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The usc of refra ctive in dex d iagra ms in t he st ud y of plane wave propaga t ion in Ull­

bounded a nd layered a lliso tropi c medi a is reviewed and then extended to acco un t for certa in 
asp ects of t he radi at ioll fro m co nfin ed so urce distributions . Such items as t he radiation 
condition, saddl e poill t locatioll , focus ing effects, la te ra l ray t ra jectories, Cerenkov radiation , 
a nd ot hers are interpreted via t he refractive index plo ts . Whi le so me of t his materi al is 
avai lable in vario us tec hnica l publications, the a im here is at a more unified presen tation. 

1. Introduction 

. Sin ce the problem of propagation of plan e waves 
In a wholly or piecewise homogeneous anisotropic 
~nediwn already in volves considerable compl exity, 
I t may be anticipated that the difficulties are com­
pounded further when spatially confined sources are 
present. The thorough understandin g of th e be­
h.avior of plane waves is a n essen tial prer equisite 
since the fields caused by localized distributions of 
sources may be syn thesized by plane wave super­
position . 'Vhile the entire wave spectrum is required 
for a detailed description a t any poin t in space, the 
field at observation points " far " from the so urce 
region , wher e a few propagating plane waves suffice 
to describe the essential features of the local field 
s tructure, may be char acterized in a much simpler 
form. In analytical terms, the distant field is found 
from ~n asymp totic evaluation of the exact plane 
wave lI1 tegral representation, the major con tribu tion 
~o which arises from t he stationary points in the 
Jl1 tegrand. E ach of the stationary poin ts selects a 
par ticular plane wave which then appears in the 
as:ymp totic approxima tion. It may b e surmised 
from these considerations that t he selection of tlw 
appropriate waves appearing in the far field is a 
matter of basic concern . 

W:hile these observations apply also to the iso­
tropIC case, their resolu tion is trivial in this instance. 
Since all propagating plane waves ..... exp (ik r) are 
characterized by the same wave number k = kon 
where ko is the wave number in vacuum and n is th ~ 
(constan t) refractive index in the medium t he field 
~1,t a distan t observation poin t P is fUl'l1ish~d by that 
wave whose wave vector k is parallel to the radius 
vector from the source region to P . This situation 
no longer ob tains in an anisotropic n1.edium where 
lc depends on the direction of propagation · it is also 
necessary to distinguish between t he dir~cti ons of 
p.hase propagation (given by k) and power fiow 
s1l1ce these do not in general coincide. There arise 
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then some basic problems even about the deter­
mination of the co ntribu ting plane WH,ves in the ff"Ll" 
field, apar t from the specification of their ampli tude 
a nd polariza tioJl. 

Owing t o the generally complicaLed flillctional de­
pendence of k or n on t he propagation angle [for the 
m agneto-ionic medium, see Budden, 196 1], it has 
b een found useful to constru ct plots of these q uan­
tit ies which are termed wave vector and refractive 
index plots, respectively. From t hese di agrams, 
which have the form of multibm nched surfaces, it 
is possibJe t o ascertain t he value of k and also t he 
corresponding direction of power fiow fo r any given 
spatial orientation . While refract1ive index surfaces 
h a \Te been employed for some t ime in connection 
with plane wave propagation, t heir use for radi ation 
problems is of r elatively recent ori gin. The latter 
aspect forms t he motivation for t his paper which 
begins wit h a review of some basic not ions concerll­
ing the wave vector, group velocity fmd P oynting 
vector, and t hen proceeds to th e study of radi atioll 
problems in an unbounded, homogeneous, lossless 
region. It is shown how the refractive index plot 
may be ut ilized for the imposit ion of t he radiation 
condit ion on the exact integral represent n,t ion; the 
determination of the stationary points in the inte­
grand, and therefore the selection of the plane w:we 
constituents in the far field as well as the delineation 
of their domains of existence (some waves may appear 
only in limit ed sections of space); and t he specifica­
t ion of those spatial regions wherein field enh ance­
ments (focusing) may take place (these effects are 
not obser ved in isot ropic configurations). The source 
configurations include point sources, line sources wi th 
and without progressive phase variation, highly di­
rective distributions, and charges in uniform motion 
(Cerenko \T effect). In all of these instances, t he re­
fractive index diagram fUl"lli sh es in a simple n;lld 
direct manner information about the frequently '~or­
t uous ray structure (trajectories of power flow) and 
grants an insigh t into the radiation mechfwism (bu t 
not directly into the polalhation or angular intensity 
variation of a given ray species) . These considera­
t ions are t hen extended to account for the presence 
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of a plane interface and for such phenomena as non­
specular reflections, focusing , and lateral waves. To 
avoid the use of usually complicated analytical for­
mulas in justification of results deduced for aniso­
tropic configurations, a reasonably detailed applica­
tion of pert inent concepts is given firs t for th e 
thoroughly familiar isot ropic case wherein the sur­
faces h ave an especially simple shape. The extra­
polation t o the anisotropic regime should then be 
fairly evident. It should be mentioned that many 
of the aspects entering int o the discussion have been 
noted variously in t he literature t o which referen~e 
is made ; the principal aim in th e present writing IS 

at a unified presentation. Finally, while specific 
mention is made only of the magneto-ionic problem 
(single-species, zero temperature plasma), the same 
considerations apply also more generally [Lighthill, 
1960]. 

2. Refractive Index Surface, Wave Vector, 
and Ray 

A space-time dependent electromagnetic field in 
an unbounded homogeneo us medium may be repre­
sented as a co ntinuous superposition of plane waves 
which ar e characterized by a frequency wand by a 
wave vector k = xokx + Yoky+ zokz' If the medium I 

may b e characterized at a given freq uency in terms 
of a tensor permittivity f and a scalar permeability 
/10 (this applies, for eXaJ~ple, to the magneto-ionic 
situation), each time-harmon ic plane wave constitu­
en t descriptive of the electric field , 

E (r) = Aei(k. r -wl) , (1) 

must satis fy the vector wave equation, 

In case (a), the frequency variable is regarded as a 
f unction of the wave vector k whereas in (b), one 
of the wave numbers, k" is a function of the remain­
ing wave numbers kx, k y, and of w. The representa-

A 

t ion of the space-time dependent field E (r, t) via case 
(a) involves a triple Fourier in tegral in k-space 
[Ginzburg, 1960 ; Stix, 1962] 

while th e one in case (b) leads to a represen ta tion in 
terms of "guid ed waves" along z [Budden, 1961], 

E(r , t) = f _oooo dw f -"'", dkx 

f -"'co dkyA(k t , w) ei [" , . p-",:H,(k" w)'], (5b) 

with k t = k - zok" p= r - zoz . These integrations must 
be carried out separately for all possible solu tions 
w(k ) or kz( k t, w). 

The representations (5a) fl, nd (5b) are useful for 
different purposes. Energy transport properties of 
a quasi-monochromatic signal, expressed in terms 
of th e group velocity vector vo, are readily deduced 
from (5a). In this instance, A(k) has a sharp peak 
at a wave number k' corresponding to wo=w(k ), and 

A 

the signal E (r , t ) is a maximum along tmjectories 
defined by th e stationary phase points of th e inte­
gra nd for which the individual plane waves in ter­
fere constructively : 

~(k)=k • r -w(k )t , (6) 

with V'k= xoCojokx)+ yo( ojoky)+ zo(o jokz) denoting the 
(2) gradient operator in k-spfl,ce. With vu= r/t alon g 

the trajectory, one finds from (6) that 

A is a constant vector, c th e propagation speed in 
vacuum, f' the normalized permittivity, and r = 
xox+ yoy +-zoz the position vector. The magnetic 
field may be derived in terms of E from the M axwell 
equations . The parameters k and w in (1 ) are not 
independent but ar e co nn ected by the dispersion 
l"e lation obtained upon substituting (1) in to (2) 
(note: V' --7i k): 

det g=O, (3) 

where the unit dyadic ~ is defined so that ~ . A= A . } = 
A. Since (3) makes possible the solution for one of 
th e parameters kx, k y , kz, w in terms of the other 
three, there exist two essentially different ways of 
representing this dependence : 

(4) 

1 To simplify th , discuSSion, the mediwn is assumed to be lossless. 

156 

(7) 

The direction of energy flow, parallel to vo, is called 
th e "ray direction" and differs in general in an 
anisotropic medium from that of the wave vector 
k which is perpendicular to the eq uiphase surface 
~= constant. It is in fact evident from (7) that 
v u is perpendicular to the surface w(k ) = constant, 
i.e. , to t he constant frequ ency surface descriptive 
of the solution of the dispersion equation (3). Via 
(4b), the equation kz= k,(kx, k if; w) describes for a 
fixed w a surface which contain s the endpoin ts of 
the wave vector k= Ik l, f1nd this plot in k-space is 
normalized con venien tly b~T in troduction of the 
refractive index n(kx, k y; w): 

k= '::!..n . 
c 

(8) 

Apart from the normalization factor ko = wjc, the 
wave vector and l'efractive index diagrams evidently 



conta in the sam e information at a specified frequency. 
in ce the group velocity vector V u (or th e ray vector) 

for an essentially monochromatic plane wave has 
been shown to be perpendicular to the refractive 
index surface, it follows that k and V g are parallel 
everywhere only when Ik l is indep endent of direc­
tion, i.e., when the surface is a sphere. This obtains 
in an isotropic, but not in an anisotropic, region. In 
what follows , we shall be concerned almost exclu­
sively with solutions of the disp ersion eq~ation 
which y ield real values of lex, ley, le z eon espondmg to 
propagating plane waves in (1); while 110m-eallez lllay 
arise in (5b) in view of the infinite range of lex, ley 
(see sec. 3.1), these evanescent fields do not carry 
energy away from the source r egion. It nl.ay b e 
noted that monochromatic processes ar e described 
conveniently in terms of (5b) since the w-in tegr a Lion 
is then absent (the w-dependence of A(k l , w) is in 
the form 8(w - wo), where Wo is the op eratin g fr e­
quency). E ven these simple consideration s illu s­
trate the utility of one or th e other formulations in 
(4) and (5). 

For a n explicit evaluation of th e group velocity 
in terms of th e refractive index n(le ; w), i t is cO l1venien t 
to proceed fronl. the implicit differen tia tion formula 

i= x, y , Z , (9) 

applied to f(k; w) = k - nw/c= O, whieh m ay then b e 
solved for the componen ts (ow/ole i ) of Vo' If the 
le-surface is rotationally sjrmmetrie about one of the 
axes, say lez (this corresponds in the m agneto-ionic 
case to an applied steady m agnetic ficld p arallel to 

z), it is convenient to defin e the polar angle e via 

sin 8= le p/le , cOs O= le zllc, and one m a:v verif~' wi tllou t 
difficult~T that [Ginzburg, ] 960 ; Budden , ] 961; Stix, 
1962) 

c _ . 
Vo a ' Vgk = l'g cos a, Vge='l:K SIn a, 

COS a Ow (nw) (911 ) 

where 

on 
tan a=--' 

nolJ 
(9b) 

In these expressions, n(lJ; w) is regarded as a function 
of (j and w, Vok and vuo ar e the components of V o along 
a nd perpendicular to the wave vector k, respectively, 
and a is the a ngle betwee n V o and k. One m ay show 
that la l< 7r/2- a n observa tion important for the 
imposition of a raditttion condition for problems 
involving confined source distribution s in a m agneto­
ionic medium. Equ a tion (9b) confu'ms that V o is 
perpendicular to the n((j) surface . 

It is a lso of interes t to state a simple relation 
between the group velocity v u and th e time-averaged 
Poynting vector S = R e (E X H *) for a monoeln'omatic 
plane wave propagating in a lossless, disp ersive, 

anisotropic medium: 

(10) 

where TV is the average stored energy dCll siLy, 

1 r a } W=2l E*· Ow [w~(w)). E + ,uoIH I2 . (lOa) 

While certain aspects of (10) for the mag neto-ionic 
medium m ay be verified by direct but tedious 
calculation [Hines, 1951 ; Abraham, 1953), its validity 
may b e confu'med from a more b asie and elegall t 
an alysis [Stix, 1962), the details of which are not 
presented here. The importance of (10) stems from 
the recognition that the ray direction in a lossless 
medium may be calculated either from S or vo, wiLh 
the form.er often the more convenient once the field 
evaluation h as b een completed. Evidently, Llle 

vector S is also perpendicular to th e n(O) surf,tce . 
It should be clear from th e precedin g discussion 

that the refractive index dictgntm contains perLin en t 
information required for the determination of the 
energy flow ch aracteris tics in a 1ll0nochroma Lic phtll e 
wave characterized by a given wave vector k. 'vVJlile 
t he considerations EO far 11a ve b een r estric ted to ,t n 
unbounded homogeneous m edium, the refrac tive 
index plots may also b e u tilized cfrective ly Lo 
ascer tain the directions of th e reflected and r efmcLed 
rays at a pla ne in terface b etween Lwo m edi,t witlt 
different properties [Budden , 1961 ; see also seC'. 5.:)). 
By partitionin g a s lowly v<trying medium into It 
sequen ce of homogeneous htyers, one may ill Lhis 
m a nner charL th e progress of a CO ll Lin llO ll sly refntcLecl 
ray- a procedure which has found application ill 
ionospheric propagation theory. IL is Lhe purpose 
in the r emainder of this presenta Lioll to show how Lite 
r ermctive index plots m ay b e used Lo adva ll tage in 
predicting salien t radiation characteristics of confined 
SOUTce distTib1dions in un bounded a nd boullded 
anisotropic r egions. As m en Lioned in the ill tro ­
duction , the perLin ell C'e of the preceding a nalysis 
stems from the fact tJutt Lhe fLelds due to spat ially 
confined excita tion , when observed at som e distance, 
b ehave locally like plane waves. It may b e noted 
that other plots (for example, of the ray velocity 
c(n cos a )- \ or the ray r efractive index (n cos a)) 
may b e employ ed to sch em a tize wave propaga Lion 
ch aracteristics in an anisotropic m edim11.. However , 
the refractive index plot is the most pertinent to th e 
analysis of integr als as in (5b ) sin ce it utilizes Lhe 
le-space directly. 

3. Spatially Localized Source Distributions 
in Unbounded Anisotropic Regions 

The relevance of the foregoin g rem arks to radi t, t io n 
problems may be explored by referring to the in Legral 
(5b) which, upon omission of th e w-inLegr a tion , 
r epresents in terms of a superposit ion of the previously 
described plane waves the r esponse E (r) due to non­
moving, arbitrarily preseribed time-harmo n ic som ces 
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(the time factor exp (-iwt) has been suppressed): 

E(r) = I _woo dkx I:w dkyA(kx, ky ) ei [kx x+kyY+kz ( k x , 'yP l , 

(11) 

I t is recalled tha t a separa te in tegra tion is ref! uired 
for each of the relevant possible solutions kz(kx k) 
of the dispersion equation , ' y 

\ 
\ 

AXIS OF --=J 
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\ 
\ 
\ 
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'I-- PLANE OF SYMMETRY 

FIG URE 1. Typical wave vector plot in k ,.,k,-plane 
1'1 . 2- points of inflection. 
Dark port ion - satisfies radi ation condition for z>O. 
Light portion- satisfies radiation con dition fo r z<O. 

3,1. Radiation Condition 

The function kz (and A which generally depends 
on kz) is mult ivalued in the kx, ky variables so that 
its definition is essential for the unique specification 
of the radiation integral (11), If the refractive 
index surface (or the wave vector surface k = kon) is 
of finite extent (closed surface), kz will be nOlll'eal 
for sufficiently large (kx, ky) . Let us suppose that 
the excitation is in the form of a point source lo­
cated at r = O, in terms of which any distributed 
driving function may be synthesized. Con vergence 
of the integral then requires that 1m k;?<.O for z?<.O. 
Physically, this radiation condit ion implies that the 
nonpropagating wave fields decay away from the 
source region . If the medium contains some losses 
so that k, has an imaginary part for all (kx,ky) , the 
above-stated ,condition suffices to define kz every­
where and assures the vanishing of the field at r ---7 OO. 

In analytical terms, the branch point singularities 
of kz are then displaced from the real kx,k y axes, 
thereby making the integrand unambiguous along 
the entire integration path. 

To effect a definition of kz when this function is 
real , one may approach the limit of vanishing dissi­
pation from the above-mentioned lossy case, and 
the required distortion of the integration path as 
the branch point singularities of kz approach the real 
axis is then made evident. This distortion of the 
path is equivalent to effecting the consistent defini­
tion of the multi valued function kz for complex and 
real values. Alternatively, and frequently more 
con veniently, the proper definition of k" when real, 

may be achie \red directly from the refractive index 
plot [Arbel and Felsen, 1963]. Since the radiation 
condition requires that each constituent propagating 
plane wave transport energy away from the source 
~'egion,z the permissible portion of the refractive 
mdex surface for z>O is that for which the sluface 
normals have a component in the +z-direction' it 
is important to recall in this connection that the 
sense of the normal is such as to make its ano'le with 
the .wave vector k less than 90 0 (see fig . 1, ~here a 
sectIOn through the k y,kz plane is shown). The 
converse argument applies when the observation 
point lies in z< O. Having thus identified the 
appropriate branches of the refractive index plot 
one. may determine by inspection the correct alge~ 
bralC SIgn of k,. As noted from figure 1, it may 
haPl?en that kz< O when z> O (rays S ' or S3) , thereby 
leadmg to a phase progression along (- z) while 
energy advances along (+ z). This corresponds to 
a "backward wave" with respect to the z-axis a . . . . ' common occurrence III amsotl'OplC medIa [see also 
Clemmow, 1963]. 

If the refractive index surface has an open branch 
so tha~ kz IS real for all values of kx and (or) ky, the 
precedIllg arg~ments may be applied as well. The 
Illtegral (11) IS then no longer exponentially con­
vergent, and the field may grow without limit in 
certain spatial directions. This aspect is explored 
further in section 3,3b. 

3.2. Saddle Point Condition 

To effect a reduction of the integral (11 ), it is 
noted that the far fiel~s are contributed essentially 
by those area elements III the kx, ley-plane sUlToundino­
the stationary points in the exponent. The station~ 
ary phase condition 

(12) 

selects those values of kx and ley for which the normal 
to the refractive index surface points in the direction 
from the origin in the source reo'ion to the distant 
observation point, r. Since the normal to the 
surface has been seen to specify the direction of 
po~er flow, one recognize~ that the major contri­
butIOn to the far field anses precisely from those 
plane waves (rays) ~hich ?alTY energy from the 
s01l!-'ce to the observatIOn pomt along a straight line 
trajectory . . 90nversely, th~ refractive index plot 
may be utI,hzed . to cletermll1e the real stationary 
(saddle) pomts. m the kx, k y wave number space: 
one finds all POll1ts on the surface havino' a normal 
parallel to the prescribed radius vectorb r (see for 
example, the four rays ~l ... 8 4 in fig. 1), and 
reads off the correspondll1g values of kx, kv which 

2 rrhe radi ~l.tion conditi~n , which requires the outward flow of total energy 
must be satis fi ed for arbitrary source configurations, i.e ., arbitrary A in (11 ): 
O,:e thenconcludes that each plane wave constituent must individually satisfy 
thiS conditIOn [see Arbel and Felsen, I963]. 
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locate the saddle points, remembering the previously 
mentioned radiation condit ion t hat the angle be­
tween k and the ray is less than 90° . These graphical 
co nsiderations therefore aid substantially in t he 
visualization of the saddle poin t configuration 
pertaining to t he integrnJ . (ll) [Lighthill, 1960; 
Arbel and Felsen , 1963; Mittra and Deschamps, 
1963; Kogelnik and Motz, 1963]. 

3.3. Ray Amplitudes 

a . Curvature of Refractive Index Surface 

The refractive index plots furnish information 
not only abo ut the multiplicity and propagation 
characteristics of the rays reaching a distant observa­
t ion point, but also about the ray amplit udes. 
The asymptotic evaluation of the double integral 
(ll ) may be carried out by adding the co ntributions 
from the vicinity of all appropriate stationary points 
satisfying condition (12). Since t he choice of 
coordinate axes ,vi th respect to the dispersion surface 
has been left arb itntry, we may select an orientation 
so that the z-axis is parallel to t he racliu s vector r ; 
i.e., x= y = O in (ll ), and the saddle points are 
defined by t hose points on the surface with normal 
parallel to z. In t he vicinity of a saddle point 
(lex], /c yj) == k ti> t he presumedly slowly varying iu nc­
Lion A may be approximfLted by A (lexil leyj) == Ai> and 
t he function le z in the expo nential may be repre­
sented by the fu'st few terms in its power series 
expansion about (leXi> leyJ . J n view of (12), wi th 
y =z=O, the linear terms in (lex - kxj) =~ and 
(lc y- le yj) = TJ are absent. By orienting t he (lex, le y) 
coordinates so that they coincide with the principal 
directions of curvature of the surfa.ce fLt the saddJe 
point, one eliminates the ~TJ-term fLnd may write 1,0 

terms of seco nd order, 

le z(lex, ky)= Ie Zj + tJ{Xje+ U{yj TJ 2+ . .. , (13) 

with J{Xj= o21ez/olc;] j fwd J{yj = o2kz!olc;,b representing 
the associated cUl'vatul'es, fLnd lezj == kz(lexil le yj) . Thus, 
the asymptotic approximatio n of E(r) for large 
yalues of z is gi \'en by [Lighthill, 1960]: 

E(r )"" L? AjeikzjzJ :", ei ZKxj~2 /2d~J_oo", eiZKyj~2 /2dTJ (14a) 

where J{j= J{xj[{y j is the Gaussian curvature at the 
jth co ntributing saddle point included in the sum. 
The detailed structUl'e of Aj depends both on the 
medium pan1meters (i.e. , the refractive index profile) 
llnd on t he nature of the source configuration. 
While the preceding considerations yield all the 
possible rays which may propagate from the so urce 
to t he observation point, it should be kept in mind 
that specific so urce configuration s may excite only 
some of these. 

Equation (14b) states that the cljstant field 
radiated by fL confined source distribution is com-
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prised of radial rays along which the field decays 
according to (1/7'). The angular pattern (i. e., the 
amplit ude) of the field along a given ray is governed 
by the coefficient Aj which is generally well beha ved, 
and by the factor }(j1/2. Disregarding Ai> the 
amplitude evidently increases when the ray originates 
from a "slowly curved" segment of the dispersion 
surface, and it, appears to grow without bound 
when one of the principal radii of curvature vanishes. 
A closer in vestigation of the refractive index plot 
l'e\Teals that J{f--70 implies the coalescence of two 
saddle points and t herefore the strong interaction 
of two almost identical ray species (see fig . 1, where 
kyl -7leY2 when the radius vector r from the so urce to 
the obsen Tation point becomes perpendicular to the 
curve at the inflection point T 1 ; similar considera­
t ions apply to T2)' This sit uation requires a modi­
fication of the asympto tic evaluation of (11) wherein 
it was assum ed that t he saddle points are simple 
([{xi> K 'lj ~ 0) and separated. The calculation when 
K j-70 leads to a J'fLdial dependence in volving Airy 
functions and to field strengths enhanced over the 
(1/1') dependen ce; details have been given elsewhere 
[Arbel and Felsen, 1963] fL nd will not be repeated 
here. We should merely like to emphasize in the 
co ntext of the present discussion that the OCCLU'l'e nCe 
of field en hancement by virtue of the in terfLction of 
rays arising from two adjacent stationary points 
may be predicted directly from the presence of 
points of inflection in the refractive index diagram. 

b. O pen Branches of Refractive Index Surface 

'If t he refnwtive index surface co ntains unbounded 
branches, there will exist certain ray directions 
corresponding to sfLddle points lcxj -7oo and (or ) 
le yj 00 Since lc z is now real over t he entire integra.­
Lio n illtenrfLI, the integral (11) is 110 longer exponen­
tially co nvergent, and E(r) may actually di\rerge 
when the saddle point moves to infinity. The 
nature of t he singularity depends on the so urce 
co nfiguratioll ; it is most pronou nced for point 
source excitation but may actually be nw.de to dis­
appear for sufficiently smooth source distributions. 
Details of the analysis are available elsewhere 
[Arbel and Felsen, 1963; Felsen, 1964a] and it 
suffices for the present to note that the singular ray 
directions may be inferred easily from the refractive 
index diagram (see ray 8 ' in fig. 1, as lc -7oo along the 
open branch ; the singular ray direction is perpendic­
ular to the asymptote) . 

3.4. Domain of Existence of a Particular Ray Species 

If the refractive index sUl'face possesses undulations 
("bumps" or "dimples") or unbounded branches, 
not all regions of space are illuminated by t he same 
ray species. For example, if 01 fLnd O2 denote the 
angles between t he positive lez-axis and the normals 
at Tl and T 2 , respecti \Tely, in figUl'e 1, ray Sl reaches 
those observation points in the fU'st quadrant of 
the y, z plane whose angular deviation 0 from the 
z-axis lies in the interval 0 ~8 ~ 01 , Ray S2 is con­
fin ed to O2 ~ 0 ~ Ot, ray S3 exists in 82 ~ 8 ~ 7r/2, and ray 



S4 in 03 ~ 0 ~ 7r/2 with 03 representing the inclination 
of the normal to the asymptote of the open branch. 
The angular domain wherein a ray species exists 
is its zone of illumination and the remaining region 
is the shadow zone wherein the fields on the ray in 
question are exponentially small. It is evident that 
the zones of illumination and shadow may be inferred 
directly from the refractive index plot from which 
it is seen, for example, that rays SI and S2 are absent 
when OJ ~ 0 ~ 7r/2 (the corresponding saddle points are 
complex in this range) while the shadow region for 
rays S2 and S3 is 0~O< 02 (see also fig. 8). 

4. Source Problems in Isotropic Regions 

To illustrate specific application of the preceding 
concepts in their simplest form, a number of radiation 
problems in isotropic configurations are reviewed 
and interpreted via t he refractive index plots. In 
a homogeneous isotropic medium, : = 1€, and one 
obtains from (3) the dispersion relation 

where n may depend on w but not on e. As noted 
previously, the refractive index plot reduces to a 
sphere in this instance so that the directions of the 
wave vector k and the ray S coincide. 

4.1. SourcEs in an Unbounded Region 

o . Point Source 

The fields radiated by an arbitrarily oriented 
electric or magnetic current element in an infinite, 
homogeneous, isotropic dielectric may be derived 
by suitable vector operations from the scalar Green's 
function 

(15a) 

which Ilfls the integral representation 

Fr.GUR E 2. If'ave vector sU1jace f or isotropic medium: k = kon. 
Sadd le point- k.,=k sin O. 

(The above-mentioned vector operations account for 
the detailed structure of A in (11) for different 
source configurations.) While the solution for this 
trivial example is known in the closed form (15a), 
the integral (15b) shall be investigated per se for 
purposes of illustration. 

Because of the spherical symmetry, the coordinate 
system. may be chosen so that x= O, thereby leading 
to the diagram in figure 2. In view of the dependence 
on Izl in (15b) , only the region z> O need be con­
sidered. k z must be positive imaginary when non­
real, and it is evident from the diagram in figure 2 
that to satisfy the radiation condition, k z is positive 
when real. It follows from this definition that the 
integration path is indented into the lower and upper 
halves of the kx plane to avoid the branch points at 
kx= -Jkgn2-k~ and at kx= - -Jkgn2 - k; , respectively, 
when k~<k~n2. Analogous considerations apply 
to the ky ·integration. The same conclusions are 
reached when dissipation is assumed initially (1m 
n > O) and the lossless case is approached subse­
quently. One observes, incidentally, that the branch 
points correspond to those portions of the refractive 
index surface for which the associated rays are 
confined to the z= O plane (separation between rays 
going into z> O and z< 0, respectively); this latter 
obsenTation holds also under more general circum­
stances where these singularities are no longer 
defined by the simple condition k z= O. 

From the discussion in section 3.2 and figure 
2, it follows that the only saddle point of the inte­
grand in (15b) (with x= O) is located at kYl= k 
sin 0, where 0= tan- l (y/z) specifies the angular 
location of the observation point. While this 
conclusion is reached at once from the geometrical 
construction, it may of course be verified from (12) 
I)y direct calculation . . Each distant observation 
point is therefore reached by a single radial ray 
with wave yector k. 

Since the principal cmvatures of the spherical 
surface are constant and equal to ( - 11k), one 
obtains directly from (14b) that the asymptotic 
approxinlation to G is given by the expression 
(15a) (which in this instance happens to hold for 
all r ) . N one of the complicating featmes due to 
points of inflection or open branches of the re­
fractiye index surface arise here. It should be 
recalled that the angular variation of the ray ampli­
tude also depends on the nature of the source 
and emerges from the derivation of the field via 
the scalar Green's function G. 

b. Line Source 

Constant phase. If the excitation is in the form 
of electric and (or) magnetic currents distributed 
uniformly along a line, say the y-axis, then the 
entire field structure is independent of the y-coordi­
nate, and the constituent plane waves descriptive 
of this field configuration must be characterized 
by lc y= O. Consequently, the effective portion of 
the refracti \Te index diagram is the curve formed 
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by Lh e in tersection of th e sphere in figure 2 with 
Lh e plane lc y = O. The corresponding surface normals 
are confined to the x, z-pbne so th at energy leaves 
th e source along radial rays which lie in a plane 
perpendicular to the so W'ce axis. The polarization 
of the field , or its an gular intensity distribution, 
depends, of course, on Lhe deLail s of the so urce 
co nfiguration. 

Linearly progressing lJhase. Jf Lhere is impressed 
on the pre\riously m enLioned lin e distribution a 
phase varia tion exp (ilcy,Y) , where leYI is a r eal con­
stant, then the resulting fields in Lhis y-invarian t 
structure must exhibit the same y-dependell ce. The 
constituent plane waves ar e therefore cilm'acterized 
by lcy= le lJ" which requirement r educes t he double 
integral in (11) to a single one over le x (the ley-
dependence of A (lex, ley) is in th e form o(lcy- lell') )' 
The r adiation characteristics ar e now inferred from 
th e intersec tion of the plan e lcy= lcv1 wit h t he r efrac­
Live index surface in figure 2. One obsen es that 
if Iley,I< Ic, energy emanates from t he SOUl'ce along 
rays which lie on <), circular co ne IHt \"ill g an apex 
lUlgle f = cos- 1 (leVI/ie ) wit h r espect t o t he source axis 
(fig. 3) . It is e\"ident from figure 2 that r eal rays 
exist only when 11cvll< Ie. For II, VI I > le , Lhere is n o 
real solut ion for Ie, a nd raclilttioll does no L occW·. 
The intervals Ilcv,l< le a nd Iky,l >k dist inguish phase 
yelocities along the source distribu tion whiclt a re 
lar ger and smaller , r especLi vely , tita n Lite yelocity of 
light in the medium ; as is well known , t he form er 
wave types radiate whereas the energy in t he latter 
is bound to the source r egion. 

The validity of t he preceding r emarks is easily 
yerified fwm the scalar Green 's fUllction 

(J 6a) 

(16b) 

in terms of which t he electromagnetic fields may b e 
derived . For example, if t he source is a line of elec­
t ric CUlTents of unit strength, then the non \'anishin g 
field compon ents ar e 

1 (02 02 ) 'i 02G oG 
E y= -' - ~+:;;--z G, En=- AR A ' I-lq,= - AR ' 

~ WE u X- u Z WE U uy u 

(16c) 

wi t h H= " X2+Z2 and <t> = tan- 1 (z/x) denoting polar 
coordin ates in th e pla ne tral1s \"erse to y , Using th e 
asymptotic approximfttion of G, one finds E ", (v X q,o) k 
( 1c2-k~ 1)- 1 /2Ev, H",,~vxE, where v is a unit 
vector along one of t lte rays sketcbed in figure 3. 
The Poynt ing yector is th erefore parallel to v . For 
leYI = 0, one r ecover s the case described in the first 
par agraph, 
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FIGU R E 3_ R ay configuration f or phased line source , 

c, Twc-Dimensional Source Distribution 

If the sources are distributed continuously over 
the entire x, y-plane with impressed phase variation 
exp (ikxlx) exp (iky1Y) , where lexi andlcYl are r eal con ­
stants, then the field is described by a single plane 
waye wit h (lex I , leVI)' The direction of energy flow 
is again inferred fro m that of Lhe normal to th e 
l'efracti \"e index S ll d ace aL t his poiu t . It is noted 
that radiation takes placo only if lc; l + lc~ l< /c2 , 

d , Highly Directive, but Confined, Source Distributions 

The preceding pb ased on e- a nd t wo-dimensional 
source disLribution s of infinite exLent ar e idealiza­
Lions which 111 fty , howe\'er , sel'\'e as approxim aLions to 
large phased a rrays 0 1' aper tm es of fini te ext ent. 
Consider, for example, a progressi \'ely plmsed Ii n e 
source as in figure 3, confin ed to the in Lor nll - a< 
y< a. Th e a m pliLud e fun ction A (kx, Ic JJ in (11 ) now 
co ntain s lh o factor [sin (IcJI- kll ,)a](lclI - ky,) - ' , whicll 
has a sharp peltk at ky= lcll , if t he source region is 
m allY wft\"elength s long_ While t hi s beitHyior is less 
\·iolent tJUlil t he o(lcy- ley,) correspo nding lo a--'>oo , i L 
ne\"erth eless solect s t ile phtn e WI1\"OS with k y= lr v' flS 
those contribuling to lhe maj or pealc(s) ill lh o 
radiation field. The pro\-jously deLormin ed m ys 
t her efore point in tho direct ion of th e lll lljol' lobes in 
the ntdi a Lion patLel'll so th at the ],efractive index 
dillgmm m ay be em ployed Lo fi nc! t 11 e 10caLions of th e 
radiat ed b eam m axima, 

e, Radiation From a Uniformly Moving Charge (Cerenkov Effect) 

If a p oint charge q moyes wi th constanL yelocity v 
along th e y-direction, the associllted electric current 

1\ 

density J may be characterized as follows : 

1\ 

J = yoqro(x-x l ) 0 (z-z' ) 0 (y-vt) , (17 ) 

The frequency spect rulH J of this source distribulion 
is obtained by t akin g the Lo mporal F ourier tran sforlll 

J = - e+iwIJdt = yo 5L o(x-x ' ) 0 (z- z' )ei(kol{3 )Y 1 f '" 1\ 

27r -0(> 27r ' 

( IS) 



where ko=w/c and (3=v/c. This excitation for 
-specified frequency corresponds precisely to the 
linearly phased line current discussed in section 4.1 b, 
with amplitude (q /2'rr-) and impressed phase progres­
sion kill = ko/(3. The radiation characteristics at any 
given frequency may therefore be inferred from the 
Tesults in section 4.1b, and the space-t ime dependent 
field is t hen recovered upon carrying out the w-inte­
gration in (5b). 

Since the particle speed is always less than t he 
speed of light in vacuum, i.e., (3< 1, one obsel"\Tes that 
k 1l1>ko. It is t hen obvio Lls from figure 2 that no 
Tadiation will take place in vacuum for which the 
refractive index n = l. In fact , radiation is possible 
only when the charge moves in a medium with 
refracti \~e index n> O/(3) for which one may satisfy 
the condi tion k yl< k. If dispersion in t he medium is 
neglected so that n is independent of frequency, then 
radiation at all frequencies will emerge along the 
well-known " Cerenkov angle" 

(19) 

which may be determined graphically from the 
refractive index diagram (figs. 2 and 3). F or a 
fr equency dependent n , the Cerenkov angle will 
likewise be a function of frequency. 

4.2. Influence of a Plane Boundary 

In the preceding sections, the refractive index 
-surface has been utilized for the determination of 
t he power flow properties associated with various 
source distributions in unbounded media. The discus­
sion is easily extended to accommodate the presence 
of a plane boundary which either terminates the 
region (for example, a perfect conductor) or separates 
it from another with different physical properties. 
The underlying analytical considerations are similar 
to those dealt with earlier. If it is assumed, for 
,example, that the plane z= o separates two semi­
infinite dielectrics with n = nj (z< 0) and n = n2(z>0), 
t hen the fields of a z-directed point source located at 
(0,0, z'), z'< O, may again be derived from a scalar 
Green's function G which has a different representa­
tion in the two regions. In region 1 (z< 0), G 
contains a direct and a reflected por t ion [Stratton, 
1941] 

(20) 

z::;:z' 

(20a) 

deri ved from 

H ere, rand T r epresent t he plane wave reflection 
and . transmission coefficien ts, respectively, whose 
detailed form (for either E or H polarization) is 
readily evaluated but irrelevant to the presen t 
discussion. The important thing to be recoO'nized 
is that the constit uent plane waves in both r~gions 
~re char:acte!'ized by the same wave numbers kx, k y 

111 the dIrectlOn parallel to the interface- a condition 
required to assure continui ty of the tangential field 
compo~lents across t he boundary. The signs associ­
ated WIth kz1 and kZ2 have been chosen in accord with 
the p.reviously discussed r adiation condition (sec. 
4.1 ); 111 (20a), they assure the ou tward power flow 
from the source plane z=z', in (20b) the flow of r e­
Hected power toward Z= - ro, and in (21) the flow of 
transmitted power toward Z= + ro. 

a . Incident, Reflected and Refracted Rays 

The familial' relation between the angles of inci­
dence, reflection, and refraction of a plane wave 
known as Snell 's law, is inferred at once from th~ 
refracti ve index plots, a section of which is shown in 
figure 4. The propagating wave solutions corre­
sponding to a given value kll = kYl (with kx = O thl'ouo'h 
proper choice of coordinates) may be ascertain~d 
from figw'e 4 wherein it is assumed that nj> n2. 
Evidently, fo.ur ~olutions are possible: two rays 
each pro&re~su~g 111tO z> O and z< O, res})ectively. 
If a ray IS 111Cldent on the interface from region 1 
(S;), the corresponding reflected ray is S;'; since 
the surface k = kl is rotationally symmetric abo ut 
the kz-axis, the angles of incidence and reflection are 
equal (Ill)' Of t he two ray solutions S2 and S~' 
corresponding to the prescribed kYl in reo'ion 2 
S~' must be discarded since i t carries energy along 
the negative z-direction and therefore violates the 
radiation condition associated with an incident ray 
from below. The relation between the angles of 

s' 
-I 
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whereas in region 2 (z> O) , the transmitted field is 
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FIGURE 4. Wave vector sUijaces and rays for two dii)"erent 
isotropic regions: k i = kOD i. 



refradion ((h) and incidence is obtained from the 
graph via the condition: ky , = Ie, sin 81 = 1e2 sin 82, or 
sin 82 = (n,/n2) sin 8, (Snell 's law). Since the two 
surfaces are spherical, the incident, reflected and re­
fracted rays all lie in a common plane. One notes 
that t he k2-branch is intersected only when k yl< le2; 
for k y 1> k2, i.e ., sin 81> (n2/nl), kZ2 is imaginary and 
no propagation takes place in region 2. The incident 
wave is then totally reflected. 

b . Lateral Rays 

When kill = le2 , the ray is inciden t at t he critical 
a no1e 0; = sin- 1 (nz/nl) and the refracted ray proceeds 
l)a~allel to the interface (see right-hand portion of 
fig. 4). This parallel ray, called a " lateral" ray, 
may refract back into region 1, t hereby providing a 
mechanism for energy transfer which is entirely 
.clifferent from t hat associated with a reflected ray 
IBrekbovskikh, 1960] . In contrast to the discussion 
in section 4.2a which is relevant for an ordinary 
plane wave, the appearance of a la teral ray is con­
nected intimately to t he presence of a source of finite 
dimensions and owin g to the continuous leakage of 
e nergy (see fig. 4), t lte amplitud e of the field on a 
lateral ray is smaller than that on a reflected ray. 
While some further com ments O il this ray species 
are made later on, it is to be emphasized at this point 
that the existence and trajectory of a lateral ray 
may be inferred directly from the refractive index 

plot: . I d·1 " 1· . " j . I . If the source I S p ace mto t le t llnner C le ectl'l c 
(i. e., if n2> n ,), the lateral ray is not exci ted since it 
is not possible to have 82= 7r/2 for any incidence 
angle in the range 050 8, -::; 7r/2. The intimately 
Telated phenomenon of total reflection is also absent 
in this instance. 

c. Asymptotic Evaluation of Reflected and Transmitted Fields 

While t he direct field G; may be e\-aluated as 
before (see (15a, b», the reflected and transmitted 
fields require fur t her attentio n. H we again set x= O 
for convenience, the saddle point in the lex integral is 
located at lcxs = O. The saddle point condition applied 
to the remaining in tegration in (20b) yields: 

y+ ~t Izl + ~t Iz ' I=O at leys . (22) 

Since (okz.;/oky) = - tan 8i , where 0 i is the angle 
of the normal to the refractive index diagram at 
(le zi • ky), the straight line through (y, z) defined by 
(22) may be interpreted geometrically as follows: 
The obser vation point (y, z) in region 1 is reached 
via t he ray trajectories S; and S;' in such a 
manner that the angle of reflection is eq ual to the 
ano1e of incidence; this cond ition determines 81 and 
th~reby t he saddle poin t leyS via figure 4. The 
equality of the angles of incidence and reflection 
follows from the symmetry of t he refractive 
index plot; the ray in terpretation of the sa~dle 
point condition is unaltered for more general SItu­
ations where t hese angles may be different from one 
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another (see sec. 5.3) . Co nfil'JIln, tion of the ray 
in terpretation in figure 5 is also had froUl t he expo­
nent ial in (20b) evaluated at the saddle point: 
exp [i(kysy+lez, lz l+k"lz' I]. Sincey= y, + Y2, the phase 
change is precisely the one required by a plane wave 
to travel from the so urce to the obsel'v~ttion point 
via the ray trajectory S;, S; '. 

Analogous considerations apply to the evaluation 
of the transmitted field via (2 1). The saddle point, 
condition now reads 

+okZl l ' l+ok'2 Ie y ok z ole z= O at YS) 
y Y 

(23) 

and has a simple graphical interpretation : The 
observation point (y, z) in region 2 is reached via 
the ray trajectories S; and S2 in such a manner that 
t he rebtion between the angles 8, and O2 is that spec­
ified by the re£racti\re index plot in flgure 4. 

In summary, the saddle point determination re­
quired for the asymptotic evaluation of the reflected 
and transmitted fields, and the subsequent ray­
optical in terpretation of t he result, may be carried 
out with the n,id of t he refl'acti ve index diagralll : 
The source a nd obser vat ion poin ts are connected 
by rays which satisfy the plane wave reflection or 
refraction laws, and the corresponding values of 
k y yield the sn,ddle points. From a, knowledge of 
the saddle points, one may determine t he ray ampli­
t ude via the remaining ampli tude factor in t he 
radi a tio n in tegr al. 

The saddle points associated with propagating 
wave solutions in both region s ~Lre restricted to t he 
interval Ilcysl< Ie, and lleysl<:: lc 2 [01' t he reflected and 
transm itted fields, respectively. If lei > lc 2, then the 
saddle points clescrip ti \ re of the re fl ected field may 
cross the branch points at ±k2 . Und er t hese con­
dition s, t he asymptotic fi.eld contn,in s another con­
stituent arising froIll a branch poin t in tegmtion. 
This field type is the previously mentioned lateral 
wave whose existence and trajectory is readily pre­
dictable from t he refractive index diagram. As 
noted from figure 4, the lateral wave contributes 
only when 8,>0;, thereby implying that the branch 
point contribution is absent when Ilcysl< 1c 2• This 

Iz'l 

SOURCE (Y. z) 

FIG lIRE 5. Ray inte1·pTetation oj saddle point condition jor 
Tejlected and rejmcted fi elds (Y 1 + Y2= y). 
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a ) original path 

k ys 

b) steepest desc e nt path 

FIGURE 6. Integration contours in com plex k y-plane. 
a. Orivin[! l path. 
il. Steepest descent path. 

conclusion is confirmed from a study of the steepest 
descent path through the saddle point which involves 
a deformation of the integration contour itWity from 
the real axis, thus making unitmbiguous the domain 
of contribution from the branch point (see fig. 6). 

d. Other Source Distributions 

The preceding discussion hits sbown thitt the 
plane wave refractive index diagram s have direct 
application to the determination of t be reflected or 
transmitted fields when a phne boundary is present. 
In essence, one fu·st finds the ray structure in the 
unbounded region containing the source and then 
accounts for the interface by a ray-tracing procedure, 
with the trajectories of the reflected and transmitted 
rays ascertained from the diagram. With this in 
mind, the study of other source configurations is 
evident. For example, the highly directive so urces 
described in section 4.1d excite strongly certain 
selected ray configurations whose characteristics in 
the presence of the interface are predicted from the 
refraetive index plot. In this manner, one may 
find the directions of the reflected and transmitted 
beams. Cerenko\' radiation due to a charge movin g 
parallel to the boundary is itlso easily understood. 
If the charge moves in region 1 and ky= (lerl(3) < k 2 < le I, then r adiation will occur in both regions itt 

readily determined angles. For leI > (leal (3) > lc z, prop­
agation is possible only in region 1 and the energy 
i~, totally refiected at the interface, whereas for 
(kol(3» kl , no radiation takes place. If the charge 
moves in region 2, radiation escapes into both region s 
when (kol (3 ) < lc 2< le1, but the fields in region 2 itre 
evanescent when k1> (lcc/(3»lc 2. Since propagation 
in region 1 is possible, however, under the latter 
condition, the incident evanescent fields may couple 
to propagating waves at the boundary. 

4.2 . Multiple and Gently Curved Interfaces 

If the region is comprised of homogeneous layers 
(an inhomogeneous region may be so approximated), 
each layer has its own refractive index diagram and 
the previously described field matching procedure 
m ay be employed to chart the progress of a ray 
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through the medium. The diagrams also reveal 
when a ray is "trapped" (ducting effect, bound 
waves) : if a layer is bounded on both sides by 
media with smaller refractive index, it is possible to 
find wave solut ions which propagate in the layer 
but decay outside. 

In view of the ray interpretation of the fields 
radiated by confined source distributions, the ray 
tracing method may be applied locally even when an 
interface is nonplanar pro vided that the curvature 
is small over it length interval equal to the local 
wa,~elength [Keller, 1958]. Under these circum­
stances, the boundary at the point of impact of the 
ray is assumed plane, and the refractiYe index plots 
may then be used to determine the initial trajectories 
of the reflected and transmitted rays. 

5 . Further Discussion for Anisotropic 
Regions 

The discussion in section 4 inyol \-ing isotropic 
regions has served to illustrate the use of refractive 
index diagrams for the study of various fitlIliliar 
radiation problems. While the associated phenolIl­
ena and their interpretation in terms of rays are in 
this simple case also easily deduced by other means, 
the refractive index plot offers distinct advantages 
in anisotropic regions where its contour lIlay depart 
drastically from the spherical shape. With an 
understanding of the isotropic situation, one may 
proceed to apply the same considera tions to the aniso­
tropic case; the only difference is the substantially 
more complicated configurations of surfaces which 
depend on the form of the dielectric tensor ~' in (3). 
For the magneto-ionic medium, they may be grouped 
into some eight categories [Clemmow and Mullaly, 
1955 ; Allis, 1961 ; Deschamps and Weeks, 1962] 
which range from. two concentric ovals to the undu­
lating and open-branched configUTation shown in 
figure 1, as the applied, cyclotron and plasma fre­
q uencies (for electrons) take on yarious values. The 
variety of surface contours is further increased when 
additional species (for example, ions) are taken into 
account in the description of a magneto-plasma 
[Allis, Buchsbaum, and Bel'S, 1962]. For the present, 
discussion, the specific nature of the surfaces is of no 
co ncern and it suffices to deal with a typical case (as, 
for example, in fig. 1) . It should of course be evident 
that the multibranched chamcter of the refractive 
index plots implies the existence of more rays than 
those obselTed in the isotropic case. EYen in the 
magneto-ionic medium. wherein only electrons itre 
considered mobile, as many as four different propa­
gating solutions for k, (kx , ley) may be encountered. 
In view of the very complicated analytical expres­
sion for le , in terms of lex and ky [Budden, 1961], it 
may be appreciated that much insight is gained from 
a plot of these quttntities provided by the refractive 
index diagram. 

The problem of radiation from a point source in 
itn unbounded an isotropic region has already been 
dealt wi t h in section 3. The anisotropy exerts in-



teresLing effects also on other source distributions 
,vhich arc readily explored . 

5.1. Line Source 

The power flow characteristics for a uniform line 
source directed along the y-axis are inferred from the 
lcy= O section through the refractilTe index plot. If 
the y-axis coincides with the direcLion of Lhe axis of 
symmetry (gyrotropic axis), t he llormals to t he sur­
face in the ky= O plane are conLained in t his plane; 
the radiation therefore leaves the source in the radial 
direction and the rays are perpendicula.r Lo the line 
axis. For arbitrary inclination of the gyrotropic 
axis, however, the surface normals need not lie in 
the k1J = O plane. With reference to figure 1, for 
example, the two rays with kx= O, ky= O point into 
the first (top ray) and third (bottom n1,Y) quadrants, 
respectively, with intermediate positions occupied 
by rays with Icx¥- O. Energy Lhus travels along 
trajectories which ~Lre no lon ger perpendicular to t he 
source axis although no phase variation is impressed 
along the sou rce, a behal'ior in marked contrast Lo 
that obseITed earlier in t he isotropic C~tse. If the 
lcy = O plane intercepts more than one branch of t he 
refractive index surface, sel'eral ray species (with 
different orientation) may arise. 

These obsenTations ~LPply also when t he source 
possesses a progressive phase Yttl"iation exp (ilcyIY), in 
which instance the intersection with t he picll1 e 
ky= kY1 is pertinent. For example, if kYI is so hrge 
that only the open branch of the surface in figure 1 
is intercepted , one obtains the ray structure shown 
in figure 7. In \'iew of the requirement k8 > O, it 

~----------~--~+-~------~~-----+-', 

'" 
a) wav e n o r m al surfa ce and ky = k yJ sec t ion 

b ) line s ource a n d r ays 

FIGUHE 7. Progressively phased line source inclined to 
gyTotTopic axis (gY1"otTopic axis lies in y -z plane) . 

a. ' Vave vector surface an cl kJl= kJl l section. 
b . Line source ane! rays. 
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a ) WdV<;! no rrna i p l o t b ) r a y confi g urati o n 

FIGU RE 8. Unphased line source per pendiw laT /.0 
gyTotropic axis . 

fl . "'ave vector plot. 
IJ . Ray co"nguraLio n. 

is noted that the ntys 8 1 and 8 2 in the lcx= O plane 
~L ['e "bacl(w~1,rd" in t he sen se Lhat the direction of 
phase progression is towftrcl the source axis whereas 
energy necessarily {lows outward. Elridently, the 
rays ttr e not confined to :1, circular cone as in the 
isotropic problem (fig. 3) . 

Since the refmcti\'e index diagram s for the mag­
neto-ionic medium are rOLatiomLlly symmeLric about 
the gyrotropic fl,xis, substantial simplification in the 
ray picture resulLs when t he line so urce is oriented 
along, or perpenclicuhu· to , the axis of symm etry . 
I n the fo n ner case, nlre:Ldy mentioned el1,rlier, t he 
ra.y configumtion is also rot ltt ionlllly symm etric 
and the m ys in Ggure 7, for exam ple, lie on a cir­
cular cone. rn the latter in stan ce, witll k l/ = O, t he 
eH"ective porLion of the di~tgntm cOlllprises t he plane 
secLion ill the lex, lcz phLne as illu strated in figure 8 
for the case of an open-bmnchecl surface. The rays 
are now confined to the x, z plan e (i. e., t hey lea\Te 
the source at right ~tn gles) and t hey illuminate only 
t he shaded region in figure 8b) . 

5.2. Other Source Distributions 

The preceding considerations concerning line di s­
tribut ions (and the ~tllalogous surface distribu tio ns 
described in section 4.1c) are ag~tin applicn.ble to 
spatially confined but highly directilTe sources (see 
section 4.1d) . For example, a planax phased alTay 
in the x-v plane with Icx= O, lcy= 7cYl , produces two 
narrow beams which point nSYlll metrically along 
81 and 8 2 infigUl"e 7b , whereas a linear phased 
array with ky= Ic Y 1 produces beam maxima over 
a noncircular cone whose generators follow from 
figure 7 [Felsen and Rulf', 1963]. The result for 
the linearly phased line source (with kY I = lco/f3 ~t S in 
section 4.1d) may also be em ployed for t he sLudy 
of the radiation produced by a gi\ren spectral com­
ponent at frequency w arising from a point charge 
moving uniformly along the y-axis. Because of t he 

165 

l 



--- .. ~~ -~---~ 

highly dispersive character of the magneto-ionic 
medium, the radiation characteristics differ greatly 
!or various frequency ranges. Once the refractive 
mdex plots are available, it is a simple matter to 
ascertain when radiation may take place (i.e., when 
the Cerenkov "coherence condition" may be satis­
fied): one looks for possible intersections of the 
plane k y= (ko/(3) with the wave normal surface and 
infers the corresponding ray angles [Clemmow 1963· 
McKenzie, 1963].· " 

It must be emphasized that these graphical 
methods for the determination of major features in 
the power radiation pattern apply directly only 
when a single ray reaches a given observation point. 
If several rays are involved, their combined power 
pattern (which may deviate from the individual 
behavior) must be determined. It may happen, 
however, that the given source configuration excites 
one ray species more strongly than the others, in 
which instance the pattern is determined essentially 
by the most strongly excited ray. 

5.3. Presence of a Plane Boundary 

a . Ray Interpretation of Fields 

. If the gyro tropic medium is bounded by a plane 
mterface at z= O, the radiation integral (11) must 
be augmen ted by additional contributions which 
accoun t for the reflected and transmitted parts 
as in (20) and (21). Since there will generally 
be several solutions for kz(kx, ky ) as evidenced by 
the multi-branched refractive index plots, it is 
understood that a separate integration is required 
for each pertinent kz (corresponding, for example, 
to the ordin ary and extraordinary modes) . The 
resulting integrals are quite complicated [Barsukov, 
1959; Arbel and Felsen, 1963; Tyras, Is him aru, 
and Swarm, 1963] but as in the isotropic case 
(sec. 4.2), their detailed structure is of no concern 
here. We deal merely with the plane wave ex­
ponents in the integrands which may now have the 
more general structure 

and 

REGION 2 

s" - , 

(24) 

SOURCE 

FJGURE 9. Wave vectoT sU1jaces and mys fa T ani.soiTopic and 
isotTovic half-svacAs . 

In this illustration for the magneto-ionic case, the 
superscripts 0 and e which denote the ordinary 
and extraordimuy modes, respectively, may occur 
in any combin ation. The first exponential de­
scribes the reflected waves in region 1, with identical 
su perscripts indicating reflection in to the inciden t 
mode and different superscripts accounting for 
reflection into a different mode caused by coupling 
at the boundary. The second exponential describes 
the transmitted waves in region 2 which is assumed 
to be isotropic. If the boundary is perfectly 
reflecting so that no wave penetration into region 
2 is possible, then in tegrals of the second type do 
not arise. 

As in the isotropic case, the incident, reflected, 
and transmitted plane wave constituents are all 
characterized by the same transverse dependence 
on kx, ky, so that the wave vector plots may be 
used as before to chart the progress of the reflected 
and transmitted rays. As an illustration , consider 
the wave vector surface in figure 7 and assume 
that the anisotropic medium so described is separated 
from an isotropic dielectric half-space with re­
fractive index n2 by a plane in terface at z= o (the 
diagram implies that the gyro tropic axis is inclined 
with respect to the boundary). The composite 
plot (or rather its r ight half) descriptive of both 
regions is depicted in figure 9 wherein only the 
kx= O plane is shown in order to simplify the drawing 
[Felsen, 196:3]; the dark and light sections corre­
spond to rays carrying energy along + z and - z, 
respectively. The interpretation of figure 9 is 
directly analogous to that of figure 4 and the com­
men ts in sections 4.2a- 4.2c need not be repeated 
here. It may be noted that although the incident , 
reflected and refracted rays lie in a single plane 
when kx = O, this condition does not obtain in the 
general case kx ~ 0. Moreover, the angle of the 
reflected ray S;' is not in general equal to the angle 
of the inciden tray S; when the gyro tropic axis is 
oriented arbitrarily with respect to the interface 
(the previously mentioned mode couplin g does 
not occur if the diagram for region 1 has the simple 
shape shown in fig . 9). The configUTation in figure 9 
may also support a lateral ray. The saddle point 
condi tion derived from the exponen ts in (24) has 
the general form (23) (when kx,= O) and is therefore 
amenable to the same ray-optical interpretatiOl.1 as 
in figure 5 (see right-hand side of fig. 9) , provIded 
that the ray trajectories and the relations betw~en 
the angl es of incidence, reflection and refractlOn 
are those consisten t with the refractive index plot. 
The same comment applies to the ray-optical 
determination of the final asymptotic field solu tion, 
'with the detailed behavior of the ray amplitudes 
inferred again from the appropriate amplitude 
factor in the in tegrand. 

The remarks in section 4.2cl concerning yarious 
types of SOUTce configUTations are pertinent as well 
for the present discussion . To assess the influence. of 
the boundary on the radiated field, one obtams 
first the ray configuration in the unbounded medium 
and then employs the refractive index plots to 
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trace the progress of the reflected and refracted 
J'rtys. The observations in section 4.3 are also 
applicfLble here. 

To illustrate the variety of wave phenomena 
possible when mode coupling takes place at the 
boundfLry, we consider the medium schematized in 
figure 1, with the gyrotropic axis perpendicular to 
the interface (see fig. 10). The brrtnches "0" and 
"e" describe the propagation characteristics of the 
ordinary and extraordinary waves, respectively, and 
the circular contour represents the exterior di­
electric. Since the diagram is rotrttionally sym­
metric about the kz-axis, the horizontrtl axis has 
been labeled k t• An upgoing (incident) ordinary 
ray A gives rise to an ordinary reflected ray 0, an 
extraordinary reflected ray D and a refracted ray 
E; conversely, an incident extrrtordinary ray B 
produces a reflected extraordinary ray D, an or­
dinary ray 0 and also a refracted my E, all of 
which correspond to the same value of Ie ti' One 
observes that the inciden t ordinary and extra­
ordinary rays proceed to entirely different regions of 
space although both are characterized by a common 
value of k ti' Moreover, ray E is refracted on the 
same side of the s mface normal as the inciden tray 
B, a behavior quite different from that in an iso­
tropic region (backward refraction); backward 
r eflection occurs for rays B, 0 and A, D. 

The possible lateral ray trajectories are partic­
ularly interesting. It is seen from figure lOb that 
an ordinary lateral ray 01 may be excited by an extra­
ordinary incident ray B1 and refracted into the 
extraordinary ray DJ as well as the exterior ray E 1• 

This lateral ray travels inside the medium containing 
the source and therefore represents an effect which 
is not encountered in isotropic problems.3 In addi­
tion, there exists the more conventional lateral ray 
E2 which travels in the e.cteriol' medium [see Felsen, 
1963 ; Tyras, I shimaru , and Swarm, 1963], is excited 
by the inciden t ray B2 and refracted back into ray 
D z. Analytically, the points of emergence of rays 
01 and Ez on the refracti ve index diagrams, represen t 
branch points which may be crossed during the 
asymptotic elTaluation of the radiation integrals [see 
Arbel and Felsen, 1963, for a classification of these 
singularities]. While the lateral ray amplitude is 
generally smaller than that on a reflected ray, it is 
important to note that the lateral rays may some­
times penetrate regions which are inaccessible to the 
reflected rays, under which circumstances they 
constitute the dominant contribution. For example, 
if the anisotropic medium is characterized only by 
the open-branched surface in figme 10 (see also fig. 
8), the incident and reflected raye are confined to a 
limited conical region sUlTounding the z-axis, whereas 
no such restriction applies to thc lateral ray 
trajectory B 2EzD 2 • 

b. Focusing Effects 

Anisotropy in ~t homogeneous medium may pro­
du ce focusing of the energy radiated by a confined 

3 Similar phenom ena occur in radia tion problems involvi ng el as tic l11edia 
[see Ewing , .J ardct1.ky, and Press, 195i] . 
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FIGURE 10. Ha y configumtions. 
a. Refl ected rays. 
b . Lateral rays. 

source distribution, thereby providing another class 
of phenomena not observ ed in isotropic regions. It 
has already been noted in section 3.3 that certain 
features in the refractive index diagram (undulations 
or open branches) may lead to field enhancements 
along certain directions in an infinite medium. In 
addition, focusing may occur du e to the presence of 
a plan e interface [Felsen, 1964b]. This may be 
understood from analytical considerations by re­
callin g that the asymptotic evalu ation of the radia­
tion integrals leads to an amplitude dependence 
which is essentially proportional to P = (d2cp/clle;).- I/\ 
where cp is one of the exponents in (24) and the 
evaluation is made at the saddle poin t k ys • (For 
simplicity, we consider only the case lex = 0 appropri­
ate, for example, to line source excitation. ) Since 

i = l ,2 , (25) 

one observes that P may tend to zero for certain 
values of Izl when the coefficients multiplying Izl and 
Iz' l have opposite algebraic signs. These coefficients 
are proportional to the curvature of the r efractive 
index plot and if two separate diagrams 01' branches 
with opposite curvature are involved, field enhance­
men t (focusing) due to P -",O is possible. This 
situation occurs, for example, with respect to the 
circular trace in figure 10 and with the " e" branch 
as well as the portions of the "0" branch near the 
lez-axis, respectiv ely (see fl,lso fig. 9). Also , the 
"oil -trace near the let-axis has a CUITature opposite 
to that of the "e" branch. Geometrically, the 
opposite curvatures imply a crossin g of the associated 
ray family as, for example, of the refracted rays in 
region 2 of figure 9. imilar crossings occur among 
the reflected rays C ( 0 1' D ) excited by in ciden trays 
B (or A) , as one may eaeily ascertain from the 
refractive index diagr am. When two closely ad­
jacent rays of the sam e family intersect, the cross 
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section of the corresponding ray tube vanishes and 
the field intensity diverges. While this divergence 
is only apparent and may be removed by a more 
careful asymptotic analysis [Felsen, 1964b], it locates 
those regions where focusing takes place. 

As an illustration, consider an anisotropic half­
space characterized only by the open-branched dia­
gram in figure 10 , wi th the circul ar con tour 
represen ting the remaining isotropic region. The 
refracted ray family , when the source is situated in 
the anisotropic mediu In , then takes the form in 
figure lla (only one half of the picture is shown). 
The ray family is bounded by a caustic, two branches 
of which intersect in a focus on the z-axis. Focusing 
in the anisotropic region occurs when the source is 
in the isotropic medium, but the caustic now has 
the shape sketched in figure lIb. 

SOURCE 

a) Source in anisotr o pi c 

regi on (1) 

SOURCE 

b) Source in isotr opic 

r egion (2) 

FIGUR E 11 . Focusing eif6cls dut to a plane intelface. 
a. Source in ani"lotropic region (1) . 
b. Source i n isotropic region (2) . 

6. Summary 
It has been shown how the plane wave refracti \"e 

index diagrams for an infinite anisotropic medium 
may be employed to predict salient features of the 
radiation produced by confined source distributions 
in unbounded or bounded regions. The procedure 
is essentially one of ray tracing whereby one deter­
mines first the rays excited by the given source 
configuration in an unbounded region, and then 
accounts for subsequent deviations in traj ectories 
or for generation of new species at a boundary or 
inhomogeneity. The total fi eld at a given point is 
comprised of the sum of the fields carried along 
various rays passing through this point. While the 
refractive index diagram furnishes direct and general 
information about the multiplicity of r ays excited 
by point, line, or plane wave sources, detailed 
features of the ray amplitudes are based on a 
further knowledge of the source type (electric or 
magnetic current) and polarization. However , the 
diagrams reveal easily the existence of spatial 
regions wherein certain ray amplitudes become very 
large, thus making possible the prediction of peaks 
in t he radiation pattern. They also permit the 

determination of caustic and focal areas ansmg 
from mode conversion or refraction at an interface, 
ther eby locating other regions of space characterized 
by enhanced field strengths. The validity of these 
concepts has been illustrated by an appropriate 
interpretation of various analytical solutions. 

The concepts presented here are basic for the 
construction of a general ray theory in anisotropic 
media by which one may derive quantitative results 
for radiation and scattering problems under quite 
general conditions. Such a theory has been success­
ful in isotropic environments [K eller, 1958] and its 
extension to the anisotropic case is aided substantially 
by the considerations described in this paper. 
Some results have already been obtained [Felsen, 
1963, 1964 a, b; Rulf and Felsen , 1964] and further 
work in this area is in progress . 

7. References 

Abraham, L. G., Jr. (1953), Extensions of t he magneto-ionic 
theory to radio wave propagation in t he ionosphere, 
including antenna radiation and plan e wa ve scatterin g, 
Report No. 13 (School of E ngineering, Cornell Uni v., 
Ithaca, N.Y.). 

Allis, 'vV. P. (1961), Propagation of waves in a plasma in a 
magnetic field, IRE Trans. Microwave Theor y Tech. 
MTT- 9, No.1 , 79- 82. 

Allis, W. P. , S. J. Buchsbaum, and A. Bers (1962), Waves in 
plas mas (John Wiley and Sons, New York, N .Y. ). 

Arbel, E., and L. F elsen (1963), Theor y of radiation from 
sources in anisotropic media. Part I. General sources in 
strat ified media. Part II. Point source in infinite, 
homogeneous medium, E lectromagnet ic Waves, ed . E. C. 
Jordan, 391-459 (Pergamon Press, New York, N.Y.). 

Barsukov, IC A. (1959), R adiation of electromagnetic waves 
from a point source in a gyro t ropi c medium wi th a separa­
t ion boundary, Radio tekh, i elektronica 4, No . 11, 1759-
1764. 

Brekhovskikh, L. M. (1960), Waves in layered media, 
section 21 (Academic Press, New York, N.Y.). 

Budden, K . G. (1961), Radio waves in t he ionospherc, sections 
13.3 ; 13.18; 13.21 (Camb ridge Universi ty Press, Cambridge, 
Eng.). 

Clemmow, P. C. (1963), On t he t heory of radiat ion from a 
source in a magneto-ionic medium, Electro magnetic Waves, 
ed. E . C. Jordan , 461 (Pergamon Press, New York, N. Y. ). 

Clemmow, P. C., and F . Mulla ly (1955), The dependence of 
t he refra ctive index in magneto-ion ic th eory on t he direction 
of t he wave normal, The Physics of t he Ionosphere, 340 
(The Phys ical Society, Londo n, Eng.). 

Deschamps, G., and W. L. 'Wec ks (1962), Char ts [or comput in g 
t he refractive indexes of a magneto-ionic medium, IRE 
Trans. Ant. Prop. AP- 10, 305- 317 . . 

Ewin g, W . M., W. S. Jardetzky, and F. Press (1957), E lastic 
wa ves in layered media, section 3.3 (McGraw-Hill Book 
Co., New York, N.Y.). 

Felsen , L. B. (1963), Radia tion from a uniaxially anisotropi c 
plas ma half-space, IEEE Trans. An t. Prop. AP- 11, 469-
484. 

Felsen, L. B . (1964a), Propagation and diffraction in unia xi­
ally anisotropic region s. Part. I. Theory. Part II . 
Applications, Proc. lEE (London) 111, No.3, 445- 464. 

Felsen, L. B. (1964b), Focus in g by an a nisotropic plas ma 
in terface, IEEE Trans. Ant. Prop. AP- 12, 624- 635. 

Felsen, L. B., and B. Rulf (Aug. 1963), Radiation from a 
directive antenna embedded in an anisotropic half-space, 
R eport PIBMRI- 1183- 63 (Electrophys. Dep t ., Polytechnic 
Institu te of Brooklyn, Brooklyn, N. Y. ) . 

Gin zburg, V. L. (1960), Propagation of electromagnetic waves 
in plasma, section 24 (Gordon and Breach, Science Pub­
lishers, In c., New York, N. Y.) . 

168 



IJines, C. O. (195 1), Wave packets, the Poyntin g vector and 
energy flow . Part I: non-dissipative (anisotropic) homo­
geneo us media, J. Geophys . R es. 56, 63. 

K ell er, J . B. (1958), A geometri cal theory of diffraction, in 
Calculus of variations and its appli cations (McGraw-Hill 
Book Co ., New York, N.Y.). 

Kogelnik, H ., and H. Motz (1963), Electromagnetic radiation 
from so urces embedded in a n infinite anisotropic medium 
and the significance of the Poyntill g vector, E lectromagnetic 
vVaves, ed. E. C. Jordan, 477 (Pergamon Press, New York, 
N. Y. ) . 

Lighthill , M. J. (1960), Studies on magneto-hydrodynamic 
waves and other anisotropi c ",ave motions, Phil. Trans. 
Roy. Soc. London 252, Sel'. A, 397- 430. 

McKenzie, J. F. (1963), Ceren kov rad iat ion in a magneto­
ionic medium, Phil. Trans. Roy. Soc. London 255, Ser. A, 
585-606. 

M ittra , R, and G. A. Deschamps (1963), Field solu tion for 
a di20le in an anisotropic medium, Electromagnetic Waves, 
ed. E. C. Jordan, 495 (Pergamon Press, New Yo rk, N. Y.) . 

Rulf, B., and L . B. Felsen (1964), Diffraction by objects in 
a nisotropic media, Proceedings of t he Sym posium on 
Quasi-Optics, p. 107. (Polytechnic Press, Polytechnic 
Institute of Brooklyn) . 

Stix, T. H. (1962), The theory of plasma waves, section 2.3; 
3.4 (McGraw-Hill Book Co., New York, N.Y.). 

Stratton, J. A. (1941), Electromagnet ic t heory, section 9.29 
(McGraw-Hill Book Co., New York, N.Y.). 

Tyras, G., A. Ishimaru, and H . M. Swarm (1963) Lateral 
waves on air-magneto-plasma in terfaces, Electromagnetic 
waves, ed. E. C. Jordan, 517 (Pergamon Press, New York, 
N.Y.). 

(Paper 69D2-450) 

169 

l 


	jresv69Dn2p_155
	jresv69Dn2p_156
	jresv69Dn2p_157
	jresv69Dn2p_158
	jresv69Dn2p_159
	jresv69Dn2p_160
	jresv69Dn2p_161
	jresv69Dn2p_162
	jresv69Dn2p_163
	jresv69Dn2p_164
	jresv69Dn2p_165
	jresv69Dn2p_166
	jresv69Dn2p_167
	jresv69Dn2p_168
	jresv69Dn2p_169
	jresv69Dn2p_170

