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The use of refractive index diagrams in the study of plane wave propagation in un-
bounded and layered anisotropic media is reviewed and then extended to account for certain

aspects of the radiation from confined source distributions.

Such items as the radiation

condition, saddle point location, focusing effects, lateral ray trajectories, Cerenkov radiation,

and others are interpreted via the refractive index plots.

While some of this material is

available in various technical publications, the aim here is at a more unified presentation.

1. Introduction

Since the problem of propagation of plane waves
in a wholly or piecewise homogeneous anisotropic
medium already involves considerable complexity,
it may be anticipated that the difficulties are com-
pounded further when spatially confined sources are
present. The thorough understanding of the be-
havior of plane waves is an essential prerequisite
since the fields caused by localized distributions of
sources may be synthesized by plane wave super-
position. While the entire wave spectrum is required
for a detailed description at any point in space, the
field at observation points ‘“‘far” from the source
region, where a few propagating plane waves suffice
to describe the essential features of the local field
structure, may be characterized in a much simpler
form. In analytical terms, the distant field is found
from an asymptotic evaluation of the exact plane

rave integral representation, the major contribution

to which arises from the stationary points in the
mtegrand. Each of the stationary points selects a
particular plane wave which then appears in the
asymptotic approximation. It may be surmised
from these considerations that the selection of the
appropriate waves appearing in the far field is a
matter of basic concern.

While these observations apply also to the iso-
tropic case, their resolution is trivial in this instance.
Since all propagating plane waves ~exp(ikr) are
characterized by the same wave number k=kgn,
where k, is the wave number in vacuum and = is the
(constant) refractive index in the medium, the field
at a distant observation point P is furnished by that
wave whose wave vector k is parallel to the radius
vector from the source region to . This situation
no longer obtains in an anisotropic medium where
k depends on the direction of propagation; it is also
necessary to distinguish between the directions of
phase propagation (given by k) and power flow
since these do not in general coincide. There arise
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then some basic problems even about the deter-
mination of the contributing plane waves in the far
field, apart from the specification of their amplitude
and polarization.

Owing to the generally complicated functional de-
pendence of & or n on the propagation angle [for the
magneto-ionic medium, see Budden, 1961], it has
been found useful to construct plots of these quan-
tities which are termed wave vector and refractive
index plots, respectively. From these diagrams,
which have the form of multibranched surfaces, it
is possible to ascertain the value of k and also the
corresponding direction of power flow for any given
spatial orientation. While refractive index surfaces
have been employed for some time in connection
with plane wave propagation, their use for radiation
problems is of relatively recent origin. The latter
aspect forms the motivation for this paper which
begins with a review of some basic notions concern-
ing the wave vector, group velocity and Poynting
vector, and then proceeds to the study of radiation
problems in an unbounded, homogeneous, lossless
region. It is shown how the refractive index plot
may be utilized for the imposition of the radiation
condition on the exact integral representation; the
determination of the stationary points in the inte-
erand, and therefore the selection of the plane wave
constituents in the far field as well as the delineation
of their domains of existence (some waves may appear
only in limited sections of space); and the specifica-
tion of those spatial regions wherein field enhance-
ments (focusing) may take place (these effects are
not observed in isotropic configurations). 'Thesource
configurations include point sources, line sources with
and without progressive phase variation, highly di-
rective distributions, and charges in uniform motion
(Cerenkov effect). In all of these instances, the re-
fractive index diagram furnishes in a simple and
direct manner information about the frequently toi-
tuous ray structure (trajectories of power flow) and
grants an insight into the radiation mechanism (but
not directly into the polarization or angular intensity
variation of a given ray species). These considera-
tions are then extended to account for the presence
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of a plane interface and for such phenomena as non-
specular reflections, focusing, and lateral waves. To
avoid the use of usually complicated analytical for-
mulas in justification of results deduced for aniso-
tropic configurations, a reasonably detailed applica-
tion of pertinent concepts is given first for the
thoroughly familiar isotropic case wherein the sur-
faces have an especially simple shape. The extra-
polation to the anisotropic regime should then be
fairly evident. It should be mentioned that many
of the aspects entering into the discussion have been
noted variously in the literature to which reference
is made; the principal aim in the present writing is
at a unified presentation. Finally, while specific
mention is made only of the magneto-ionic problem
(single-species, zero temperature plasma), the same
considerations apply also more generally [Lighthill,
1960].

2. Refractive Index Surface, Wave Vector,
and Ray

A space-time dependent electromagnetic field in
an unbounded homogeneous medium may be repre-
sented as a continuous superposition of plane waves
which are characterized by a frequency o and by a
wave vector k=xXok,+yok,+2zk.. If the medium'
may be characterized at a given frequency in terms
of a tensor permittivity e and a scalar permeability
wo (this applies, for example, to the magneto-ionic

situation), each time-harmonic plane wave constitu-
ent descriptive of the electrie field,

E(r)=A¢ilk-r—at) (1)
must satisfy the vector wave equation,

5
/==
= €

VXVXE—2 ¢ .E=0, (2)
el

A is a constant vector, ¢ the propagation speed in

vacuum, ¢ the normalized permittivity, and r=
Xz +Yyoy+2Zoz the position vector. The magnetic

field may be derived in terms of E from the Maxwell
equations. The parameters k and o in (1) are not
independent but are connected by the dispersion
relation obtained upon substituting (1) into (2)
(note: v—1k):

det Q=0,  Q—kx(kxXD+%5¢, (3)
where the unit d\adlcllsdoﬁnmlsothat] A=A. 1=

A. Since (3) makes p()SSlbl(‘ the solution for one of
the parameters k., k,, k., w in terms of the other
three, there exist two essentially different ways of
representing this dependence:

@) o=w(ky, ky, k), or (b) ko=k.(k;, k), 0).  (4)

1 To simplify th> discussion, the medium is assumed to be lossless.
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In case (a), the frequency variable is regarded as a
function of the wave vector k whereas in (b), one
of the wave numbers, k., is a function of the remain-
ing wave numbers k,, k,, and of w. The representa-

A
tion of the space-time dependent field E(r, ¢) via case
(a) involves a triple Fourier integral in k-space
[Ginzburg, 1960; Stix, 1962]

B, 1)— f " ik, f ", f " dbAR)el e, (50)

while the one in case (b) leads to a representation in
terms of ‘“‘guided waves” along z [Budden, 1961],

r,t):fm dwfm dk,

fm dkyA(kl’ w) ei[lﬂ «p—w'tk(ke, w)z]’ (:)b)

with k,=k—z/k.. p=r—2z,z. Theseintegrations must
be carried out separately for all possible solutions
w(k) or k.(k, w).

The representations (5a) and (5b) are useful for
different purposes. Energy transport properties of
a quasi-monochromatic signal, expressed in terms
of the group velocity vector v,, are readily deduced
from (5a). In this instance, A(k) has a sharp peak
at a wave number k" corresponding to wy=w(k ), and

the signal E(r t) is a maximum along trajectories
defined by the stationary phase p()mts of the inte-
grand for which the individual plane waves inter-
fere constructively:

Vie(k)=0 at £/, o(k)
with V,=x,(0/0k,) +¥,(0/0k,) +2,(0/0k.) denoting the
gradient operator in k-space. With v,=r/t along
the trajectory, one finds from (6) that

—k-r—ok)t, (6)

V,=V,w. (7)

The dnectwn of energy flow, parallel to v, is called
the “ray direction” and differs in general in an
anisotropic medium from that of the wave vector
k which is perpendicular to the equiphase surface
g=constant. It is in fact evident from (7) that
v, is perpendicular to the surface w(k)=constant,
i.e., to the constant frequency surface descnptlve
of the solution of the (ll%])(‘lSl()ll equation (3). Via
(4b), the equation k.=k.(k,, k,; ») describes for a
fixed w a surface which contains the endpoints of
the wave vector k=k|, and this plot in k-space is

normalized con\'omentl\ by introduction of the
refractive index n(k,, k,; »):
w

kzzn. (8)

Apart from the normalization factor k,=w/c, the
wave vector and refractive index diagrams evidently



contain the same information at a specified frequency.
Since the group velocity vector v, (or the ray vector)
for an essentially monochromatic plane wave has
been shown to be perpendicular to the refractive
index surface, it follows that k and v, are parallel
everywhere only when |k| is independent of direc-
tion, i.e., when the surface is a sphere. This obtains
in an isotropic, but not in an anisotropic, region. In
what follows, we shall be concerned almost exclu-
sively with solutions of the dispersion equation
which yield real values of k,, k,, k. corresponding to
propagating plane waves in (1) ; while nonreal k, may
arise in (5b) in view of the infinite range of k., k,
(see sec. 3.1), these evanescent fields do not carry
energy away from the source region. It may be
noted that monochromatic processes are described
conveniently in terms of (5b) since the w-integration
is then absent (the w-dependence of A(k, w) is in
the form 6(w—w,)), where w, is the operating fre-
quency). KEven these simple considerations illus-
trate the utility of one or the other formulations in
(4) and (5).

For an explicit evaluation of the group velocity
in terms of the refractive index n(k; ), it is convenient
to proceed from the implicit differentiation formula

L of du
ok;  Owok; '

V=2, Y, 2, 9)
applied to f(k; w)=k—nw/c=0, which may then be
solved for the components (0w/0k;) of v,. If the
k-surface is rotationally symmetric about one of the
axes, say k. (this corresponds in the magneto-ionic
ase to an applied steady magnetic field parallel to

z), it is convenient to define the polar angle 6 via

sin 0=Fk,/k, cos 6="Fk./k, and one may verify without
difficulty that [Ginzburg, 1960; Budden, 1961 ; Stix,
1962]

@ : .
Dy D=l C0S @, DG =1, Sin a,
COSro == \TF®
ow (ne) (9a)
where
n
tan a——— (9b)
nof

In these expressions, 7(f; w) is regarded as a function
of g and w, v, and »,7 are the components of v, along
and perpendicular to the wave vector k, respectively,
and « 1s the angle between v, and k. One may show
that |a|<<w/2—an observation important for the
imposition of a radiation condition for problems
involving confined source distributions in a magneto-
ionic medium. Equation (9b) confirms that v, is
perpendicular to the n(g) surface.

[t is also of interest to state a simple relation
between the group velocity v, and the time-averaged
Poynting vector S=Re (EXH?*) for a monochromatic
plane wave propagating in a lossless, dispersive,

anisotropic medium:

S=Wy,, (10)

where W is the average stored energy density,
.1 « O 2
W==< E*. —[we(w)] - E+pu|H| . (10a)
2 ow

While certain aspects of (10) for the magneto-ionic
medium may be verified by direct but tedious
calculation [Hines, 1951 ; Abraham, 1953], its validity
may be confirmed from a more basic and elegant
analysis [Stix, 1962], the details of which are not
presented here. The importance of (10) stems from
the recognition that the ray direction in a lossless
medium may be calculated either from S or v,, with
the former often the more convenient once the field
evaluation has been completed. Kvidently, the

vector S is also perpendicular to the n(9) surface.

It should be clear from the preceding discussion
that the refractive index diagram contains pertinent
information required for the determination of the
energy flow characteristics in & monochromatic plane
wave characterized by a given wave vector k. While
the considerations so far have been restricted to an
unbounded homogeneous medium, the refractive
index plots may also be utilized effectively to
ascertain the directions of the reflected and refracted
rays at a plane interface between two media with
different properties [Budden, 1961; see also sec. 5.3].
By partitioning a slowly varying medium into a
sequence of homogeneous layers, one may in this
manner chart the progress of a continuously refracted
ray—a procedure which has found application in
ionospheric propagation theory. It is the purpose
in the remainder of this presentation to show how the
refractive index plots may be used to advantage in
predicting salient radiation characteristics of con fined
source distributions in  unbounded and bounded
anisotropic regions. As mentioned in the intro-
duction, the pertinence of the preceding analysis
stems from the fact that the fields due to spatially
confined excitation, when observed at some distance,
behave locally like plane waves. It may be noted
that other plots (for example, of the ray velocity
¢(n cos a)~!, or the ray refractive index (n cos «))
may be employed to schematize wave propagation
characteristics in an anisotropic medium. However,
the refractive index plot is the most pertinent to the
analysis of integrals as in (5b) since it utilizes the
k-space directly.

3. Spatially Localized Source Distributions
in Unbounded Anisotropic Regions

The relevance of the foregoing remarks to radistion
problems may be explored by referring to the integral
(5b) which, upon omission of the w-integration,
represents in terms of a superposition of the previously
described plane waves the response E(r) due to non-
moving, arbitrarily prescribed time-harmonie sources
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(the time factor exp (—iwt) has been suppressed):

E(r)— f dk, f e, Ay, ) ottt kxthn by
(11)
It is recalled that a separate integration is required

for each of the relevant possible solutions k,(k., k,)
of the dispersion equation.

A
AXIS OF

SYMMETRY
(d—c MAGNETIC
FIELD)

\=— PLANE OF SYMMETRY

Ficure 1. Typical wave vector plot in ky,k,-plane.

T, s—points of inflection.
Dark portion—satisfies radiation condition for z>>0.
Light portion—satisfies radiation condition for z<{0.

3.1. Radiation Condition

The function k, (and A which generally depends
on k.) is multivalued in the k,, &, variables so that
its definition is essential for the unique specification
of the radiation inteeral (11). If the refractive
index surface (or the wave vector surface k=Fkqn) is
of finite extent (closed surface), k£, will be nonreal
for sufficiently large (k,, k,). Let us suppose that
the excitation is in the form of a point source lo-
cated at r=0, in terms of which any distributed
driving function may be synthesized. Convergence
of the integral then requires that Im £.=0 for 2=0.
Physically, this radiation condition implies that the
nonpropagating wave fields decay away from the
source region. If the medium contains some losses
so that k. has an imaginary part for all (k. k,), the
above-stated condition suffices to define k. every-
where and assures the vanishing of the field at r—e.
In analytical terms, the branch point singularities
of k, are then displaced from the real k.k, axes,
thereby making the integrand unambiguous along
the entire integration path.

To effect a definition of /#, when this function 1is
real, one may approach the limit of vanishing dissi-
pation from the above-mentioned lossy case, and
the required distortion of the integration path as
the branch point singularities of k, approach the real
axis is then made evident. This distortion of the
path is equivalent to effecting the consistent defini-
tion of the multivalued function %, for complex and
real values. Alternatively, and frequently more
conveniently, the proper definition of k., when real,

may be achieved directly from the refractive index
plot [Arbel and Felsen, 1963]. Since the radiation
condition requires that each constituent propagating
plane wave transport energy away from the source
region,” the permissible portion of the refractive
index surface for z>>0 is that for which the surface
normals have a component in the - z-direction; it
is important to recall in this connection that the
sense of the normal is such as to make its angle with
the wave vector k less than 90° (see fig. 1, where a
section through the k,k. plane is shown). The
converse argument applies when the observation
point lies in 2z<0. Having thus identified the
appropriate branches of the refractive index plot,
one may determine by inspection the correct alge-
braic sign of k.. As noted from figure 1, it may
happen that £,<_0 when z>0 (rays S" or S;), thereby
leading to a phase progression along (—z) while
energy advances along (+z). This corresponds to
a ‘‘backward wave” with respect to the z-axis, a
common occurrence in anisotropic media [see also
Clemmow, 1963].

If the refractive index surface has an open branch
so that k, is real for all values of k. and (or) #,, the
preceding arguments may be applied as well. The
mtegral (11) is then no longer exponentially con-
vergent, and the field may grow without limit in
certain spatial directions. This aspect is explored
further in section 3.3b.

3.2. Saddle Point Condition

To effect a reduction of the inteeral (11), it is
noted that the far fields are contributed essentially
by those area elements in the k,, k,-plane surrounding
the stationary points in the exponent. The station-
ary phase condition

v Ok. y Ok
—w = (12)

selects those values of £, and k&, for which the normal
to the refractive index surface points in the direction
from the origin in the source region to the distant
observation point, r. Since the normal to the
surface has been seen to specify the direction of
power flow, one recognizes that the major contri-
bution to the far field arises precisely from those
plane waves (rays) which carry energy from the
source to the observation point along a straight line
trajectory. Conversely, the refractive index plot
may be utilized to determine the real stationary
(saddle) points in the k,,k, wave number space:
one finds all points on the surface having a normal
parallel to the prescribed radius vector r (see for
example the four rays S, ... S; in fig. 1), and
reads off the corresponding values of k, k&, which

2 The radiation condition, which requires the outward flow of total energy,
must be satisfied for arbitrary source configurations, i.e., arbitrary A in (11).
One then concludes that each plane wave constituent must individually satisfy
this condition [see Arbel and Felsen, 1963].
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locate the saddle points, remembering the previously
mentioned radiation condition that the angle be-
tween k and the ray isless than 90°.  These graphical
considerations therefore =aid substantially in the
visualization of the saddle point configuration
pertaining to the integral (11) [Lighthill, 1960;
Arbel and Felsen, 1963; Mittra and Deschamps,
1963 ; Kogelnik and Motz, 1963].

3.3. Ray Amplitudes
a. Curvature of Refractive Index Surface

The refractive index plots furnish information
not only about the multiplicity and propagation
characteristics of the rays reaching a distant observa-
tion point, but also about the ray amplitudes.
The asymptotic evaluation of the double integral
(11) may be carried out by adding the contributions
from the vieinity of all appropriate stationary points
satisfying condition (12). Since the choice of
coordinate axes with respect to the dispersion surface
has been left arbitrary, we may select an orientation
so that the z-axis 1s parallel to the radius vector r;
ie., z=y=0 in (11), and the saddle points are
defined by those points on the surface with normal
parallel to z. In the vicinity of a saddle point
(kzjyky;) =k, the presumedly ‘slowly varying fune-
tion A may be approximated by A(A,,,A,,,)_ 5, and
the function %, in the exponential may be repre-
sented by the first few terms in its power series
expansion about (k,;,k,;). In view of (12), with
y=z=0, the linear terms in (k,—/k,;;)=¢ and
(k,—k,;)=n are absent. By orienting the (&%,
coordinates so that they coincide with the principal
directions of curvature of the surface at the saddle
point, one eliminates the &p-term and may write to
terms of second order,

k. (%, k)=k;+3K,8+3 Kym*+-. . ., (13)
with K,;=0%./ok3] ; and K,;=0%./0k’]; representing

the associated curvatures, and k., =k, (k. k,;). Thus,
the asymptotic approximation of E(r) for large
values of z is given by [Lighthill, 1960]:

©

E(r)~ ZAL“‘f ei""}ﬁ?”déf ¢y 2dy  (14a)

—

i[sgn K, j+sgn K, 1w /4
ZQTWZA]-U"ZJ e 0<:> (14b)
2 VK| z
where K;=K,;K,; is the Gaussian curvature at the

Jth mntubutmo saddle point included in the sum.
The detailed structure of A; depends both on the
medium parameters (i.e., the refractive index profile)
and on the nature of the source configuration.
While the preceding considerations yield a/l the
possible rays which may propagate from the source
to the observation point, it should be kept in mind
that specific source configurations may excite only
some of these.
Equation (14b) states that the distant field
radiated by a confined source distribution is com-

prised of radial rays along which the field decays
according to (1/r). The angular pattern (ie., the
amplitude) of the field along a given ray is governed
by the coefficient A; which is generally well behaved,
and by the factor K;'2. Disregarding A, the
dl]l])lltll(le evidently increases when the ray originates

from a “slowly curved” segment of the dispersion
surface, and 1t appears to erow without bound

when one of the principal radii of curvature vanishes.
A closer investigation of the refractive index plot
reveals that K;—0 implies the coalescence of two
saddle points and therefore the strong interaction
of two almost identical ray species (see fig. 1, where
k,i—k,, when the radius vector r from the source to
the observation point becomes perpendicular to the
curve at the inflection point 77; similar considera-
tions apply to 7%). This situation requires a modi-
fication of the asymptotic evaluation of (11) wherein
it was assumed that the saddle points are simple
(K., K,;#0) and separated. 'The calculation when
K;—0 leads to a radial dependence involving Airy
functions and to field strer igths enhanced over the
(1/r) dependence; details have been eiven elsewhere
[Arbel and Felsen, 1963] and will not be repeated
here. We should merely like to emphasize in the
context of the present discussion that the occurrence
of field enhancement by virtue of the interaction of
rays arising from two adjacent stationary points
may be predicted directly from the presence of
points of inflection in the refractive index diagram.

b. Open Branches of Refractive Index Surface

[f the refractive index surface contains unbounded
branches, there will exist certain ray directions
corresponding to saddle points /k,;—c and (or)
k,;—. Since k, is now real over the entire integra-
tion interval, the integral (11) is no longer exponen-
tially convergent, and E(r) may actually diverge
when the saddle point moves to infinity. The
nature of the singularity depends on the source
configuration; 1t 1is most pronounced for point
source excitation but may actually be made to dis-
appear for sufficiently smooth source distributions.
Details of the analysis are available elsewhere
[Arbel and Felsen, 1963; Felsen, 1964a] and it
suffices for the present to note that the singular ray
directions may be inferred easily from the refractive
index diagram (see ray S’ in fig. 1, as k— along the
open branch; the singular ray direction is perpendic-
ular to the asymptote).

3.4. Domain of Existence of a Particular Ray Species

If the refractive index surface possesses undulations
(“bumps” or “dimples”) or unbounded branches,
not all regions of space are illuminated by the same

ray species. For e\ample if 6, and 6, ‘denote the
angles between the positive k.-axis and the normals
at T, and T, respectively, in figure 1, ray S, reaches
those observation points in the first quadrant of
the y, z plane whose angular deviation 6 from the
z-axis lies in the interval 0 <<6,. Ray S, is con-
fined to 0, <6 <6, ray S; exists in 6, <<7/2, and ray
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S, in 6;<6<m/2 with 6; representing the inclination
of the normal to the asymptote of the open branch.
The angular domain wherein a ray species exists
is its zone of illumination and the remaining region
is the shadow zone wherein the fields on the ray in
question are exponentially small. It is evident that
the zones of illumination and shadow may be inferred
directly from the refractive index plot from which
it 1s seen, for example, that rays S, and S, are absent
when 6, <0 <7/2 (the corresponding saddle points are
((>mple\ in this range) while the shadow region for
rays S, and S; is 0 <6< 0, (see also fig. 8).

4. Source Problems in Isotropic Regions

To illustrate specific application of the preceding
concepts in their simplest form, a number of radiation
problems in isotropic configurations are reviewed
and interpreted via the refractive index plots. In
a homogeneous isotropic medium, €=1le, and one
obtains from (3) the dispersion relation

k=VIE+k,+ =R,

© —
=, =k,

where n may depend on » but not on 6. As noted
previously, the refractive index plot reduces to a
sphere in this instance so that the directions of the
wave vector k and the ray S coincide.

4.1. Sources in an Unbounded Region
a. Point Source

The fields radiated by an arbitrarily oriented
electric or magnetic current element in an infinite,
homogeneous, isotropic dielectric may be derived
by suitable vector operations from the scalar Green’s
function

(,l'l\'r
G=—> 15a
4r ( )
which has the integral representation
zII z+k,y-+k,|2|]
G= f dk, f d/w !
tSl Z
k.=~ken?—ki—k2. (15b)
kZ
S
|
¢] { |
!
t Ky
Ky
Ficure 2. Wave vector surface for isotropic medium: k=Xkqn.

Saddle point—#ky1=Fk sin 6.

(The above-mentioned vector operations account for
the detailed structure of A in (11) for different
source configurations.) While the solution for this
trivial example is known in the closed form (15a),
the integral (15b) shall be investigated per se for
purposes of illustration.

Because of the spherical symmetry, the coordinate
system may be chosen so that =0, ther eby leading
to the diagram in fieure 2. In view of the dependence

on |z in (15b), only the region z >0 need be con-
sidered. /%, must be positive imaginary when non-

real, and it is evident from the diagram in figure 2
that to satisfy the radiation condition, £, is positive
when real. It follows from this definition that the
integration path is indented into the lower and upper
halves of the k, plane to avoid the branch points at

ky=~kin’—k3 and at k,=—+kin*—k;, respectively,
when £3<kin?.  Analogous considerations apply

to the £k,-integration. The same conclusions are
reached when dissipation is assumed initially (Im
n>0) and the lossless case is approached subse-
quently. One observes, incidentally, that the branch
points correspond to those portions of the refractive
mdex surface for which the associated rays are
confined to the z=0 plane (separation between rays
eoing into z>0 and z< 0, respectively); this latter
observation holds also under more geneml circums-
stances where these singularities are no longer
defined by the simple condition %,=0.

From the discussion in section 3.2 and figure
2, it follows that the only saddle point of the inte-
erand in (15b) (with 2=0) is located at k,=Fk
sin 0, where 6=tan~!(y/z) specifies the angular
location of the observation point. While this
conclusion is reached at once from the geometrical
construction, it may of course be verified from (12)
by direct calculation. Each distant observation
point is therefore reached by a single radial ray
with wave vector k.

Since the principal curvatures of the spherical
surface are constant and equal to (—1/k), one
obtains directly from (14b) that the asymptotic
approximation to G is given by the expression
(15a) (which in this instance happens to hold for
all #). None of the complicating features due to
points of inflection or open branches of the re-
fractive index surface arise here. It should be
recalled that the angular variation of the ray ampli-
tude also depends on the nature of the source
and emerges from the derivation of the field via
the scalar Green’s function 6.

b. Line Source

Constant phase. 1If the excitation is in the form
of electric and (or) magnetic currents distributed
uniformly along a line, say the y-axis, then the
entire field structure is independent of the y-coordi-
nate, and the constituent plane waves descriptive
of this field conficuration must be characterized
by k,=0. (‘onsequentlv the effective portion of
the refractive index diagram is the curve formed

160



by the intersection of the sphere in figure 2 with
the plane k,=0. The corresponding surface normals
are confined to the z, z-plane so that energy leaves
the source along radial rays which lie in a plane
perpendicular to the source axis. The polarization
of the field, or its angular intensity distribution,
depends, of course, on the details of the source
configuration.

Linearly progressing phase. 1f there is impressed
on the previously mentioned line distribution a
phase variation exp (ik, ), where k, is a real con-
stant, then the resulting fields in this y-invariant
structure must exhibit the same y-dependence. The
constituent plane waves are therefore characterized
by k,=k,, which requirement reduces the double
integral i (11) to (1 single one over k., (the I,
dependence of A(k,, k,) is in the form &6(k,—Fk,)).
The radiation characteristics are now inferred from
the intersection of the plane k,=#, with the refrac-
tive index surface in figure 2. One observes that
if |k, <<k, energy emanates from the source along
rays which lie on a circular cone having an apex
angle y=cos™" (k,1/k) with respect to the source axis
(fig. 3). It is evident from figure 2 that real rays
exist only when |k, |<k. For |k,| >k there is no

real solution for %, and radiation does not occur.
The intervals |k,,|< & and |k, | >k distinguish phase

velocities along the source distribution which are
larger and smaller, respectively, than the velocity of
licht in the medium; as is well known, the former
wave types radiate whereas the energy in the latter
is bound to the source region.

The validity of the |)1'0(e(1i110' remarks 1s easily
verified from the scalar Green’s function
G:i ey H® [V (B—k2) @2+ 22 (16a)
PN Gl A
:471_(3 J/l" 'm- = /1: — (//\'_,, 1"~’\/ *‘A A,,],
(16b)

in terms of which the electromagnetic fields may be
derived. For example, if the source is a line of elec-
tric currents of unit strength, then the nonvanishing
field components are

L1 i 24, @
= a,«- )G 2= akoy = "on’
(16¢)

with R=+/z’4 2> =tan~' (z/x) denoting polar

coordinates in the plane transverse to 7. Using the
asymptotic approximation of ¢, one finds E~ (v X ¢)
(k*—k3,) '*F,, H~+yeuwzE, where » is a unit
vector along one of the rays sketched in figure 3.
The Poynting vector is therefore parallel to ».  For
k=0, one recovers the case described in the first
paragraph.

ikyly \I/

Frcure 3. Ray configuration for phased line source.

c. Twe-Dimensional Source Distribution

If the sources are distributed continuously over
the entire z,y-plane with impressed phase variation
exp (ikqz) exp (ik,y), where k,; and k,, are real con-
stants, then the ﬁel(l is described by a single plane
wave with (kz, k,). The direction of energy flow
is again inferred from that of the normal to the
refractive index surface at this point. It is noted
that radiation takes place only if &%, k2 < k2

d. Highly Directive, but Confined, Source Distributions

The preceding phased one- and two-dimensional
source distributions of infinite extent are idealiza-
tions which may, however, serve as approximations to
large phased arrays or apertures of finite extent.
Consider, for (‘\'(nn])lo a progressively phased lll)(‘
source 1\ in figure 3, confined to the interval —a<"
y<a. The: nnplltlulv function A(k,, &,) in (11) now
contains the factor [sin (k,—k,)a](k,—k,)", which
has a sharp peak at k,=£k, if the source region is
many wavelengths lmw While this behavior is less
violent than the 6(k,—k,) corresponding to a—o , it
nevertheless selects the plane waves with k,—k, as

those contributing to the major peak(s) in the
radiation field. 'The previously determined rays

therefore point in the direction of the major lobes in
the radiation pattern so that the refractive index
diagram may be employed to find the locations of the
radiated beam maxima.

e. Radiation From a Uniformly Moving Charge (Cerenkov Effect)

If a point charge ¢ moves with constant velocity v
along the Y- dnectl(m the associated electric current

density J may be characterized as follows:

j:yoqz‘é(r—r’)é(:‘~:’)6({/—1%). (17)

The frequency spectrum J of this source distribution
is obtained by taking the temporal Fourier transform

]‘ ” iwA — (1 r A/ Z
J_—_2~f (»;+ ‘J(lf*yo;_)_’}é(.l—.l )6(-—

! i(ko/B)v
< )(5 /8 9
m —®

(18)
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where ky=w/c and B=v/c. This excitation for
specified frequency corresponds precisely to the
linearly phased line current discussed in section 4.1b,
with amplitude (¢/27) and impressed phase progres-
sion k, =ky/B. 'The radiation characteristics at any
given frequency may therefore be inferred from the
results in section 4.1b, and the space-time dependent
field is then recovered upon carrying out the w-inte-
gration in (5b).

Since the particle speed 1s always less than the
speed of light in vacuum, i.e., <1, one observes that
ke, >ko. 1t is then obvious from figure 2 that no
radiation will take place in vacuum for which the
refractive index n=1. In fact, radiation is possible
only when the charge moves in a medium with
refractive index n_>(1/8) for which one may satisfy
the condition k,<_k. If dispersion in the medium 1s
neglected so that n is independent of frequency, then
radiation at all frequencies will emerge along the
well-known ‘“‘Cerenkov angle”

Y=cos™! (%‘): cos—! <6Ln>’

which may be determined graphically from the
refractive index diagram (figs. 2 and 3). For a
frequency dependent 7, the Cerenkov angle will
likewise be a function of frequency.

(19)

4 2. Influence of a Plane Boundary

In the preceding sections, the refractive index
surface has been utilized for the determination of
the power flow properties associated with various
source distributions in unbounded media. The discus-
sion is easily extended to accommodate the presence
of a plane boundary which either terminates the
region (for example, a perfect conductor) or separates
it from another with different physical properties.
The underlying analytical considerations are similar
to those dealt with earlier. If it is assumed, for
example, that the plane z=0 separates two semi-
infinite dielectrics with n=n,(z<0) and n=n,(z>>0),
then the fields of a z-directed point source located at
(0, 0, 2’), /<0, may again be derived from a scalar
Green’s function @ which has a different representa-
tion in the two regions. In region 1 (2<0), G
contains a direct and a reflected portion [Stratton,
1941]

G=G1+G7, (20)
G{zx;fidkxfidk,,ﬁf#e*”’zlz’. ez
(20a)
® ® pikthy—kaq2)
ar= f _w(lk,f i ) S
(20b)

whereas in region 2 (z>>0), the transmitted field is

derived from
G:G‘_):f ([krf (”ﬁ'yT(k'I, /C_,I)({i("'1""“'!/”'*‘"Azzz)@‘““213'Y
k.i=vVksni—ki—k2.  (21)

Here, T and 7 represent the plane wave reflection
and transmission coeflicients, respectively, whose
detailed form (for either £ or H polarization) is
readily evaluated but irrelevant to the present
discussion. The important thing to be recognized
is that the constituent plane waves in both regions
are characterized by the same wave numbers k,, k,
in the direction parallel to the interface—a condition
required to assure continuity of the tangential field
components across the boundary. The signs associ-
ated with £, and k., have been chosen in accord with
the previously discussed radiation condition (sec.
4.1); in (20a), they assure the outward power flow
from the source plane z==z’, in (20b) the flow of re-
flected power toward z=—, and in (21) the flow of
transmitted power toward z= 4.

a. Incident, Reflected and Refracted Rays

The familiar relation between the angles of inci-
dence, reflection, and refraction of a plane wave,
known as Snell’s law, i1s inferred at once from the
refractive index plots, a section of which is shown in
figure 4. The propagating wave solutions corre-
sponding to a given value k,=#k, (with k,=0 through
proper choice of coordinates) may be ascertained
from figure 4 wherein it is assumed that 7, >mn,.
Evidently, four solutions are possible: two rays
each progressing into z >0 and z<{0, respectively.
If a ray is incident on the interface from region 1
(S7), the corresponding reflected ray is Si’; since
the surface k=#k, is rotationally symmetric about
the k.-axis, the angles of incidence and reflection are
equal (6,). Of the two ray solutions S, and S
corresponding to the preseribed k,; in region 2,
S;” must be discarded since it carries energy along
the negative z-direction and therefore violates the
radiation condition associated with an incident ray
from below. The relation between the angles of

s i
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X 6,
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Frcure 4. Wave vector surfaces and rays for two different
isotropic regions: k;=Kken;.
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refraction (6,) and incidence is obtained from the
graph via the condition: k, =/, sin §,=Fk, sin 6,, o1
sin 6,= (ny/n,) sin 6; (Snell’s law). Since the two
surfaces are spherical, the incident, reflected and re-
fracted rays all lie in a common |)l.me One notes
that the A:—bl dll(‘h is intersected (mlv when k< k,;
for ke, >k, ie., sin 0, > (no/n), k2 is 1maginary and
no pr()pagatwn takes place in region 2. The incident
wave is then totally reflected.

b. Lateral Rays

When A,/l—/u, the ray is incident at the critical
angle §;=sin"! (ns/n;) and the refracted ray proceeds
par rallel to the interface (see right-hand portion of
fig. 4). This parallel ray, called a ‘lateral” ray,
may refract back into region 1, thereby ])1()\1(11[10 a
mechanism for energy Transfer which is entirely
different from that associated with a reflected ray
[Brekhovskikh, 1960]. In contrast to the discussion
in section 4.2a which is relevant for an ordinary
plane wave, the appearance of a lateral ray is con-
nected 1ntlnmlvl\ to the presence of a source of finite
dimensions and owing to the continuous leakage of
energy (see fig. 4), the amplitude of the field on a
lateral ray is smaller than that on a reflected ray.
While some further comments on this ray species
are made later on, it is to be emphasized at this point
that the existence and trajectory of a lateral ray
may be inferred directly from the refractive index
plot.

If the source is placed into the “thinner” dielectric
(1 e., if ny>ny), the lateral ray is not excited since it
is not p()S%lbl@ to have f.==/2 for any incidence
angle in the range 0<6,<wx/2. The intimately
related phenomenon of total reflection is also absent
in this instance.

c. Asymptotic Evaluation of Reflected and Transmitted Fields

While the direct field @) may be evaluated as
before (see (15a, b)), the reflected and transmitted
fields require further attention. If we again set r=0
for convenience, the saddle point in the /£, integral is
located at /.,\~() The saddle point condition applied
to the remaining integration n (20b) yields:

akel

Ok |

Ok l“llio at ki/s (22)

|+

Since (0k.;/Ok,) = —tan 6;, where 6; is the angle
of the normal to the refractive index diagram at
(k.i. k,), the straight line through (y, z) defined by
(22) lll(LV be 111ter])leted oeomelu('ullv as follows:
The observation point (y, N) in region 1 is reached
via the ray trajectories S; and S;" in such a
manner that the angle of reflection is equal to the
angle of incidence; this condition determines 6, and
thelel)\' the saddle point k,, via figure 4. The
equality of the angles of incidence and reflection
follows from the symmetry of the refractive
index plot; the ray interpretation of the saddle
point condition is unaltered for more general situ-
ations where these angles may be (llﬂerent from one

another (see sec. 5.3). Confirmation of the ray
interpretation in figure 5 is also had from the expo-
nential in (20b) e\altmte(l at the saddle point:
exp [i(kyy+kalz[+k Since = J1+J» the phase
change 1s precisely the one required by a plane wave
to travel from the source to the observation point
via the ray trajectory Si, S;".

Analogous considerations apply to the evaluation
of the transmitted field via (21). The saddle point
condition now reads

akzl akzz

Ok, ~

l[_’_

=0 at k,, (23)

and has a simple graphical interpretation: The
observation point (y, z) in region 2 is reached via
the ray trajectories Sy and S, in such a manner that
the relation between the angles 6, and 6, is that spec-
ified by the refractive index plot in figure 4.

In summary, the saddle point determination re-
quired for the asymptotic evaluation of the reflected
and transmitted fields, and the subsequent ray-
optical interpretation of the result, may be carried
out with the aid of the refractive index diagram:
The source and observation points are connecied
by rays which satisfy the plane wave reflection or
refraction laws, and the corresponding values of
ke, yield the saddle points. From a knowledge of
the saddle points, one may determine the ray ampli-
tude via the remaining amplitude factor in the
adiation integral.

The saddle points associated with propagating
wave solutions in both regions are restricted to the
interval |/, <k, and |k,,|< &, for the reflected and
transmitted fields, respectively. If &y >k,, then the
saddle points deseriptive of the reflected field may
cross the branch points at +k,. Under these con-
ditions, the asymptotic field contains another con-
stituent arising from a branch point integration.
This field type is the previously mentioned lateral
wave whose existence and trajectory is readily pre-
dictable from the refractive index diagram. As
noted from figure 4, the lateral wave contributes
only when 6, >0, the[ebv implying that the branch
point contribution is absent when |k,,[< /.. This

SOURCE

(y,z)

Fi1GURre 5. Ray interpretation of saddle point condition for
reflected and refracted fields (y,+y.=y
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a. Original path.
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FiGure 6.

conclusion is confirmed from a study of the steepest
descent path through the saddle point which involves
a deformation of the integration contour away from
the real axis, thus making unambiguous the domain
of contribution from the branch point (see fig. 6).

d. Other Scurce Distributions

The preceding discussion has shown that the
plane wave refractive index diagrams have direct
application to the determination of the reflected or
transmitted fields when a plane boundary is present.
In essence, one first finds the ray structure in the
unbounded region containing the source and then
accounts for the interface by a ray-tracing procedure,
with the trajectories of the reflected and 11':111%1111“9(1
rays ascertained from the diagram. With this in
mind, the study of other source conficurations is

evident. For example, the highly directive sources
described in section 4.1d excite strongly certain
selected ray configurations whose characteristics in

the presence of the interface are predicted from the
refractive index plot. In this manner, one may
find the directions of the reflected and transmitted
beams. Cerenkov radiation due to a charge moving

parallel to the boundary is also easily understood.
If the charge moves in region 1 and %,— (/\(\/;6)<]1>
<Jy, then Tadiation will occur in both regions at
readily determined angles.  For ke, > (k/8) >/k,, prop-
agation is possible ()nlv in region 1 and the energy
is totally reflected at the interface, whereas for
(ko/B) >ky, no radiation takes place. If the charge
moves in region 2, radiation escapes into both regions
when (/r(./ﬂ)<l. ,</q, but the fields in region 2 are
evanescent when &, > (k¢/8) >k,. Since propagation
in region 1 is pnssible, however, under the latter
condition, the incident evanescent fields may couple
to propag ~111n<> waves at the boundary.

4.2, Multiple and Gently Curved Interfaces

If the region is comprised of homogeneous layers
(an inhomogeneous region may be so approximated),
each layer has its own refractive index diagram and
the previously described field matching procedure
may be employed to chart the progress of a ray

through the medium. The diagrams also reveal
when a ray is “‘trapped” (ducting effect, bound
raves): if a layer is bounded on both sides by
media with smaller refractive index, it is possible to
find wave solutions which pl'op(wae in the layer
but decay outside.

In view of the ray interpretation of the fields
radiated by confined source distributions, the ray
tracing method may be applied locally even when an
interface 1s nonplanar provided that the curvature
1s small over a length interval equal to the local

ravelength [Keller, 1958]. Under these circum-
stances, the boundary at the point of impact of the
ray is assumed plane, and the refractive index plots
may then be used to determine the initial trajectories
of the reflected and transmitted rays.

5. Further Discussion for Anisotropic
Regions

The discussion in section 4 involving isotropic
regions has served to illustrate the use of refractive
index diagrams for the study of various familiar
radiation problems. While the associated phenom-
ena and their interpretation in terms of rays are in
this simple case also easily deduced by other means,
the refractive index plot offers distinet advantages
in anisotropic regions where its contour may depart
drastically from the spherical shape. With an
llll(lelstdmlmo of the isotropic situation, one may
proceed to dppr the same umsuler ations t() the aniso-
tropic case; the only difference is the substantially
more complicated configurations of surfaces which
depend on the form of the dielectric tensor € in (3).
For the magneto-ionic medium, they may be omupe(l
into some eight categories [Clemmow and Mullaly,
1955; Allis, 1961; Des('hdmps and Weeks, 1())2]
which range from two concentric ovals to the undu-
lating and open-branched configuration shown in
figure 1, as the applied, cyclotron and plasma fre-
quencies (for electrons) take on various values. The
- variety of surface contours is further increased when
additional species (for example, ions) are taken into
account in the description of a magneto-plasma
[Allis, Buchsbaum, and Bers, 1962].  For the present
discussion, the specific nature of the surfaces is of no
concern and it suffices to deal with a typical case (as,
for example, in fig. 1). It should of course be evident
that the multibranched character of the refractive
index plots implies the existence of more rays than
those observed in the isotropic case. Even in the
magneto-ionic medium wherein only electrons are
considered mobile, as many as four different propa-
gating solutions for k.(k;, k,) may be encountered.
In view of the very complicated ‘analytical expres-
sion for k, in terms of %, and k, [Budden 1961], it
may be appreciated that much insight is gained from
a plot of these quantities provided by the refractive
index diagram.

The problem of radiation from a point source in
an unbounded anisotropic region has already been
dealt with in section 3. The anisotropy exerts in-
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teresting effects also on other source distributions
which are readily explored.

5.1. Line Source

The power flow characteristics for a uniform line
source directed along the y-axis are inferred from the
k,—0 section through the refractive index plot. If
the y-axis coincides with the direction of the axis of
symmetry (gyrotropic axis), the normals to the sur-
face in the k,=0 plane are contained in this plane;
the radiation therefore leaves the source in the radial
direction and the rays are perpendicular to the line
axis. For arbitrary inclination of the gyrotropic
axis, however, the surface normals need not lie in
the k,=0 plane. With reference to figure 1, for
example, the two rays with £,=0, k,=0 point into
the first (top ray) and third (bottom ray) quadrants,
respectively, with intermediate positions occupied
by rays with £,70. Energy thus travels along
trajectories which are no longer perpendicular to the
source axis although no phase variation is impressed
along the source, a behavior in marked contrast to
that observed earlier in the isotropic case. If the
k,=0 plane intercepts more than one branch of the
refractive index surface, several ray species (with
different orientation) may arise.

These observations apply also when the source
possesses a progressive phase variation exp(ik,,), in
which instance the intersection with the plane
:,=k, 1s pertinent. For example, if £, is so large
that only the open branch of the surface in figure 1
is intercepted, one obtains the ray structure shown
in ficure 7. In view of the requirement k-S >0, it

a) wave normal surface and ky = kyl section

o
e

S,
f\ y
$
b) line source and rays

Ficure 7. Progressively phased line source inclined to
gyrotropic axis (gyrotropic axis lies in y-z plane).

a. Wave vector surface and k,=k,1 section.
b. Line source and rays.
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Ficure 8. Unphased line source perpendicular to
gyrotropic axis.

a. Wave vector plot.
b. Ray configuration.

is noted that the rays 5, and S, in the £,=0 plane
are “‘backward’ in the sense that the direction of
phase progression is toward the source axis whereas
energy necessarily flows outward. Evidently, the
rays are not confined to a circular cone as in the
isotropic problem (fig. 3).

Since the refractive index diagrams for the mag-
neto-ionic medium are rotationally symmetric about
the gyrotropic axis, substantial simplification in the
ray picture results when the line source is oriented
along, or perpendicular to, the axis of symmetry.
In the former case, already mentioned earlier, the
ray configuration is also rotationally symmetric
and the rays in figure 7, for example, lie on a cir-
cular cone. In the latter instance, with %,=0, the
effective portion of the diagram comprises the plane
section in the k., k. plane as illustrated in figure 8
for the case of an open-branched surface. The rays
are now confined to the z, z plane (i.e., they leave
the source at right angles) and they illuminate only
the shaded region in ficure Sb).

5.2. Other Source Distributions

The preceding considerations concerning line dis-
tributions (and the analogous surface distributions
described in section 4.1¢) are again applicable to
spatially confined but highly directive sources (see
section 4.1d). For example, a planar phased array
in the z-y plane with k,=0, k,=k,, produces two
narrow beams which point asymmetrically along
S, and S, in ficure 7b, whereas a linear phased
array with &,=k, produces beam maxima over
a noncircular cone whose generators follow from
ficure 7 [Felsen and Rulf, 1963]. The result for
the linearly phased line source (with /£, =%,/ as in
section 4.1d) may also be employed for the study
of the radiation produced by a given spectral com-
ponent at frequency w arising from a point charge
moving uniformly along the y-axis. Because of the
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highly dispersive character of the magneto-ionic
medium, the radiation characteristics differ greatly
for various frequency ranges. Once the refractive
index plots are available, it is a simple matter to
ascertain when radiation may take place (i.e., when
the Cerenkov “coherence condition” may be satis-
fied): one looks for possible intersections of the
plane k,= (ko/8) with the wave normal surface and
infers the corresponding ray angles [Clemmow, 1963 ;
McKenzie, 1963].

It must be emphasized that these graphical
methods for the determination of major features in
the power radiation pattern apply directly only
when a single ray reaches a given observation point.
If several rays are involved, their combined power
pattern (which may deviate from the individual
behavior) must be determined. It may happen,
however, that the given source configuration excites
one ray species more strongly than the others, in
which instance the pattern is determined essentially
by the most strongly excited ray. i

5.3. Presence of a Plane Boundary
a. Ray Interpretation of Fields

_ If the gyrotropic medium is bounded by a plane
mterface at z=0, the radiation integral (11) must
be augmented by additional contributions which
account for the reflected and transmitted parts
as in (20) and (21). Since there will generally
be several solutions for k.(k,, k,) as evidenced by
the multi-branched refractive index plots, it 1s
understood that a separate integration is required
for each pertinent %, (corresponding, for example,
to the ordinary and extraordinary modes). The
resulting integrals are quite complicated [Barsukov,
1959; Arbel and Felsen, 1963; Tyras, Ishimaru,
and Swarm, 1963] but as in the isotropic case
(sec. 4.2), their detailed structure is of no concern
here.  We deal merely with the plane wave ex-
ponents in the integrands which may now have the
more general structure

6i(k,z+!:,,g/+l'g'f Ol AT )
and

. Wkt +kyy 4k 9|2/ +k 222)

(24)
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Ficure 9. Wave vector surfaces and rays for anisotropic and

1sotronic half-snaces.

In this illustration for the magneto-ionic case, the
superscripts o and e which denote the ordinary
and extraordinary modes, respectively, may occur
in any combination. The first exponential de-
scribes the reflected waves in region 1, with identical
superscripts indicating reflection into the incident
mode and different superscripts accounting for
reflection into a different mode caused by coupling
at the boundary. The second exponential describes
the transmitted waves in region 2 which is assumed
to be isotropic. If the boundary is perfectly
reflecting so that no wave penetration into region
2 is possible, then integrals of the second type do
not arise.

As in the isotropic case, the incident, reflected,
and transmitted plane wave constituents are all
characterized by the same transverse dependence
on ki, k, so that the wave vector plots may be
used as before to chart the progress of the reflected
and transmitted rays. As an illustration, consider
the wave vector surface in figure 7 and assume
that the anisotropic medium so described is separated
from an isotropic dielectric half-space with re-
fractive index n, by a plane interface at z=0 (the
diagram implies that the gyrotropic axis is inclined
with respect to the boundary). The composite
plot (or rather its right half) descriptive of both
regions is depicted in figure 9 wherein only the
k,=0 plane is shown in order to simplify the drawing
[Felsen, 1962]; the dark and light sections corre-
spond to rays carrying energy along +z and —z,
respectively. The interpretation of figure 9 is
directly analogous to that of figure 4 and the com-
ments in sections 4.2a-4.2¢ need not be repeated
here. Tt may be noted that although the incident,
reflected and refracted rays lie in a single plane
when k,=0, this condition does not obtain in the
general case k,%0. Moreover, the angle of the
reflected ray S’ is not in general equal to the angle
of the incident ray S; when the gyrotropic axis is
oriented arbitrarily with respect to the interface
(the previously mentioned mode coupling does
not occur if the diagram for region 1 has the simple
shape shown in fig. 9). The configuration in figure 9
may also support a lateral ray. The saddle point
condition derived from the exponents in (24) has
the general form (23) (when k,,=0) and is therefore
amenable to the same ray-optical interpretation as
in figure 5 (see right-hand side of fig. 9), provided
that the ray trajectories and the relations between
the angles of incidence, reflection and refraction
are those consistent with the refractive index plot.
The same comment applies to the ray-optical
determination of the final asymptotic field solution,
with the detailed behavior of the ray amplitudes
inferred again from the appropriate amplitude
factor in the integrand.

The remarks in section 4.2d concerning various
types of source configurations are pertinent as well
for the present discussion. T'o assess the influence of
the boundary on the radiated field, one obtains
first the ray configuration in the unbounded medium
and then employs the refractive index plots to
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trace the progress of the reflected and refracted
rays. 'The observations in section 4.3 are also
applicable here.

To illustrate the variety of wave phenomena
possible when mode coupling takes place at the
boundary, we consider the medium schematized in
figure 1, with the gyrotropic axis perpendicular to
the interface (see fig. 10). The branches “o”” and
“¢” describe the propagation characteristics of the
ordinary and extraordinary waves, respectively, and
the circular contour represents the exterior di-
electric. Since the diagram is rotationally sym-
metric about the k.-axis, the horizontal axis has
been labeled %, An upgoing (incident) ordinary
ray A gives rise to an ordinary reflected ray €', an
extraordinary reflected ray D and a refracted ray
I; conversely, an incident extraordinary ray &8
produces a reflected extraordinary ray [I), an or-
dinary ray € and also a refracted ray I, all of
which correspond to the same value of £,. One
observes that the incident ordinary and extra-
ordinary rays proceed to entirely different regions of
space although both are characterized by a common
ralue of k,. Moreover, ray I is refracted on the
same side of the surface normal as the incident ray
B, a behavior quite different from that in an iso-
tropic rtegion (backward refraction); backward
reflection occurs for rays B, 'and A, D.

The possible lateral ray trajectories are partic-
ularly interesting. It is seen from figure 10b that
an ordinary lateral ray C) may be excited by an extra-
ordinary 1incident ray B; and refracted into the
extraordinary ray D, as well as the exterior ray £;.
This lateral ray travels inside the medium containing
the source and therefore represents an effect which
is not encountered in isotropic problems.? In addi-
tion, there exists the more conventional lateral ray
I, which travels in the erterior medium [see Felsen,
1963; Tyras, Ishimaru, and Swarm, 1963], is excited
by the mcident ray B, and refracted back into ray
D,. Analytically, the points of emergence of rays
Cy and I, on the refractive index diagrams, represent
branch points which may be crossed during the
asymptotic evaluation of the radiation integrals [see
Arbel and Felsen, 1963, for a classification of these
singularities]. While the lateral ray amplitude is
generally smaller than that on a reflected ray, it is
mmportant to note that the lateral rays may some-
times penetrate regions which are inaccessible to the
reflected rays, under which circumstances they
constitute the dominant contribution. For example,
if the anisotropic medium is characterized only by
the open-branched surface in figure 10 (see also fig.
8), the incident and reflected rays are confined to a
limited conical region surrounding the z-axis, whereas
no such restriction applies to the lateral ray
trajectory Byli,D,.

b. Focusing Effects

Anisotropy in a homogeneous medium may pro-
duce focusing of the energy radiated by a confined

3 Similar phenomena occur in radiation problems involving elastic media
[see Ewing, Jardetzky, and Press, 1957].
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a) Reflected rays

b) Lateral rays

Ficure 10. Ray configurations.

a. Reflected rays.
b. Lateral rays.

source distribution, thereby providing another class
of phenomena not observed in isotropic regions. It
has already been noted in section 3.3 that certain
features in the refractive index diagram (undulations
or open branches) may lead to field enhancements
along certain directions in an infinite medium. In
addition, focusing may occur due to the presence of
a plane interface [Felsen, 1964b]. This may be
understood from analytical considerations by re-
calling that the asymptotic evaluation of the radia-
tion integrals leads to an amplitude dependence
which is essentially proportional to P=(d*¢/dk}), ',
where ¢ is one of the exponents in (24) and the
evaluation is made at the saddle point £,. (For
simplicity, we consider only the case k,=0 appropri-
ate, for example, to line source excitation.) Since

&

dk?

(]z(p 7(12](’.2(%). e)

e (25)

[,,l

< |, [:],2,

|2+

one observes that P may tend to zero for certain
values of |z| when the coefficients multiplying |z| and
Z’| have opposite algebraic signs. These coeflicients
are proportional to the curvature of the refractive
index plot and if two separate diagrams or branches
with opposite curvature are involved, field enhance-
ment (focusing) due to P-—0 is possible. This
situation occurs, for example, with respect to the
circular trace in fieure 10 and with the “¢” branch
as well as the portions of the “o” branch near the
k.-axis, respectively (see also fig. 9). Also, the
“o”-trace near the k,-axis has a curvature opposite
to that of the “¢” branch. Geometrically, the
opposite curvatures imply a crossing of the associated
ray family as, for example, of the refracted rays in
region 2 of figure 9. Similar crossings occur among
the reflected rays €' (or D) excited by incident rays
B (or A), as one may easily ascertain from the
refractive index diagram. When two closely ad-
jacent rays of the same family intersect, the cross




section of the corresponding ray tube vanishes and
the field intensity diverges. While this divergence
is only apparent and may be removed by a more
careful asymptotic analysis [Felsen, 1964b], it locates
those regions where focusing takes place.

As an illustration, consider an anisotropic half-
space characterized only by the open-branched dia-
gram in figure 10, with the circular contour
representing the remaining isotropic region. The
refracted ray family, when the source is situated in
the anisotropic medium, then takes the form in
figure 11a (only one half of the picture is shown).
The ray family is bounded by a caustie, two branches
of which intersect in a focus on the z-axis. Focusing
in the anisotropic region occurs when the source is
in the isotropic medium, but the caustic now has
the shape sketched in ficure 11b.

SOURCE

FOCUS —»

CAUSTIC

7

a) Source in anisotropic b) Source in isotropic

region (1) region (2)
Frcure 11. Focusing effects due to a plane interface.

a. Source in anisotropic region (1).
b. Source in isotropic region (2).

6. Summary

It has been shown how the plane wave refractive
index diagrams for an infinite anisotropic medium
may be employed to predict salient features of the
radiation produced by confined source distributions
in unbounded or bounded regions. The procedure
is essentially one of ray tracing whereby one deter-
mines first the rays excited by the given source
configuration in an unbounded region, and then
accounts for subsequent deviations in trajectories
or for generation of new species at a boundary or
inhomogeneity. The total field at a given point is
comprised of the sum of the fields carried along
various ravs passing through this point. While the
refractive index diagram furnishes direct and general
information about the multiplicity of rays excited
by point, line, or plane wave sources, detailed
features of the ray amplitudes are based on a
further knowledge of the source type (electric or
magnetic current) and polarization. However, the
diagrams reveal easily the existence of spatial
regions wherein certain ray amplitudes become very
large, thus making possible the prediction of peaks
in the radiation pattern. They also permit the

determination of caustic and focal areas arising
from mode conversion or refraction at an interface,
thereby locating other regions of space characterized
by enhanced field strengths. The validity of these
concepts has been illustrated by an appropriate
interpretation of various analytical solutions.

The concepts presented here are basic for the
construction of a general ray theory in anisotropic
media by which one may derive quantitative results
for radiation and scattering problems under quite
general conditions. Such a theory has been success-
ful in isotropic environments [Keller, 1958] and its
extension to the anisotropic case is aided substantially
by the considerations deseribed in this paper.
Some results have already been obtained [Felsen,
1963, 1964 a, b; Rulf and Felsen, 1964] and further
work in this area is in progress.
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