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A hydromagneto-ionic theory has been developed within the framework of the Burgers
formalism [1958a] which is a microscopic theory based on moments of the Boltzmann trans-

port equation.

The effects on electromagnetic wave propagation of electron-electron and

electron-proton collisions have been considered to the order of Chapman and Cowling’s

second approximation.

derived earlier by one of the authors [W yller,

that it includes the effects of ion motions.

well as the low frequency modes of wave propagation,
Ixpressions have been derived for the refractive

the retarded magneto-acoustic modes.
index, absorptivity,
index.
frequency wave propagation, viz,
resonance, and the hydromagnetic mode.

The theory is therefore

the wave polarization, and the zeros and infinities of the
Numerical applications have been given for the four characteristic modes of low
the whistler
Applications of the theory to the solar corona,

The present theory is an extension of the magneto-ionic theory

1961] for a fully ionized hydrogen plasma, in
applicable to the high as
such as the whistler, Alfvén, and
refractive

mode, lower hybrid frequency, ion gyro-

and future extensions to the terrestrial ionosphere have been indicated.

1. Introduction

The present paper considers the effect of the ion
motions on electromagnetic wave propagation in a
uniform plasma with a superposed homogeneous
magnetic field. The conventional magneto-ionic
theory considers the motions of the electrons only,
which is a valid approximation for the higch wave
frequencies used in ionospheric propagation or for
‘weakly ionized gas. When the wave frequency gnes
below the electron gyrofrequency, the extraordinary
electromagnetic wave becomes the oblique Alfvén
(whistler) mode, and for a further decrease below the
ion gyrofrequency the ordinary electromagnetic
wave becomes the retarded magneto-acoustic mode.
Denisse and Deleroix have given an excellent illustra-
tion of this in their book [1961a]. We note that if
we take account of the pressure tensor, additional
modes will appear. We have not considered these
modes in our paper.

Our work differs from most_treatments [Schliiter,
1950, 1951; Dungey, 1951; Astrom, 1951; Hines,
1953; Piddington, 1956; Gershman, Ginzburg, and

1 Presently at the Institute of Theoretical Astrophysics, University of Oslo,
Norway.
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Denisov, 1957; Lehnert, 1959; Fejer, 1960; Denisse
and Delcroix, 1961b; Allis and ])(‘lcml\ 19()%] n
that it takes account of collisional (l(unp]ng‘ by a
microscopic kinetic theory with a proper averaging
over the velocity distribution function, of like
particle interactions (proton-proton and electron-
electron collisions), and of the heat-flow equations.

We have seen that a microscopic treatment through
the Boltzmann equation led to significant departures
in the propagation factors for electromagnetic waves
in the terrestrial ionosphere [Sen and Wyller, 1960;
Leinbach, 1962]. Later on, one of us [Wyller, 1961]
applied the Burgers formalism [1958a] to find the
electrical conductivity for a completely ionized
hydrogen plasma. The Burgers formalism proceeds
via moments of the Boltzmann tr: ansport equation
and the associated collision integral. It includes the
effects of like particle interactions and of the electron
and ion heat flows, and is equivalent to the Chapman
and Cowling second approximation [1958]. The
present work is an extension of Wyller’s [1961] work
to include the effects of ion motions.

In a recent work Kantor [1963] has considered the
effects of ion motions on magneto-ionic theory with-
out collisions and considered the properties of
different directions of wave propagation with respect
to the magnetic field. Our work checks with
Kantor’s formulae for the case of no collisions.



2. Basic Equations?

It is well known that the presence of a magnetic
field in a plasma introduces an anisotropy in the
propagation of electromagnetic waves through the
medium. This anisotropy is characterized by the
tensorial representation of the associated physical

quantities governing the modes of propagation;
namely, the electric conduectivity and dielectric

constant of the medium. After introducing the
dielectric tensor (which 1s easily derived from the
conductivity tensor) into the Maxwell equations,
one can derive expressions for the refraction,
absorption, and polarization of the propagating
waves. With this end in view we shall set up in
this section the fundamental equations that will
enable us to compute the a-¢ conductivity tensor of
the magneto-ionic medium which may transmit
electromagnetic waves associated with the oscilla-
tions of the 1ons as well as electrons. In doing so
we shall adopt, as we have already said, Burgers’
formalism [1958a].

Choosing a rectangular coordinate system (o, ,
1y, z) such that the z-axis lies along the uniform

=
applied magnetic field 77, the electric conductivity
tensor can be put into a very simple form. The
electric field due to the propagating wave is rep-

b
resented by an a-c field in that medium, / cos wi=

- - - > > -
(Ep+E,j+Ek) cos wt, where 4, j, and k are unit
vectors along the z, 7, and z axes and « is the excita-
tion frequency of the wave, which is assumed to
remain constant during the propagation of the wave
inside the medium.

We shall assume the plasma medium to be homo-
geneous with no pressure and density gradients.
We shall consider a fully ionized hydrogen plasma
containing electrons and protons in equal number
densities, n;=mny, throughout the medium. The
bubscnpts 1 and 2 will be used consistently to
denote protons and electrons respectively.

The assumptions made above bring about a con-
siderable simplification in the Burgers formalism.
There is a simple relation between Burgers’ “friction
coefficient” K=K, =K and the mean electron-
proton collision frequency », namely,

fe=]
f ve =m0/ T pd dy

K=nymsv, where 7= (1)
f e —my 133/27\' " l'é dl'g
0
or
S wﬁd(mg 2 3kT
PYAZL 4 = 'p-. 2
y= 3\7r 7 \apT InA, A= o Tp (2)

Here 75, 1s the Debye length, and «,is the electron
plasma frequency.
In order to assess the full implications of the
momentum and heat transfer equations of the elec-
2 Sections 2, 3 and 4 were performed by one of us (A.A.W.) while on summer,

leave in 1963 from the Institute of Theoretical Astrophysics, University of Oslo-
Norway, to Williamson Development Company, Inc., West Concord, Mass.
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trons and protons, we state here some of the physical
parameters of Burgers’ theory that are relevant to
the conditions of our problem. For a binary gas
with known relative velocities of the colliding
particles “‘¢”” the collision cross section is given by

SO =8O =2 f > (1—cos' x) bdb. 3)
0

where b and x are Chapman and Cowling’s [1958]
collision parameters. In particular, /=1 for momen-
tum transfer with which we are primarily concerned
here. The average collision cross section for all
pos51ble relative velocities is

249240 = (u2kT)2 [ ” grrsewinT S dg- (4)
Jo

VT
Here the subscripts “s”” and ‘¢’ refer to the species of
the colliding pdltlcles and g is the reduced mass.
The superscript “/”” refers to the angular dependence
while 4”7 refers to the velocity dependence of the
colhslon cross section. In terms of these average
collision cross sections, the quantity defined by

A
25'!:1 5 Z 11)
reduces to the value 3/5 for Coulomb interactions.
In order to be able to estimate the effects of
collisions between like and unlike particles sep-
arately Burgers [1958b] introduces the following
collision factors which turn out to be proportional
to the average collision frequencies,

4 mymy 22 ..
e electron-proton collisions

=5 (m1+ma)? 7(11) ( P )

2 /m +m 1/2 7(22)

4 (M, 2 ‘
K== —— (proton-proton collision. 6
1 D( sz Z(n) p p ) ( )

2 (m,+ma\2 Z32? ..
Ko=o (1——2 =5 (electron-electron collisions).

5 2m, Z%

It will be seen later that the auxiliary quantity &
which incorporates the effects of electron-proton
and electron-electron collisions enters into the elec-
trical conductivity tensor. It is defined by

f=kt ity Yo y=2 ()
my
and Y, 1s a function of « only.

Though the proton-proton collisions do enter into
the oquatlons of the heat flow through the factor
k1, their net effects in the electrical conductivity
tensor vanish [Spitzer, 1956; Marshall, 1957]. On
the other hand, in thermal conductivity the dissipa-
tive effects due to ion-ion encounters is not negligible
[Rosenbluth and Kaufman, 1958; Wyller, 1963a].

Burgers’” momentum and heat flow equations in
their time-dependent forms will be our fundamental



set of equations for the electrons and protons. We
will rewrite Burgers’ equations [1958¢] as follows.
Momentum equations for electrons:
1 Uog— Dop~ 8oUoy = (U1, —Usy) + 210 — 2YVI1z,

T ellay—Loy— SoUoy= (Uy,— Wg,) + 2V1ay— 2YV1yy,

Tata,— o=V (Uy,—Us,) + 2000, — 2YVT 1.

)
Momentum equations for protons:
. = e e
L0y, — Tip— 81Uy, = — 1 (Ui —Usz) — 2YVT2e+ 27 VP12,
> = AP, a2
Ty — 1yt 8= —yv (U —Usy) — 2YVPay~+ 2¥°V1yy,
/i(’-’u‘lz_rlz:—v;(,u’lz—’[2:)—_57;/.25_{_ 372-1;712-
o ©)
Heat flow equations for electrons:
=4
. ) 5 o - 27 -
LWly 8oy, = -5 2v (U —12;) —‘EW’zz‘I‘ﬂ’) VI'iz,
. 5 _ o 220 =
LTy — 8oty = —75 2¥ (U, —Usz,) —$V/2!,+—1—(—) Yy,
. B = - 27 _
1Wry,=——5 SV(/Ul:_qu) —gV"23+' YVl
2 10
(10)
Heat flow equations for protons:
: 5 o= - 27 -
Lolyy—381"y =75 3’)’2”(71'1:"7/'21)_7'\'1’//'1:‘%"10‘ YV Vo,

5

‘)7
> P2 T = 250
”l/w)‘l,/-f—Sl?’]I:(; 2y V(”I!/_ ”‘2!/)_7'\1”' 1J/+'i(j YTy,

U

I e
1S

. - _ 27 -
LW = 57"1’(71/12—“2:)—7K1V1'1:+'1*6 YT,

(11)

In the preceding equations the quantity 7w appears
because of the time dependence of the particle
velocity and heat flow velocity respectively induced

o

= =
by the alternating electric field &=&¢«!. The
mean flow velocity component, wug, is the mean
value of the particle velocities, &,

Usp= %’sn-

Also the accelerations due to the electric field are
denoted by

1 =
78},

-
I,
omy

e1=e; ea=—e (12)

so that

- -
mo
I''=—+T —_——
i YL, ¥ my

(13)
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The gyrofrequencies are defined by

The foregoing set of 12 equations in 12 unknowns
will now be solved to obtain the current flow compo-

nents (uy—us). Then the conductivity tensor
will be found from the usual formula:
- > 3 o
I:—ﬂQ(izw:O"g. (14)

3. Solution for Electrical Conductivily Along
the Magnetic Field

The momentum and heat flow equations for both
electrons and protons along the z axis are:

T, — o, = (Uy,—Us,) + 279, —2yvry,,  (15a)
T, —T = —yv(U,—U,) —2y¥7,+2v*vry,,  (15b)
: 5 = = 270 =
10y, =—¢ 2y (Uy,—Ug,) — Evry+ 107" (16a)
. 5 = 27 -
Tl == 27 (U, — 1/3:)'—‘YK|I/I'-_::+'1() vrs.. (16b)

15 %d

According to Burgers we neglect the terms zyvr,,
o 20 = 5
2yry,, and — yory, for yr,<<r,..

- This
10
verified by solving for 7, and 7, from the basic

equations of the last section.
From (16a) we have

can  be

5 — (U1,—Us;)

To,— “‘2‘ oV *(*E;Il;) o (17)
Upon inserting (17) into (15a, b) we find that
. _ 5 222 (Uy,—Us,
1w, — I‘Ez:V<u13_u2z)_?; lf(fé;}'f_]}:l;)—m)’ (188‘)
. - 5v2202 (U ,— Us,
lwulz——rlz:_'YV(Ulz_u’Zz)‘{_:;"LIEé(;_;_‘iw)z)'
(18b)

N
Defining the current flow velocity as w=u,—u,

(14) we have
W=y, — Uzz. (19)

Thus we get from (18a, b),

it (1) o= — (1 )50 (149) 5 @TQ:)Z)
(20)

Now solving for w, with separation of real and



imaginary parts we obtain

22;25 <

- &
w,! l:(l +)v (1 o Pt
tio (14049 g gy ) |- =40 @)

At this stage we introduce simplifying notations to
condense the final expression for the conductivity
tensor component along the z-direction and to eluci-
date therem the effects of electron-electron and
electron-proton collisions; we set

(1—8)7
[1+<1+v)‘1;

2 gz 72

EEJZ\ 2

534—3 and 75— (22)

The component of the current vector in the z-di-
rection is then given by

Iz . (1+‘Y)Uﬂgz

= — M6W,= 2

[1+(1+7)% (1) pa+ia]

2
Wo
go——7

ir (23)

and the conductivity tensor component in the z-di-
rection is finally obtained

g (1+V)Uo .
[1+(1+7> ]<1+v>v3+w]

(24)

When we compare this tensor component with
the corresponding Lorentz tensor component o,/
(»+1w), we find that the ion-motions affect the con-
ductivity along the z-direction through the factor
(1+v) while the electron-proton and electron-elec-
tron collisions through &; and »5. In particular, the
expression (24) checks with Spitzer’s d-¢ conduc-
tivity [1962], when v and w are set equal to zero.

4. Solutions for Conductivities Perpendicular
to the Magnetic Field

The magnetic field couples the z and y components
of the momentum and heat flow equations, making

Now we may express the electric field as, omitting
the time dependence for simplicity,

\2 Vz
(&.+i8)8+ & 1,
:8£+€£+83. (26)

Allis used a similar coordinate system in his for-
mulation of the conductivity tensor for plasmas

[Allis, 1956]. &, corresponds to the left rotating field

component an(_i &, to the right rotating component.
We also write the flow components in this co-
ordinate system

1 .
U; l:fo (i —

3\

1 .
= (uix‘Jr"luz:y)
V2

1 .
= (’lil‘_zri.'/)v Tir

V2

We begin by solving for w, from the rewritten
momentum and heat flow equations

o=

L i) 27)
V2

LUy — I'oy—185Uo, =v(uy, —Us,) F2vr; (28a)

1oy, — 41810, = —’Y;(ﬂn_uw) — 2Ty, (28b)
. . H -

LWl — 18910y =—= 2V (Uyr—Ug,) —EVPs, (29a)

Do

5) - i =
- 8 = P . 2o
%wrlr‘*‘@&ru‘i 27y (Wi, —Uar) —YK1PT1 10 Yra,.

(29b)
From (28a) we have
v (Uyy—Uar) = 10U — gy —1S5Uar— 2V7s,, (30)
which yields 7, when put into (29a)
r?r:g 2 ,i(SQ'_w)qu"{"PW (31>

;<E_gz2>—i(sz—w> |

Putting expression (30) for »(u;,—u.,) into (28b)

the solution for the flow components u, and u, we obtain
somewhat awkward to obtain. We may avoid this (Se—w) P
difficulty by introducing a coordinate system de- u”:’y(?l—fw) Usr (32)
fined by the unit bi-vectors [Menzel, 1961]:
" e since I',;=—7Ty. The electric field and heat flow
a:~ (L—Hj) =—= (1—1j), v=Fk (25) terms have dropped out. At this point we may
V2 return to (28a) with these expressions for wu,, and
75, and solve uniquely for
s EV——’L(SQ—"O)) Ty, (33)

;{(82

[ iem]

_(SQ

. )}



The total current flow associated with the right
rotating electric field is then the difference of the
(s2—w)

electron and proton flows
w,=u1,—uw=[vzs+ )—1:|u2r-
1l

For subsequent algebraic simplification we intro-
duce the symbols

- 1—}-72 e andA [(g %22>—i(82——w):|

which gives

(34)

OLIS;— i (32— w) ]Fzr

Now we introduce a new symbol §, and the expres-
sion for w, becomes

e (_(Y)F’Jr .
o5 (1—8,) +i (w—s2) (1+“?51>
P LA 3 (38)

2 £+ (w——s;)z
We can repeat the foregoing analysis and obtain
the flow for the case of the left rotating electric field

—pBT
o BT, ,

85 (1—8o) +-i(t-s0) ( 1462

(39)

i (o ey e ) B
where, as before, we have simplified the expression
Expression (35) is equivalent to with the symbols
I (+a)T'y 5t £%52 B (w+s2)
" o AT i ) [ )] B E P a0y
[Ev+1(ss—w)] [Ev—12(ss—w) ] . .
(=@l —ilss—) (36) From the foregoing, we obtain the total current
- - - -

On separating the real and imaginary parts in the I=—nyes(w, atwB+wyy). (40)
denominator, we have i - o -

b= — —o=5
I, 5 v'E - 5
{ —avl:l 9 ¢ z—i—(w—ﬂ'z)z:l 1 (w—s,) l:l‘f‘aé"grz_;_(w_\z :I}

Rmhel th(m (|110(1ly wl\o for w, and w, we
derive the electrical conductivity tensor in a form
analogous to that of the Lorentz tensor form [Sen

and Wyller, 1960].  We first introduce the symbols
w, W, W,
LGl ol T S Cos it (41)

which let us rewrite expression (40) as

= 1 1 = 5u 2
sz[ @mm+u)+§v,r2,<@—w>+7zmzk] (42)
N

1 1, ,+]]7+] kf 7:81,)2‘*‘71(6114’7:816)_;

')’1(815

1Y (8 18 i1 (&v—i8 )1 +27:8 ),

or, in matrix form

(43)

[I,] Grbr) =) 0 f g,
] w'(-" .
[]/ } - x;r - ](’Yr—’YI) (vl+77) 0 } 6 v
I I. I 0 0 2y, é’J
S

(44)

Then the complete electrical conductivity tensor
in the hydromagneto-ionic theory becomes

, ( Vits) 1(V,—",) 0 ]
s %rj —i(%,—"71) (Y +,) 0 (45)
L 0 0 2y,
where
e (w 92)
! 01 .o (w+81)
(l +a E) [av1+1(w—s2)]
(14+8%) (BratiCort-s) :
(14v) my
Vo= ‘Y——ml
[1+a+n3 ][(1+7)V3L?w]
(1—d)v (1—8)7 . (1—8y)v

(1+a£) (HB$> [1+(1+7)-£].

(46)
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Thus we have been able to express the electrical
conductivity tensor containing ion-motion, electron-
electron and electron-proton collisions into a form
which 1s similar to that of the Lorentz tensor [Sen
and Wyller, 1960a].

When v goes to zero, (45) reduces to a form of
the electrical conductivity tensor [Wyller, 1961] valid
for high frequencies (conventional magneto-ionic
theory).

The dielectric tensor is derived from the relation

?—Y+ 41 i (47)
for which we find
e=(1—au) —iby, eg=3(fu—dn)+5(cn—eun),
em=|au—3(cuten)+ilbu—3(futdu)l, (48)
where
wo(1+7)

)

= R
L1042 8104+

- Wi(147)%,
TH= 53 )
o |:1+(1+7) g'] [(1+7)32+o?]

wo(w—82)a

w(1+az) (02 4 (a—s)?]

Ei==

wga V1
dn= s
) (1-}-01 —é) v+ (w— 82)2]
e wﬁ(w—%—Sg)ﬁ

o (146 s> [8%3+ (-t 52)7]

0-’06 2V2

<1+B 2) 183 4 (s

Retaining the Sen and Wyller formalism [1960]
we find that the formulae for the complex refractive
index ¢/u and the polarization R are unaltered in
form except that the constants A, B, O, etc., are
now functions of ¢, e, and e defined in (48).
This leads us to a new formulation of the hydro-
magneto-ionic theory which permits the study of
low frequency modes such as the Alfvén mode and
the retarded magneto-acoustical mode with electron-
electron and electron-proton collisions included.
For convenience we recapitulate [Sen and Wyller,
1960b]

9_7(0_ > _ A+ Bsin®¢£ (B sin ¢—C* cos® ¢)’%
2

D-+Esin?¢
(49)
A:2€I(EI+€III); B:€111(61+€111)+€121, Oz?exém
D 261, L—..«éul,
&, Bsin?¢F(B*sin'¢—C%cos’¢)
£ & - C cos ¢ ey

Here n is the real refractive index, ex/w is the ab-
sorptivity, and ¢ is the angle between the direction
of the magnetic field and the direction of propagation.

5. Zeroes and Infinities of the Refractive
Index
In the formula (49) the complex refractive index
_ .ok . . . .
n=n—i — satisfies a biquadratic equation

(A B sin? o)
(D4 E sin? ¢)

A?+2AB sin? ¢+ C? cos? ¢

I -
Gt (Dt Esin’ 9)? o

(51)

+

Hence the condition that % may have a zero root
is that
A*+2AB sin? ¢+ C? cos® ¢=0

provided that D+ FE sin? ¢#0. After some al-

gebraic simplifications the above two expressions
reduce respectively to

61[(€I+6III)2+ érrl (er1 e sin® ¢)=0
e+ erpr SIn® ¢ #0.

(52)
(53)

By virtue of the restriction (53), all the zero roots of
n will be given by the following three equations,

(a) =0, (b) aten—ien=0, (¢) e+ emntien=0.

These equations are independent of the propagation
angle “¢”. Assigning the appropriate values to
¢ from (48) we find that (a) will hold when a;=1
and b,;=0 simultaneously. The latter condition
means that either =0, 1.e., there is no collision,
or else that &;=1, which gives an imaginary
value to the collision parameter 7 = 7/w and 1s
therefore inadmissible. The first condition with
v=0 yields a cutoff for n at

(54)

Similar treatment to (b) and (¢) yields cutoff
values of n without collisions at

(4D 0=1D),

=y (55)
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and
- (1=Y)(A+~Y)
- 1l ==y

respectively.

In (54) and (55), X=wp/w?® and Y=s,/w. The
cutoff values are not attained when collisions are
present. These cutoff values will be illustrated by
the curves for n against X given at the end of the
paper.

From inspection of (51) it is apparent that 7 will
have an infinite root when

D+ E sin? ¢=0.
This is equivalent to the condition
e+ €rr sin? ¢=0. (56)

For the case with collisions, the condition (56) turns
out to be fairly complicated, but, if we neglect
collisions, it yields a simple relation analogous to
that of Hines [1957].

[t may be noted that the condition (57) for infinite
root of n is dependent on ¢. When ¢==/2, an
mfinite root of n occurs at

4\'7.(] —Y)(1 _.yqji).

(58)

(1+7)(1—Y?)

This value is somewhat different from that obtained
by Budden [1961], even if an allowance for his
approximation is introduced in our computation.
For the low frequency end of the whistler spectrum
we consider the case s, > >w > >s,. In this limit

the condition (56) simplifies to
5 (1 ~{—'y)} cos? o+ { 1+fg—@7’} sin? ¢=0.
22

{1-3
(39)

If the coefficients of cos?p and sin’p in (59) are both
negative, the condition for an infinity will not hold;
which means that the wave can propagate in all

2
%

-

J

o2 o2 directions. The first coefficient will be negative if
{ —;‘,_f(l—]—y)} cos? q&—}—{l%—\‘g_ow:, w<wy; also the second coefficient will be negative
S2
'Y,“’Lz sin? ¢=0. (57) only when w<w(,\/728“g2 - These bounds on « will
Si—w 851wy
Y = 100 ¢ = 0
3p| CASE | CASE 2
Z = 100 Z = 100 NES
S - o
28l 7 1836 4
Ve =
2.4r - T
< o
cKk ¥ =i
T W =T
2.0t ’/::/’
- CASE 3
1.6 s |
5T Z= 0 , =
i 7 1836
M7 oK
1.2 o w =0
20N
///
1.0 4
N /////
.8 \ /////
\ 7 e
i L = o
L3 /7 i
£ A L2 o R
//// \i\ e ===
//:’ ’/;/IJZ
100 200 300 400 500 600 700 800 900 1000
X
Ficure 1.
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be helpful for the detection of ions with whistlers
(w< <wp) which are propagated to a large extent in
the upper atmospheric regions where our present
model of a fully ionized plasma will be a close
approximation [Hines, 1957].

6. Numerical Applications

The real refractive index, n, and the absorption

ck :
factor, — were evaluated from the relations
w

u

2 2
¢ .CK .
- ('n— 91— ) =M—N
w
where from

| e
u:—?/;\uwuwz\v
N

LR Y S VN v o
w 42

We note that our signs in (49) for the complex
refractive index are opposite to those of the magneto-
ionic theory; thus our upper (U) and lower (L)
signs, correspond respectively to the extraordinary
and ordinary waves of the magneto-ionic theory.
We have computed the propagation constants n and
cx/w as a function of X for the following representative

values of:

(i) Y=100 (whistler mode);

(i1) Y=+/1/y (lower hybrid frequency) ;

(i) Y'=1/y (ion gyroresonance) ;

and (iv) Y=10* (hydromagnetic mode).
We will briefly discuss below the above cases.
Case (1) Y=100 (whistler mode)

Longitudinal  propagation (¢=0). Figures 1
and 2. The introduction of ion motion has little
effect on the birefringence, which is only slightly
decreased. The important parameter for collisional
effects seems to be the ratio Z/Y. Even for small
values of this ratio (0.1 in fig. 2), the cutoff in the
ordinary ray is removed. The absorption of the
extraordinary ray is increased with increasing Z=7v/w.
The reverse is the case with the ordinary ray.

Transverse propagation (¢=m/2). Figure 3. Ls
is not drawn in the figure. It follows very closely
the vertical axis starting from the value n=1 at
X=0, with a cutoff at 2=0.995. The effect of ion
motion is negligible for the ordinary ray. It is quite
marked for the extraordinary. The birefringence
of the medium is appreciably decreased. The
collisions remove the cutoff for both the ordinary
and extraordinary rays. The inclusion of ion motion
has no effect on the absorption of the ordinary ray.
For the extraordinary ray, it at first increases and
then decreases the absorption. The ion motion
seems to have appreciable effect for transverse

Ficure 2.
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Ficure 6.
propagation. The effect may well be confined Case (1) Y=1/y (ion qgyroresonance). Figures
8-10.
We shall show

within a narrow cone.

Case (11) Y=+/1/y (lower hybrid frequency). Figures
4-7. The behavior of the propagation factors for
the longitudinal case is as in the magneto-ionic
theory. But for transverse propagation, collisions
not only remove the cutoff but reverse the trend of
the real refractive index curve (figs. 6 and 7) for the
lower sign (ordinary ray of the magneto-ionic theory).
How the introduction of ion motion makes possible
all directions of propagation for this case has been

discussed at the end of section 5.

Longitudinal propagation (¢=0).
next how for longitudinal propagation the ion-gyro-
resonance introduces a singularity in the lower mode.
Figure 8 shows that even a small amount of collision
removes this singularity. The wave can propagate
but is nevertheless subject to high absorption. With
increasing collision frequency, the absorption of the
lower mode decreases, whereas that of the upper

mode increases (fig. 9).
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Transverse propagation (¢=m=/2). The singu- in figure 12 that the oblique Alfvén wave does not

larity is removed in this case and the wave can
propagate. The cutoff frequencies for the two
modes for no collisions is discussed below. The
propagation factors for a high collision case (Z=
1000) are shown in figure 10.
Case (i) Y=10* (hydromagnetic mode).

Longitudinal propagation (¢=0). Figures 11
and 12. These are the retarded magneto-acoustic
mode (lower sign) and the oblique Alfvén mode
(upper sign) of Denisse and Delcroiz [1961a]. Note

suffer absorption, but that the retarded magneto-
acoustic mode does. This property may have
important application in the solar corona [Oster-
brook 1961].

Transverse propagation (¢p=m/2). Figures 13
and 14. The lower mode suffers a_cutoft at X~ 1,
as in the magneto-ionic theory, which is removed
by collisions. Note that the nonabsorptivity of
the Alfven mode (upper sign) persists even in
transverse propagation.
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Ficure 10.

We shall now give a brief analysis of the ion
gyroresonance referred to in case (iil) above. From
(49) we have for longitudinal propagation (¢=0):
n*=(A+12C)/D. Taking the minus sign and Z=0
(no collisions), we have 7*=n*=1—X[(1+Y)"'+
vy(1—Y1)7'], where Y,=s;/w. There is therefore a
singularity in n at the ion gyroresonance (YV;=1).
It can be shown that a finite Z will remove the
singularity. For transverse propagation (¢=m/2),
we have n*=(A+B+B)/(D+E). Taking the +

sign, we get after a little algebra (for Z=0, i.e., no
collisions):

D (A=Y )X—(1+7)X*
W=1—1-47) 1=YHa—-Y3)—(10+y)(1—-Y )X

When Y;=1 (ion-gyroresonance), n°*—2++yX. Thus
n*—2, as X—0. It can be shown that with collisions
n?*—1, as X—0. (See fig. 10.)
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7. Conclusion

In the present paper we have given a microscopic
hydromagneto-ionic  theory, to Chapman and
Cowling’s second approximation, of a completely
ionized hydrogen plasma. As a special case for no
collisions, i.e., 7=0, our (49) reduces to the expres-
sions derived by Astrom [1951] for the longitudinal
and transverse components. Furthermore the most

general dispersion formula derived rigorously from
Denisse and Delcroix’s general conditions [1961b]
gives the same transverse and longitudinal modes
of propagation as those obtained from our formula.
As already stated in the introduction we have further
agreements with the results obtained by Kantor
[1965] in the limit of no collisions. ~ All these provide
an indirect check on the internal consistency of our
theory.
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We note that the treatment can easily be extended
to a neutral plasma of any degree of ionization.
In its present formulation, it should have important
applications to hydromagnetic wave dissipation in
the solar corona. The treatment of collisions in
our hydromagneto-ionic theory is broad enough to
include any velocity dependence of the collision
cross sections. For applications to hydromagnetic
wave dissipation in the terrestrial ionosphere, our
treatment should be extended to a partially ionized
gas. Burgers’ formalism should be adequate for this
extended treatment, as is evidenced by Pipkin’s

work [1961] on the d-¢ conductivity of a partially
ionized gas.

The numerical applications that have been given
here are merely illustrative and by no means exhaus-
tive of the results that can be obtained from the
theory.

It is a pleasure to acknowledge our indebtedness
to Drs. Pfister, Poeverlein, Kantor, Prasad, and
Lt. Finn for fruitful discussions, and to Mr. Arnold
Shickman for the computations.
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