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The self and mutual admittance of waveguide backed slots radiating into a plasma (or

dielectrie) layer has been formulated in a laterally unbounded geometry.

The admittance

expression involves integrals that may be approximated by summations for numerical calcu-

lations.

For a constant mesh size approximation to the integrals the summations are the

same as obtained in earlier work, where the plasma layers are considered to be within a wide

waveguide.

The accuracy of the solution is improved by deereasing the mesh size used for

the numerical integration, which is equivalent to increasing the size of the large guide in the

waveguide model.

Mutual admittance calculations between two-parallel slots show that the presence of
a plasma layer deereases the mutual admittance relative to its free space value.

1. Introduction

The problem of a plasma covered antenna has been
treated in numerous papers. Line-source excited
plasma layers have been considered by Newstein and
Lurye [1956]; Yee [1961]; Tamir and Oliner [1962];
Shore and Meltz [1962]; and Hodara and Cohn [1962].
Three-dimensional treatments of plasma (or dielec-
tric) covered antennas have been carried out by
Katzin [1957]; Marini et al. [1958]; Marini [1960];
Wait [1959]; [1961]; Knop [1961]; Hodara [1963],
and by Knop and Cohn [1964]. However, this work
does not consider the effects of the plasma layer on
the field distribution along the antenna. An iter-
ation technique is used by Raemer [1962] in consider-
ing the effects of a plasma shell on the current
distribution along the antenna, but there are no
satisfactory results for the antenna impedance. A
rariational formulation of a slot impedance has been
worked out by Cutler [1959]. The fields in the
plasma layer and in the outside space are considered
as a superposition of waveguide modes. There
appear to be computational difficulties and this for-
mulation has not yielded workable equations or any
numerical results.

Another variational formulation for the slot
impedance has been given by Galejs [1964b]. The

dyadie Green’s function for a plasma layer of finite
thickness is obtained from the free space Green’s
function by the method of images. The fields out-
side the slot depend on a surface integral of the fields
over the slot plane and over the surface of the plasma

layer. For plasma layers of a thickness greater than
a wavelength the surface fields are related tojthe
fields in the slot plane with the aid of plane wave
reflection coefficierts, which leads to an integral
equation for the fields in the slot plane. This
formulation [Galejs, 1964b] is rather involved and it
does not apply to thin or stratified plasma layers.

Cohn and Flesher [1958] have discussed radiation
from a coaxial line into a waveguide the walls of
which are removed to infinity, and their results are
in agreement with free space analyses [Levine, and
Papas, 1951]. The waveguide boundary greatly
simplifies the admittance calculations for a plasma
or dielectric covered slot, if it is permissible to use a
waveguide of finite diameter. Such calculations
have been carried out for an annular slot within a
large circular waveguide by Galejs [1964a]. The
dimensions of the large guide are selected in such a
way that none of the waveguide modes of the free
space portion of this guide are near their respective
cutoffs. The admittance of the slot which radiates
into the larger waveguide now approximates the slot
admittance for a laterally unbounded plasma layer.

A similar formulation has been used for rectangular
slots which are assumed to radiate into a wide
rectangular waveguide [Galejs, 1965]. Calculations
have been made for a superposition of sine and
cosine functions or for the principal mode electric
or magnetic field as trial functions for aperture
fields.

The slot admittance of an open waveguide
adiating into a laterally unbounded plasma has
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been recently calculated by Villeneuve [1965]. He
assumes the principal waveguide mode for the aper-
ture field, and the slot admittance which is obtained
after numerically evaluating a two-fold infinite inte-
gral corresponds closely to the admittance computed
in the waveguide formulation by Galejs [1965].

Although the numerical results obtained from the
waveguide geometry are reasonably close to results
available for a laterally unbounded geometry [Galejs,
1964b; Villeneuve, 1965], there have been no strict
justifications for the use of the waveguide model
[Galejs, 1964a, 1965]. However, such a justification
can be provided by deriving the slot admittance
first for a laterally unbounded geometry, and by
examining the conditions under which this is approxi-
mated by the admittance of the waveguide model.
It will be shown that the admittance of the wave-
guide model may be obtained after approximating
the infinite integrals of the rigorous admittance
expression by discrete summations. Thus, the wave-
guide model is equivalent to a particular constant
mesh approximation of the integrals in a rigorous
admittance expression, but a constant mesh approxi-
mation is not necessarily the best for accurate
numerical results, as will be shown in section 2.

In past work [Yee, 1961] the mutual admittance
has been computed only for parallel line sources and
thick plasma layers. The present formulations can

be adapted for mutual impedance calculations be-
tween waveguide backed slots for isotropic plasma
This

(or dielectric) layers of arbitrary parameters.
work is discussed in section 3.
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In this paper the plasma is represented as an
isotropic lossy dielectric having a relative dielectric
constant less than unity. Also, the perturbations of
the plasma properties by the antenna fields are
ignored. The above representation is valid only in
low power applications.

2. Self Admittance

2.1. Rectangular Waveguide

The waveguide geometry under consideration is
depicted in figure 1. A rectangular waveguide of
cross-sectional area z,y; is joined by a symmetrical
aperture of width 2¢ and length 2/ to an infinite
flange. Layered isotropic plasma (or dielectric)
fills the space 0<z<z, and there is free space for
z>z. The waveguide is excited in the principal
(TE,;) mode, but the change of the waveguide cross
section and the dielectric discontinuities generate a
large number of TE and TM modes which must be
considered in the formulation of the slot admittance.
Such calculations have been carried out in the
appendix and the following stationary expression
for the normalized slot admittance y; 1s derived:
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Figure 1. Geometry for admittance calculation.
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where
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ffE,i:f E, cos By’ sin B,y dx’ dy’ (6)
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E, and I, refer to the aperture fields at z=0 and
j=a ory. The other symbols are defined as
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The prime on the double summation (1) designates
the omission of its n=1, m=0 term. The reflection
coefficients of the TE modes R, and of the TM
modes 72, depend on the dielectric structure for
z>0. For stratified dielectric layers shown in
figure 1 the reflection coefficient R, (d=a or b) in
the region of z,,<z<z; is related to the reflection
coefficient 2, 1y of the region z;<z<z, ; by the
expressions
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Ry is derived by considering the scalar functions

(28) and (29) in two adjacent layers and by requiring
the tangential field components (30), (31), (33),
and (34) to be continuous across the interface.

The computations should start with j=1 where
Ryjy=R4p=0 1in (9) and (10). A series of
computations gn es then R;, R, Ry, and finally
R4y as R, or R, in (3) and (4).

After denoting the function within the square
bracket of (2) by H(u, v) I is rewritten as

=g, f - | f B, v)dud.

If F, is assumed to be an even function with respect
to the a and y axis, it follows from (26), (27), (30),
and (31) that £, is an odd function. The integral
(8) is then changed to

f f 1By= —ff 7, sin wx sin vy dady
J f B = ff]‘]_,, cos ux cos vy drdy.

Theintegrals /" S k., and S S E,,are odd and even
with respect to u or v, but their squares are both even
functions, F(R) and G(la) are even functions and so
s H(u, L‘) with respect to w and ». After changing
the variable of integration in (11) to n and m, where
wu=mnm/z, and v=mmw/y,, it follows that

1 © Mo
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(11)

(12)

(13)

H(u, v)dude

OJ«()’,/U £ f H(n, m)dndm. (14)

For z, and y, sufficiently large H(n, m) will change
only slightly even for integral changes in n or m,
and the integral may be broken down in a summation
of terms

no+1 *mo+1
f J H(n, m)dndm ~4H (ny, m,) (15)

Jno—1 Jmoe—1
for nonnegative lower limits of the integrals. The
factor 4 is replaced by 2 for ng or my=0. Restricting

n to odd integers and m to even integers, / is approxi-
mated by the summation

>0 >0 enH (n,m).

(16)
I/oyo n m

Using this restriction of permissible n and m values,
(1) and (16) can be seen to agree with (ouespondlno
expressions of Galejs [1965] if the differences in the
definition of the # and 5 coordinates of the two papers
are considered. Hence the slot admittance, com-
puted from (1) and (16) is the same as for the wave-
guide model of Galejs [1965]. The parameters 2, and
1o are now identified as the dimensions of a large
waveguide, which encloses the plasma layer laterally.

In the special case of wide open waveguide (x,=2[,
17:=2¢) and for the principal waveguide mode as the
aperture field £, with /£,=0, the primed double
summation of (1) is equal to zero. Also S S E,,=0
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and S SE,, of (13) is given by
48,41,(0,7) cos ul sin Ve

E,—— ¢
f[ v (w*—B2u)v

After changing to the variables n and m, (17) is seen
to give the same slot admittance (1) as (26) and (27)
of Galejs [1965].

The ability of the waveguide model to approximate
a laterally unbounded geometry is dependent on the
accuracy of (15). For large values of 2, and g, the
increments of H(n, m) between successive values of
n and m are decreased and the approximation (15) is
more accurate. However, the accuracy is not im-
proved monotonically by increasing z, and y. There
is a possibility that H(n,, me) approaches infinity
while the integral in the left-hand side of (15)
remains finite. This may occur near the cutoff
points of waveguide modes as was pointed out by
Galejs [1965]. Such values of z;, and 7, should be
avolded, or the accuracy of the approximation (15)
should be improved by numerical integration tech-
niques in the vicinity of such points. However, a
smaller accuracy can be tolerated for large arguments
of the integrals, that represent attenuated waves.

Equation (15) represents only a particular approxi-
mation and different summations may be obtained
for a waveguide with magnetically conducting walls
or by using a variable mesh size in the process of
approximating the double integral (14). Using the
waveguide analogy this corresponds to values of
and 7, which depend on mode numbers n and m.
The dimensions of an equivalent waveguide are
therefore changed for different waveguide modes.

(17)

2.2. Circular Waveguide

A similar interpretation applies also to plasma
layers in a cylindrical waveguide model. For a
laterally unbounded plasma layer, the admittance
of an annular slot is given asin (17) of Galejs [1964a],
but the n-summation is changed to an integral

,:lf” gyt jwes 14+ By I:J()O‘Pl)_JO()‘PZ):IZ)\d)\
2 ) Y2 A

1—B,

.
-1 fo TN (18)

where v, and B, are functions of a continuous
variable N as shown for discrete values of X\, in (8)
and (19) of Galejs [1964a]. The integral may be
approximated by a summation of terms

1=4 [ HONN=] HODN@ 49 (19)
where A1+A2:%(>\n+1—)\nul). The zeros of the
Bessel function

Jo(\e)=0 (20)

may be chosen for the sequence of \,’s.
first approximation (\,¢)=~(n—21)r and

L~ 3H\)7*(n—1) /= H(N,) [e /(M)

with an error of less than 2 percent for n>1. The
I, of (21) corresponds to the individual terms of
the n-summation in (17) of Galejs [1964a].

The admittance, which is computed for laterally
unbounded plasma layers with the aid of (18), can
be approximated by a sum of waveguide modes for
a waveguide of radius ¢ as shown in (17) of Galejs

In the

(21)

[1964&], provided that the approximation (19) 1s
valid. Selection of small values of A, and A, or of

large values of ¢ will improve its accuracy, if singular
values of H()\,) are avoided in the right-hand side
of (19).

3. Mutual Admittance

The mutual admittance between two rectangular
waveguides radiating into a plasma layer is com-
puted in the geometry of figure 2. The plasma
layers which are above the z=0 plane are not
shown explicitly. The mutual admittance can be
determined from the reaction theorem, which has
been generalized by Richmond [1961] to apply to
two different antenna environments, such as in-
dicated in figure 3. First, antenna No. 1 is excited
with the waveguide opening No. 2 short circuited.
Second, antenna No. 2 is excited and the waveguide
opening No. 1 is short circuited. The electric
field excited by antenna 1 is normal to the ground
plane over the aperture of antenna 2 and (7) of
Richmond [1961] 1s simplified to

Z ]zmvz;zn:fs E.zH, - ds (22)
n 2

where 7,,, is the current amplitude of waveguide
mode 7 at 2 due to the excitation at 1, Vi,, is the
voltage of mode 7 at 2 due to excitation at 2, E; and H,
are the transverse electric and magnetic field com-
ponents at 2 due to excitation of aperture 2 and 1
Iespecti\'eh The [1.,, and V3, are computed
following standard definitions of waveguides [Marcu-
vitz, 1931] S, corresponds to the cross-sectional
area of the waveguide, that may be larger than the
waveguide aperture, and s is normal to the aperture
plane. The mutual admittance in the fundamental
waveguide modes is computed from (22) as

vam [ f B H, - ds— 2121,, ]
(23)

where n=0 denotes the fundamental TE;, waveguide
mode and 770 denotes the higher TE or TM modes.
After relating H; and I,;, to the tangential electric
field E, at the aperture 1, the mutual admittance is
specified in terms of the tangential aperture fields
E, and E;. Because of the stationary character of
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x'=x"+xc )"=)’

Ficure 2.

the reactions [Harrington, 1961, p. 341], (23)
stationary for small variations of trial fields E, and
E. about their correct values, and it is formally
possible to determine approximations to the aperture
fields E, and E} similarly as has been done in self-
impedance calculations [Galejs, 1965]. However, the
computations are considerably simplified by assum-
ing that the electric aperture fields may be represented
in the first approximation by fields of the principal
mode. In this case E; and E; have only a y-
component, further all the terms of the summation
are equal to zero for wide open waveguides (y;,=—2¢;,
x;=2l;) and

o1 /
Y 21— _VUQVLI;ZO J‘S._,_ Eyglixldl'dy (24)

After computing H,, from (28), (29) and (33) it

follows that
[f I‘w’l

)r ) 1 fno fm
2 =
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Waveguide geometry for calculating mutual admittance.

where S S E,,;(j=1 or 2) l()ll()\\s from (17) by using
the appropriate values of B, { and e for the two
waveguides. The admittance 15 can be normalized
by dividing it by the characteristic admittance of
one of the waveguides, which is Y,=~;/(iwp,). For
z, and y,—0 and 2=z, and y,=y, the two slots of
figure 2 degenerate into a single slot and the expres-
sion for the mutual admittance (25) gives the same
self admittance of a slot as the earlier calculation in
(1) and (17) for the same antenna parameters.

ENVIRONMENT 1 1
3 k / 4 E
1 2
ENVIRONMENT 2
% l g a

Antenna environments for defining the mutual
admaittance by (22).

o
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Ficure 3.
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Ficure 4. Free space mutual admittance between two waveguide apertures.

The double integral (25) can be approximated by
a double summation as shown in (11) to (16). When
changing to the discrete variables n and m where
u=mnmw/x, and v=mm/y,, x, and y, can be interpreted
as the dimensions of a large waveguide, which
encloses the plasma layer laterally.

Numerical calculations are made for two parallel
slots (2,=0) of equal size (v;=wzs, y,=%.) that
radiate into free space or in a single plasma layer of
thickness z,. The integrals (25) are approximated
by summations with x,=7,=10.5z,, and the
accuracy of the procedure is tested by increasing
To=17o to 19.5x;. This gives negligible changes in
the admittance figures and the mesh size in the
integrals which corresponds to z,=y,=10.52; was
considered adequately small.

In free space with no plasma layers in front of the
two waveguides the mutual admittance curves of
figure 4 show about the same relative variations as
mutual impedance curves of two parallel thin half-
wavelength-long dipoles in free space. This applies
in particular to those values of the slot separation
/N where either the mutual conductance or
susceptance goes through a zero.

The effects of a single lossless plasma layer of
thickness z,=0.1\ and X\ are shown in figures 5 to 7
for relative dielectric constants e,/e;=0.9, 0.5, and
0.1. The mutual admittance variations of the thin
plasma layer of €,/e,=0.9 are nearly the same as for
the slots in free space. The magnitude of the

mutual admittance is decreased by decreasing e,
and by increasing the layer thickness. The plasma
layer tends to decouple two adjacent slots and there
is little resemblance between the mutual admittance
curves for free space in figure 4 and for €,/e;=0.1 in
figure 7.

The mutual admittance with a lossy plasma layer
is illustrated in figure 8 for ¢,/ee=0.5 and tané,=1.
A comparison with figure 5 shows an increased self
admittance, but a decreased mutual admittance
for slot separations y, exceeding 0.4X\. There is a
further decoupling of the slots by a lossy plasma
layer.

The free space mutual admittance between two
thin infinitely long slots [Yee, 1961] is shown in
figure 9 for a comparison with calculations using
a three dimensional model shown in figure 4. The
mutual admittance curves of the infinitely long slots
of figure 9 decay more gradually than in figure 4.
Two dimensional models will therefore indicate too
high a mutual admittance figure when applied to
finite length slots.

4. Conclusions

Tt has been shown that slot admittance for plasma
layers formulated in a waveguide model [Galejs,
1964a, 1965] are equivalent to the computations for
a laterally unbounded plasma geometry, provided
the infinite integrals of the latter formulation are
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Ficure 5. Mutual admittonce for a lossless plasma layer of e,/eg=0.9.

approximated by summations. The accuracy of
the solution is improved by decreasing the mesh size
used in the numerical integrations, which is equiv-
alent to increasing the size of the guide in the wave-
cguide model. However, a constant mesh size approx-
1mation is not optimum, and more accurate numerical
integration techniques may be advisable near
singularities of the integrals. Also, a decreased
accuracy of the approximations may be tolerated
for large areuments of integrals that represent the
attenuated modes. Still the waveguide model
[Galejs, 1964a, 1965] represents a simple method
for obtaining an approximate answer, the accuracy
of which can be established from comparison with
other work [Galejs, 1964b; Villeneuve, 1965].

A similar method has been used for computing
the mutual admittance between two waveguide
backed slots in the presence of a plasma layer. The
mutual admittance between two slots is decreased
by the presence of thick plasma layers in particular
for high losses.

The formal solution presented in this paper applies
also to dielectric of relative dielectric constant
larger than unity, when the layer can support
surface waves. The multiple reflection of trapped
waves by a boundary may react back strongly on the
waveguide. The input admittance will depend

748-159—65 4

more critically on the parameters of the dielectric
layer or on frequency changes, but no numerical
:alculations have been made using the waveguide
model [Galejs, 1965] in such geometries.

Appreciation is expressed to N. Ciccia of Syl-
vania’s Applied Research Laboratory for computer
programming. This research was sponsored by the
Air Force Cambridge Research Laboratories Office
of Aerospace Research, under Contract No. AF19
(628)-2410.

5. Appendix. Slot Admittance

In the geometry of figure 1 the wave guide (z2<0)
is excited in its principal TE;, mode by waves which
propagate in the positive z-direction. There are
also reflected waves in this guide. Waves propa-
gating in the positive and negative z-directions are
excited in the outer space (2>0). The fields consist
of a superposition of TE and TM modes that can
be derived from scalar functions ¥, and &; respec-
tively. 'The subseripts =1 or p designate the guide
portion of the outside space. For an assumed
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exp (—iwt) time dependence of the field it follows - o* | 0? .
that E.j=— B_P—I_DT/’ (32)
¥y =a, cos B2’ (e""*+Re™"r%)
1 0’ o X
+>7 > @um cos By’ cos By’ e (26) 2 ome L0202 +l‘ du <1> :I (33)
n m
D, => > bun sin B2’ sin B,y e~ (27) 1 2 d
w — e (34)
Y e LOzoy T !
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— ) p—iuz,—iv 2 P ,—=Yp2 Ly \OX 67/
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where the symbols are defined following (1) to (8).
The field components are related to ¥; and ®; by

o) o’

E”:@ ‘I’H—m ®; (30)
o} o? .
By==3, ‘I’f+a?6_& o, (31)
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Substituting (26) and (27) in (30) and (31) the
resulting expression can be solved for a,, @,,, and
bnm, which gives

K)

T=g A+ R) f E, sin Bua’dx’ dy (36)
. 96,:1 ] I’L .;,..
Apm™= .I' i (B“_l_ﬁ [B:/tff Sri Brz[ 1/7] , 7
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Bt By = [ [ [ Bt [ [ Ba] 69)

where the integrals J° S E,; and J" S, are defined
by (6) and (7). Substituting (28) and (29) in (30)
and (31) and solving for A(wu, ») and B(u, ») gives

bnm"

Ey—iu | [ B, |
e _(27&,,@1 +:>'<[i£1.d> o
B(u,v)= Wff EII)TL“ff = (40)

27) %y, (W+2%) (1—Ry)

where S S E,;, is defined by (8). After substituting
Womy by A(u, v) and B(u, ») in (26) to (29), the
magnetic field components /., and H,; of (33) and
(34) are related to the integrals of the electric field

components (6) to (8). The tangential magnetic
field components, 7, and H, are continuous across
the aperture. The M, of (26), (27), and (33) is
equal to H, of (28), (29), and (33). Also I, of (26),
(27), and (34) is equal to H, of (28), (29), and (34).
The H, equations are multiplied with /£, and inte-
grated over the slot plane; the I, equations are
multiplied with £, and also integrated over the slot
plane. The resulting two equations contain terms
proportional to £, and £, integrals.

After assuming £, to be an even functional with
respect to « and y, it follows from (30) and (31) that
FE, is an odd function. Tt is also seen that £, (x, y)
=F,(—x, —y). Using these properties of £, and
I, the two earlier equations can be combined which
results in (1) to (5).

The stationarity of (1) can be demonstrated by
examining the first order change 6y, due to small
changes 6/, and 6/, about their correct values
I, and £, As a result of these calculations &y, is
shown to be zero.
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Mutual admittance for a lossless plasma layer of e,/eg=0.1.



0.8 .

T T
ZF/)\= 0.1 CONDUCTANCE
- —— _ SUSCEPTANCE -
= x. = x,=0.6

{N 1- %2 .
ST 0.4 AT -
| xo—y0= ]0.5x]
w
O
7z
< 0.2 _
=
s
(&)
< N
- e a— S——
< 0 —— ]
=)
)
=

-0.2 } —

-0.4 | | |

0 0.5 1.0 1.5 2.0

SLOT SEPARATION - yc/ A
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