 ‘ —0.0066 | —0.9027 0.8859 | —0.0046 0. 8858 }
Ext —. 0080 1.1074 —. 0081 1.1078 6582 | —.0439 L6568
0.5 Oord —. 0121 —0.8676 —.0123 | —0.8672 7983 | —.0091 . 7982 !
Ext —.0161 1. 1524 —. 0163 1.1530 .2548 | —.2170 L2525 |
0.95 Ord —. 2479 —0.3873 |  —.2505 —0. 3838 . 4634 —. 1160 L4625 |
Ext —1.1723 1.8316 \ —1.1928 1.8271 . 9995 —. 7499 1. 0002 ‘
| |




Next the values Y'=1/2, Z,,=0.12 were used. These give ve;=4.5%10° sec™! which would
apply at a height of about 70 km. The results are plotted in figure 4, and there is now a small
but significant difference between the two formulas, which is greater for the extraordinary
wave. This confirms Belrose and Burke’s [1964] conclusion that for some purposes, at these
low heights, the Appleton-Hartree formula may not be aceurate enough.

In figures 5 and 6 the values used are Y'=6, Z,,=1. Thus the curves refer to a frequency
of about 200 ke/s and a height of about 70 km. In figures 7 and 8 the values are Y=80, Z,,—12
so that they refer to a frequency of about 16 ke/s and again to a height of about 70 km. Fig-
ures 5 and 7 give the refractive indices and show that in both cases the differences between
the two formulas are significant though small. Figures 6 and S give the polarization p for the
ordinary wave (sometimes called the “whistler mode”). The polarization for the other wave,
according to (79), is simply the reciprocal of this. It is clear that the two formulas now show
differences which are greater at the smaller values of .X| that is below the level where these
waves are reflected.

Fraure 4. A comparison of the values of the real parts
w and imaginary parts —x of the refractive indices
n according to the formula of Sen and Wyller (solid
curves) and the Appleton-Hartree formula (broken
curves).

X OR p

In this example Y=14, 6=30°. For the solid curves Z,=0.12 and
for the broken curves Zet=0.3=2.5 Z,,. These values would apply
for a frequency of about 2.5 Me/s and a height of about 70 km.
The difference between the x values for the ordinary wave is too
small to show clearly on the scale of this diagram.

-R(p) OR (p)

00 2 3 4 5 6 1 8 9
X—
Ficure 6. A comparison of the values of the real parts
and imaginary parts of the polarization p for the
Frcure b. Similar curves to figure 4 but for the values ordinary wave according lo the formula of Sen and
Ve (3, @G T il Whgr=i005 Wyller (solid curves) and the formula of standard
A SO =1 % —2"5

) magneto-ionic theory (broken curves).
These would apply for a frequency of about 200 ke/s and a height of .
about 70 km. The values used are as in figure 5.
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~

-R(p) OR 4(p)

X OR [

Ficure 7. Similar curves to figures 4 and 5 but for
the values Y =280, 0=30°, Zim=12, Z.;¢= 30, which
would apply for a frequency of about 16 kc/s and a Ficure 8. Svmilar curves to figure 6 but with the values
height of about 70 km. used in figure 7.

For these very low frequencies we have Y >">1. Inspection of (68) shows that the argu-
ments of the C functions in ¢ and e, are then approximately +wY = +2xfy/v,. This is inde-
pendent of frequency and even in the lowest part of the ionosphere (70 km) it is not less than
3 or 4. If we therefore assume that ‘(1i Y)w| >>1, the integrand in (67) may be expanded
by the binomial theorem, and integrated term by term (compare (54) and (58)). If terms of
the series beyond the second are neglected, the result leads to the values of standard magneto-
ionic theory for ¢ and e, given by (69). Thus only in ¢ should we expect a significant difference
between the standard and modified theories. Figures 6 and 8 show that this affects the wave
polarizations at low levels.

At these low frequencies a change of polarization with height gives coupling between the
two characteristic waves [Budden, 1961, ch. 19], and since the wavelength is large there can be
a significant change of p within one wavelength. The reflecting properties of the ionosphere
must usually be computed by a “full wave” solution of the differential equations, so that it is
difficult to assess immediately the effect of a change of p on the reflection coefficient, but figures
6 and 8 suggest that there might be a difference in the magnitude of the coupling process, ac-
cording to the two formulas. The work of Deeks (private communication) has shown, how-
ever, that the resulting effect on the ionospheric reflection coefficients is negligible for steeply
incident waves in temperate latitudes.

For waves whose wave normal is perpendicular to the earth’s magnetic field, the refractive
index for the ordinary wave is &/* and is independent of ¢ and . In this case the curves of
figure 3 could be used to find n, and the difference between the standard and modified formulas
is more serious. This suggests that significant differences between reflection coefficients calcu-
lated by the two methods might possibly be found for east-west propagation of VLEF waves at
grazing incidence, or at all angles of incidence near the magnetic equator.

10. Effect of Stronger Wave Fields

The foregoing results were derived with the assumption that the wave field £ and the
perturbation f, of the Boltzmann function f were so small that squares and products could be
neglected. This may be called the first order approximation and an important consequence
of it was that the isotropic part of f, that is f;, the spherical harmonic component of zero order
in velocity space, was unaltered when the field was switched on, and was given by the Max-
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wellian distribution (3). The average electron energy associated with the perturbation f; is
zero because f, varies harmonically in time. Thus to the first order, the total energy of the
electrons is unaltered. Between encounters the electrons are accelerated by the field E and
acquire energy from it, but the generation of this energy is governed by a nonlinear term which
was neglected when deriving (5). The energy acquired by the electrons in a very weak field E
1s too small to affect the current density J in (45), so that it can be ignored when calculating
refractive indices, but it does cause a change of the second order in the isotropic part fy, of the
distribution function.

To get the second order approximation to the Boltzmann function f, we must include
squares and products of the small quantities f; and E, but we may continue to neglect higher
powers. Since'the extra terms are small, it is accurate enough to use the first order approxima-
tion in them. The results of doing this will be indicated here only in brief outline.

Equations (4) and (17) are combined to give

T, )= foo(, )+ f1.(¥, )+ fiz(v, t)+ (84)
where the terms on the right are spherical harmonics of order 0, 1, 2 . . . in velocity space.

This is substituted in the Boltzmann equation (1). For the reasons given in section 3, we
may neglect the grad, term which would allow for spatial dispersion and for inhomogeneities
in the medium. Then
of
ot

—I—% E gl‘a(lvf11+% (VAB) gradvj:aa“—g (85)
where the first order approximation f;; is used in the small second term. From this equation
we now select the terms which are isotropic in velocity space (spherical harmonics of order
zero), and equate them to zero. The third term makes no contribution, as was shown in
section 5, so that

a_f(iﬂ
ot

e,

e
+}E E . grady f;,= Y, (86)

This equation is not linear, so that the complex number convention for harmonically varying
quantities cannot immediately be used, although it can be reintroduced as follows.
When using the first order approximation f;;, (20) must be replaced by

grad, ;=R |:{V+<v : %) v/v} exp (iwt):l (87)

and E must be replaced by
R{E exp (iwt)}. (88)

The second term of (86) is the product of the two harmonically varying quantities (87) and
(88) both with angular frequency w, so that it contains a part with angular frequency 2w, and
a part which is independent of time and given by:

%Q(E*W)-l-%m{(E*-V) (v-%:)/v}- (9)

Thus fy, must contain a part with angular frequency 20 and a more slowly varying part.
When the radio wave is first switched on, the function fy, changes as energy is imparted
to the electrons. But these in turn begin to impart energy to the gas molecules, and eventually
a new state of equilibrium is reached. The time constant for this process is of the order of
1 msec [Huxley and Rateliffe, 1949] and is important in the study of wave interaction. We
now assume that the radio wave has been present for a long time, so that the slow variation
of foo has ceased, and only the variation of frequency 2w remains. Now let the time average
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value of fy be Fpo. Then %[2—020, and the terms in (86) which are independent of time give

Oufu_L R (. V)41 R { @& (v ) /} (90)

Here V is given by the first order solution (40) or (42), and (90) is to be solved for the new
distribution function fy. It should be particularly noted that E is a complex vector, and in
general represents an elliptically polarized wave [Budden, 1964b]. A similar equation to (90)
has been studied by Sen and Wyller [1960, appendix] but they have taken (S8) above to be
E cos wt where E is a real vector, so that their results apply only to linearly polarized waves.

Next the left-hand side of (90) must be expressed in terms of fy, and its derivatives with
respect to ». To do this it is necessary to make a detailed study of electron-molecule en-
counters, and it is not now permissible to assume that the molecules are infinitely massive.
This is because the electrons are imparting to the molecules some of the energy which they

aefOO

ot
man and Cowling [1958, sec. 18.71] for electrons in a constant electric field, and this really needs
modifying to allow for the harmonic variation of the field with time. Moreover this treatment
took no account of molecular rotation caused by the electrons’ impact. As far as the author
knows, no proper treatment of this phenomenon has yet been given.

The assumption in section 4 that the molecules are infinitely massive would mean that
the energy of an electron is unaltered by an encounter. It would then be impossible for the

have gained from the radio wave. For Sen and Wyller used a formula derived by Chap-

electrons to impart any energy to the gas molecules, so that 3‘00 could never reach a constant
value. But the more exact treatment indicated here shows that there is, on the average, a
small amount of energy imparted to a molecule at each encounter. There is then a continuous
flow of energy from the wave to the electrons and thence to the gas molecules.

11. Conclusions

This tutorial paper presents a derivation of the modified formulas of magneto-ionic theory,
allowing for the dependence of the electron collision frequency on the velocity. No attempt
has been made to set out the historical development of the subject nor to give references to
all previously published work, and for further information the original paper of Sen and Wyller
[1960] should be consulted.

It is concluded that the standard Appleton-Hartree formula can be used without modifi-
cation for nearly all radio propagation problems in the ionosphere provided that the value
used for the collision frequency is the effective value vey given by (60). This is 3v,, and is § of
the average collision frequency. Tt is this ve, which is measured in those experiments which
study the absorption of radio waves. For those measurements which use wave interaction
[for example Fejer, 1955; Barrington and Thrane 1962] a more detailed theory will be needed
on the lines indicated near the end of section 10, before any precise interpretation is possible.
The effect of the modified formulas on the theory of the reflection of very low-frequency radio
waves (10 ke/s to 100 ke/s) from the lowest ionosphere also needs to be studied for those cases
where the wave normal is approximately perpendicular to the earth’s magnetic field.

The author is indebted to J. S. Belrose and B. H. Briggs for discussions which led to the
writing of this paper, and to D. G. Deeks of the Radio Research Station, Slough, England for
details of his VLF calculations.
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