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A hydromagneto-ioni c t h eory has be r n dcvelopcd \ri thin t h c framcwork of the Burgers 
formalism [1958a] w hi ch is a m icroscopi c theory based on moments of t he Boltzm ann t rans­
por t equ ation. Thr dfects on cl ectromagnrtic wave propagation of electron-elect ron and 
elect ron-proto n colli sions have been considered to t he order of Chapm an and Cowling'S 
second approximation. The pr esent t heory is an extension of t he magneto-ion ic t heory 
deri ved ea rli er by one of t he aut hors [W yller , 1961] for a full y ionized h ydrogen plas ma, in 
t hat it inclu des t he effects of ion motions. The t heory is t heref ore appli cable to t he hi gh as 
well as t he low freq uency m odes of wave propagat ion , such as t he whistl er, AHven, and 
t he reta rded magneto-aco ustic m odes. Express ions ha ve been deri ved for t he rc fracti ve 
index, absorptivit,v, t lw \I'ave pola rizat ion, and the zeros a nd infini t ies of t he I'cfraetive 
indf' x, N ume ri cal applica t ions ha ve been given for t he fo ul' characterist ic modes of low 
f requ ency wave propagat ion , vi z, t h e whist ler mocle, lower hybrid freq ucncy, ion gyl O­
r esona nce, a nd t hc hydromagnct ic modC'. Appli cat ions of t hc t heory to t hc so la r corona, 
a nd fut ure extensio ns to t he t errest ri al ionosphere have been indi cat ed . 

1. Introduction 

The present paper consid ers t he en'ect of the ion 
mo tions on electromagnetic WfL\'e propagation in a 
uniform plasm a wi th a superposed homogeneous 
m fLgnetic field. Th e conven tional m agneto-ionic 
t heory considers the motions of t he elecLrons only , 
which is a valid approximation for the high wave 
frequencies used in ionospheric propagation or for a 

' weakly ionized gas. When the wa \Ce frequency goes 
b elow t he electron gyro frequency, the extraordinary 
elec tromagnetic wave becomes the oblique Alf\Cen 
(whistler) mod e, and for a further decrease below the 
ion gyrofrequency th e ordinary electromagnetic 
wave becomes the retarded magneto-acoustic mode. 
D enisse and DelcroLx haye giyen an excellent illustra­
t ion of this in their book [1 961a]. We note that if 
we t ake account of the pressure t ensor , additional 
modes will appear. ,V' e have not considered these 
modes in our p aper. 

Our work differs from most ot l'eatments [Schluter, 
1950, 1951; Dungey, 1951; Astrom, 1951; Hines, 
1953; Piddington, 1956; Gershman, Gin zb W'g, and 

I Presently at t he Inst itute of Theoretical Astrophysics, University of Oslo, 
Norway. 
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D eniso \', 1957; Lehn er t , 1959 ; F ejer , 1960; D enisse 
and D elcroix, 1961b ; Allis and D elcroix, 1963] in 
t hat i t t akes account of collisional da,mping by a 
microscopic kin etic theory wit h a proper averaging 
oyer t he velocity distribution function, of like 
padicle interactions (proto n-proto n fUld electl'on­
electron collisions), and of t he heaL-flow equations. 

Vve have seen that a microscopic t rea tment through 
the Boltzmann equation led to significant depar tures 
in t he propagat ion factors for electromagnetic waves 
in t he terrestrial ionosphere [Sen and Wyller , 1960 ; 
Leinbach , 1962]. Later on , one of us [Wyller , 1961 ] 
applied the Burgers formalism [1958a] to find the 
electrical conductivity for a completely ionized 
hydrogen plasma. The Burgers formalism proceeds 
via moments of t he Boltzmann transport equation 
and the associated collision integral. I t includes t he 
effect s of like particle interactions and of t he electron 
and ion hea t flows, and is equivalent to t he Chapm an 
and Cowling second approximat ion [1958]. The 
present work is an extension of Wyller's [1 961] work 
to include the effects of ion motions. 

In a recent work Kantor [1963] has considered the 
effect s of ion motions on magneto-ionic theory wit h­
out collisions and considered the propert ies of 
different direct ions of wave propagation wi th respect 
to the magnetic field . Our work checks with 
Kantor's formulae for the case of no collisions. 



2 . Basic Equations 2 

It is well known that the presence of a magnetic 
field in a plasma introduces an anisotropy in the 
propagation of electromagnetic waves through the 
medium. This anisotropy is characterized by the 
tensorial representation of the associated physical 
quantities governing the modes of propagation; 
namely, the electric conducti\rity and dielectric 
constant of the medium. After introducing the 
dielectric tensor (which is easily derived from the 
conductivity tensor) into the Maxwell equations, 
one can derive expressions for the refraction, 
absorption, and polarization of the propagating 
waves. With this end in view we shall set up in 
this section the fundamental equations that will 
enable us to compute the a-c conductivity tensor of 
the magneto-ionic medium which may transmit 
electromagnetic waves associated with the oscilla­
tions of the ions as well as electrons. In doing so 
we shall adopt, as we have already said, Burgers' 
formalism [1958a]. 

Choosing a rectangular coordinate system (0, x, 
y, z) such that the z-axis lies along the uniform 

--> 
applied magnetic field Ho, the electric conductivity 
tensor can be put into a very simple form. The 
electric field due to the propagating wave is rep-

--> 
resented by an a-c field in that medium, E cos wt = 

--> --> --) --> --> --> 
(Exi+Ev.i+Ezk) cos wt, where i, j, and k are unit 
vectors along the x, y, and z axes and w is the excita­
tion frequency of the wave, which is assumed to 
remain constant during the propagation of the waye 
inside the medium. 

We shall assume the plasma medium to be homo­
geneous with no pressure and density gradients. 
We shall consider a fully ionized hydrogen plasma 
containing electrons and protons in equal number 
densities, nl = nz, throughout the medium. The 
subscripts 1 and 2 will be used consistently to 
denote protons and electrons respectively. 

The assump tions made above bring about a con­
siderable simplification in the Burgers formalism . 
There is a simple relation between Burgers' "friction 
coefficient" K 1Z= K zl = K and the mean electron ­
proton collision frequency v, namely, 

(1) 

or 
_ 2 w6e~ (m2 )1/2 31cT 
y = 3,!;. kT 2kT In A, A=er rD' (2) 

Here Tn is the Debye length, and Wo is the electron 
plasma frequency. 

In order to assess the full implications of the 
momentum and heat transfer equations of the elec-

2 Sections 2, 3 and 4 were perfor med by One of ns (A.A. W.) while on sumlller 
leave in 1963 from the Institute of Theoretical Astrophysics, University of Oslo: 
Norway, to Williamson Development Company, Inc., West Concord, M ass. 

96 

trons and protons, we state here some of the physical 
parameters of Burgers' theory that are relevant to 
the conditions of our problem. For a binary gas 
with known relative velocities of the colliding 
particles "g" the collision cross section is given by: 

(3) 

where b and X are Chapman and Cowling's [1958] 
collision parameters. In particular, l= 1 for nJ.omen­
tum t ran sfer with which we are primarily concerned 
here. The average collision cross section for all 
possible relative velocit ies is 

Z.(lj)=Zi;j)= ~ (J.l /2kT) H2 r oo g2H3e- MgZIZk1' S}l)dg ' (4) 
y lr .1 0 

Here the subscripts "s" and "t" refer to the species of 
the colliding particles and J.l is the reduced mass. 
The superscript "l" refers to the angular dependence 
while "j" refers to the velocity dependence of the 
collision cross section. In terms of these average 
collision cross sections, the quantity defined by 

(5) 

reduces to the value 3/5 for Coulomb interactions. 
In order to be able to estimate the effects of 

collisions b etween like and unlike particles sep­
arately Burgers [1958b] introduces the following 
collision factors which turn out to be proportional 
to the average collision frequencies, 

4 mlm2 Zg2) 
K='5 (ml + m2)2 Zg') (electron-proton collisions) 

2 (ml+m2)1 /2 Zii2) •. 
KI = -;;- ') Z (ll ) (proton-proton collISIon. ) 

u ... m 2 ~12 
(6) 

2 (m + m ) 1/2 Z (22) K2 ='5 ~ml 2 Zit!) (electron-electron collisions). 

It will be seen later that the auxiliary quantity ~ 
which incorporates the effects of electron-proton 
and electron-electron collisions enters into the elec­
trical conductivity tensor. It is defined by 

(7) 

and Y2 is a [unction of K only. 
Though the proton-proton collisions do enter into 

the equations of the heat flow through t he factor 
KI, their net effects in the electrical conductivity 
tensor vanish [Spitzer, 1956; Marshall, 1957]. On 
tbe other h and, in thermal conductivity the dissipa­
tive effects due to ion-ion en counters is not negligible 
[Rosenbluth and Kaufman, 1958; Wyller , 1963a]. 

Burgers' mom entum and heat flow equations in 
their time-dependent forms will be our fundamental 

~J 
" 

~ 

I 



set o[ equations [01' the electrons and protons. We 
willl'ewl'ite Burgers' equations [1958c] as follows. 

Momentum equations for electrons: 

(8) 
Momentum equations for protons : 

The gyro rrequencies are defined by 

l
ei I 8i= m i Ii, · 

The foregoing set o[ 12 equations in 12 unknowns 
will now be solved to obtain the current flow compo­
nents (Ulh- UZh). Then the conductivity tensor 
will be found from the usual formula: 

--) --) :::::! --) 

1 = -n2eZW=rJ" ·0. (14) 

3. Solution for Electrical Conductivity Along 
the Magnetic Field 

iWUl z-rlz= -,,(V(Ul ,-11Zz )-z,,(V1'2Z+z-y2v1'1 Z. The momentum and heat flow equations [or both 
(9) electrons and protons along the z axis are: 

Heat flow equations for electrons: 

(10) 
Heat flow equations for protons : 

(ll) 

In the preceding equations the quantity iw appears 
because of the time dependence of the particle 
velocity and heat flow velocity respectively induced 

-t -t 

by the rtlternating electric field 0 =0oeiwl . The 
mean tlow velocity component, U s", is the mean 
yalue of the particle velocities, ~s", 

Also the accelerations due to the electric field are 
denoted by 

ez=-e (12) 

so that 

(13) 
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(15a) 

(15b) 

(16a) 

(16b) 

According to Burgers we neglect the terms ZYIIl'l" 

2 - d· 27 - J. « TI . b 
Z"( 111'1" an 10 "(111'1 ' or "(/'1 ' 1"2; · . u s can e 

verified by solving ror 1'1/. n.nd 1"211 [rom the basic 
equations o[ the hts t section . 

From (16a) we lhwe 

(17) 

Upon inserting (17 ) into (15a, b ) we find that 

-t - ) -t 

Defining the current flow velocity as W= Ul - UZ 
(14) we have 

(19) 

Thus we get from (18a, b), 

iwwz+(1+,,()r2,=- (1 + y)vwz+ (1 + y) ~ (::~~~) 
(20) 

Now solving for W z with separation of real and 



imaginary parts we obtain 

(21) 

At this stage we introduce simplifying notations to 
condense the final expression for the conductivity 
tensor component along the z-direction and to eluci­
date therein the effects of electron-electron and 
electron-proton collisions; we set 

(22) 

The component of the current vector in the z-di­
rection is then given by 

2 
Wo 

0-0=- (23) 
471" 

and the conductivity tensor component in the z-di­
rection is finally obtained 

(24) 

When we compare this tensor component with 
the corresponding Lorentz tensor component (To! 
(Y+iw), we find that the ion-motions affect the con­
ductivity along the z-dil'ection through the factor 
(1 + y) while the electron-proton and electron-elec­
tron collisions through 03 and V3. In particular, the 
expression (24) checks with Spitzer's d-c conduc­
tivity [1962]' when 'Y and ware set equal to zero. 

4 . Solutions for Conductivities Perpendicular 
to the Magnetic Field 

The magnetic field couples the x and y components 
of the momentum and heat flow equations, making 
the solution for the flow components U iX and U iY 

somewhat awkward to obtain. We may avoid this 
difficulty by introducing a coordinate system de­
fined by the unit bi-vectors [Menzel, 1961]: 

-) 1 -? .7 -) 1 -? :7 -) -) 
a = r.; (t+tJ), (3 = ;- (t - tJ), 'Y= k. 

-y2 ,2 
(25) 

N ow we may express the electric field as , omittino-
the time dependence for simplicity, 0 

-) -) -) 

= 0 I a + g r(3 + 0 z'Y · (26) 

Allis used a similar coordinate system in his for­
mulation of the conductivity tensor for plasmas 
[Allis, 1956]. 0 I corresponds to the left rotating field 
component and 0 r to the right rotating component. 

We also write the flow components in this co­
ordinate system 

We begin by solving for Wr from the rewritten 
momentum and heat flow equations 

(28b) 

From (28a) we have 

which yields r 2r when put into (29a) 

(31 ) 

Putting expression (30) for v (Ulr-U 2r) into (28b ) 
we obtain 

since r1 r = - 'Yr2r. The electric field and heat flow 
terms have dropped out. At this point we may 
return to (28a) with these expressions for l [ l r and 
r 2r and solve uniquely for 

{ (S2-W)2+ [v(~-~z2)-i(S2 -W)J['Yv ~:: + :~ -pJ +1:~V(S2-W) } 
(33) 
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The total current flow associated with the rigbt 
rotating electric field is then the difference of the 
electron and proton flows 

(34) 

For subsequent algebraic simplification we intro­
duce the symbols 

a = l +1' ~:+::~ and A = [v (~-~ zZ) -i(S2- W) J 
which gives 

a[~jj-i(s2-w) ]f 2T 

Expression (35) is equivalent to 

'Wr= [ (S2-w)2-ajjA +i~V(S2- W)] [~v+i(s2-w)1 
[~V+ i(S2- W)] [~jj-i(S2-W)] 

(3.5) 

(36) 

On separating thc rcal and imaginary parts in the 
denominator, wc havc 

Rather than directly solve for U x and U y , we 
derive the electrical conductivi ty tensor in a form 
analogous to that of the Lorentz tensor form [Sen 
Hnd Wyller , 1960]. We first introduce the symbols 

'WI W T W z 
I' {= --, 'YT=--' 'Yz=--' (41) 

- f ZI - f zr - f zz 

which let us rewrite expression (40) as 

~ ---7 ~ --t 2 --1 --t 

l = l xi+ i vj + l zk = ;; ['Yl(g x-i g y)i+'Yl(g v+i g x)j 

--> -->--> 
+ 'YT( g x+ig y)i+'YT(g y-i g x)J+ 2'Yzg ,k], (43) 

or, in matrix form 

(44) 

N ow we introduce a new symbol 01 and thc cxpres­
sion for W T becomes 

5 zZ ejj2 
Ot = "2Tejjz+ (w-sz)2· (38) 

We can repeat the foregoing analysis and obtain 
the flow for the case of the left rotating electric field 

(39) 

where, as before, we haye simplified the expreSSlOn 
with the symbols 

From thc foregoing, we obtain the total current 

--> --> --> --> 
1= -nZe2(wl a+ wT i3 + 'Wzl'). (40) 

(37) 

Then the complete electrical conductivity tensor 
in the hydromagneto-ionic t heory becomes 

=: w 2 r ('Y 1+'YT) i('Yr- 'Y /) 0 l 
I 

IT = 8; ~ -i('YT- 'Y a ('Y l+'YT) 

:>.J 
(45) 

I 0 0 
~ 

where 

(3 
1'1= , 

(1 +13 t) [i3v2+ i (W+S2)] 

(l + 'Y) 
l' z ' 

[ 1+ (l + 'Y) tJ [(l+'Y)vd- iw] 

(46) 
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Thus we have been able to express the electrical 
conductivity tensor containing ion-motion, electron­
electron and electron-proton collisions into a form 
which is similar to that of the Lorentz tensor [Sen 
and Wyller, 1960a]. 

When 'Y goes to zero, (45) reduces to a form of 
the electrical conductivity tensor [Wyller, 1961] valid 
for high frequencies (conventional magneto-ionic 
theory) . 

The dielectric tensor is derived from the relation 

for which we find 

Here n is the real refracti ve index, cK/w is the ab­
(47) sorptivity, and ¢ is the angle between the direction 

of the magnetic field and the direction of propagation. 

where 

2 2 
__ ~ __ ~~w~O~a_V~l ________ , 

w (1 + a t) [a2vi + (W-82)2] 

Retaining the Sen and Wyller formalism [1960] 
we find that the formulae for the complex refractive 
index cln and the polarization R are unaltered in 
form except that the constants A, B , 0, etc., are 
now functions of fr, fn , and fm defined in (48). 
This leads us to a new formulation of the hydro­
magneto-ionic theory which permits the study of 
low frequency modes such as the Alfven mode and 
the retarded magneto-acoustical mode with electron­
electron and electron-proton collisions included. 
For convenience we recapitulate [Sen and Wyller, 
1960b] 

5. Zeroes and Infinities of the Refractive 
Index 

In the formula (49) the complex refractive index 

n=n-i ~ satisfies a biquadratic equation 
w 

Hence the condition that n may have a zero root 
is that 

provided that D+E sin2 ¢-FO. After some al­
gebraic simplifications the abo\-e two expressions 
reduce respectively to 

fr[ (fr + fm)2+ fir] (fr + fm sin2 ¢)=O (52) 

fr + fm sin2 </>-FO. (53) 

By virtue of the restriction (53), all the zero roots of 
n will be given by t he following three equations, 

These equations are independent of the propagation 
angle "¢". Assigning the appropriate values to 
fr from (48) we find that (a) will hold when all = 1 
and blJ = 0 simultaneously. The latter condition 
means t hat either v= O, i.e. , there is no collision, 
or else that 83= 1, which gives an imaginary 
value to the collision parameter Z = v/w and is 
therefore inadmissible. The first condition with 
v=O yields a cutoff for n at 

(54) 

Similar treatment to (b) and (c) yields cutoff 
values of n without collisions at 

100 

x (1 + Y)(l-'YY) , 
1+ 'Y 

(55) 



and 

respecLi,"ely. 

x (l -Y)(l+yY) 
l + y 

]n (54) and (55), X= W~/W2 and Y =8z/W. The 
cutoff \'alues are not attained when collisions are 
present. These cutoff values will be illustr ated by 
the curyes for n against X given at the end of the 
paper.. . . . _ . 

From lIlspectlOn of (51) It IS apparent that n WIll 
have an infinite root when 

D + E sinz cp = O. 

This is equiyalent to the condition 

E1 + Em sinz cp = O. (56) 

For the case with collisions, t he condit ion (56) turn s 
out to be fairly complicated, but, if we neglect 
collision s, it yields a simple relation analogous to 
that of Hines [1957]. 

{ 1-~ (1 +,, ) } cOSZCP +{ l+ 2 W~ 2 
W ~-w 

+ z"w~ Z} sin2 cp = O. (57) 
8, - w 

3.2 

2.8 

2 .4 

2 .0 

1.6 

.4 

C A S E I 

Z : 10 0 

y : I 

183 6 

--n 

C K 
-
w 

Y : 100 

C A S E 2 

Z : 10 0 

y : 0 

It may be noted that the condition (57) for infinite 
root of n is dependent on cpo When cp = n/2, an 
infinite root of n occurs at 

(58) 

This value is somewhat different 1'1'0 111 that obtained 
by Budden [1961]' even if an allowance for. his 
approximation is introduced in our computatlOn. 
For the low frequency end of the whistler spectrum 
we consider the case 82> >W> >8,. In t his limit 
the condition (56) simplifies to 

{ 1- :~ (1 +,,) } cos2 cp+ { 1 +~-";~} sin2 cp= O. 

(59) 

If the coefficients of coszcp and sin2cjJ in (59) are both 
negative, the condit ion for an infinity will not hold ; 
which means that the wave can propagate in all 
directions. The first coefficient will be negative if 
w< wo; also the second coefficient will be negative 

only when w< wo I 8,82 . These bounds on w will 
" 8~+ W~ 

o 

C ASE 3 

Z : 0 , y 
18 36 

~ : 0 
W 

100 200 300 400 500 600 700 800 900 1000 

x 

FIGURE 1. 
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be helpful for the detection of ions with whistlers 
(w < <wo) which are propagated to a large extent in 
the upper atmospheric regions where our present 
model of a fully ionized plasma will be a close 
approximation [Hines, 1957]. 

6. Numerical Applications 

The real refractive index, n, and the absorption 
CK 

factor , - , were evaluated from the relations 
w 

where from 

- = n-i- =M-iN C2 ( CK)2 
u2 w 

n= :n.JM + , fJfI2+ ]'P 

~=~.J -M+.JM2+N2. 
w ,12 

We note that our signs in (49) for the complex 
refractive index are opposite to those of the magneto­
ionic theory; thus our upper (U) and lower (L) 
signs, correspond respectively to the extraordinary 
and ordinary waves of the magneto-ionic theory. 
We have computed the propagation constants nand 
cK/w as a function of X for the following representative 

3.2 

2.8 

2.4 c/> 

2.0 

1.6 

1.2 
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I 

.4 f 
f 

f 

/ 
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/ 

/ 
I 
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0 

/ 
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/ 
/ 

/ 

/ 
/ 

/ 
/ 

values of: 
(i) Y = 100 (whistler mode); 
(ii) Y = M (lower hybrid frequency); 
(iii) Y = 1/-y (ion gyroresonance) ; 
and (iv) Y = 104 (hydromagnetic mode) . 

We will briefly discuss below the above cases. 
Case (i) Y = 100 (whistler mode) 

Longitudinal propagation (cf> = 0) . Figures 1 
and 2. The introduction of ion motion has little 
effect on the birefringence, which is only slightly 
decreased. The important parameter for collisional 
effects seems to be the ratio Zj Y. Even for small 
values of this ratio (0.1 in fig . 2), the cutoff in the 
ordinary ray is removed. The absorption of the 
extraordinary ray is increased with increasing Z=v/w. 
The reverse is the case with the ordinary ray. 

Transverse propagation (cf> = 7r/2). Figure 3. L3 
is not drawn in the figure. It follows very closely 
the vertical axis starting from the value n= 1 at 
X = O, with a cutoff at x= 0.995. The effect of ion 
motion is negligible for the ordinary ray. It is quite 
marked for the extraordinary. The birefringence 
of the medium is appreciably decreased. The 
collisions remove the cutoff for both the ordinary 
and extraordinary rays. The inclusion of ion motion 
has no effect on the absorption of the ordinary ray. 
For the extraordinary ray, it at first increases and 
then decreases the absorption. The ion motion 
seems to have appreciable effect for transverse 

Z = 10 Y = 100 - I r - 1836 
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FIGURE 2 . 
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propagation. The effect may well be confined 
within a narrow cone. 

Case (ii) Y=M (lowe7'hybridjrequency). Figures 
4- 7. The behavior of the propagation factors for 
the longitudinal case is as in the magneto-ionic 
theory. But for transverse propagation, collisions 
not only remove the cutoff but reverse the trend of 
the real refractive index curve (figs. 6 and 7) for the 
lower sign (ordinary ray of the magneto-ionic theory). 
How the introduction of ion motion makes possible 
all directions of propagation for this case has been 
discussed at the end of section 5. 

Case (iii) Y = 1j-y (ion gyrol'esonance). Figures 
8- 10. 

Longitv,dinal pl'opagation (q:, = 0). We shall show 
next how for longitudinal propagation the ion-gyro­
resonance introduces a singularity in the lower mode. 
Figure 8 shows that even a small amount of collision 
removes this singularity. The wave can propagate 
but is nevertheless subject to high absorption. With 
increasing collision frequency, the absorption of the 
lower mode decreases, whereas that of the upper 
mode increases (fig. 9). 
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Transverse propagation (4) = 7r/2). The singu­
larity is removed in this case and the wave can 
propagate. The cutoff frequencies for the two 
modes for no collisions is discussed below. The 
propagation factors for a high collision case (Z= 
1000) are shown in figure 10. 

Case (iv) Y = 104 (hydromagneticmode). 
Longitudinal propagation (4) = 0). Figures 11 

and 12. These are the retarded magneto-acoustic 
mode (lower sign) and the oblique Alfven mode 
(upper sign) of Denisse and Delcroiz [1961a]. Note 

in figure 12 that the oblique AHven wave does not 
suffer absorption, but t hat the retarded magneto­
acoustic mode does. This property may have 
important application in the solar corona [Oster­
brook 1961]. 

Transverse propagation (4) = 7r/2). Figures 13 
and 14. The lower mode suffers a cu toff at X "'" 1, 
as in the magneto-ionic theory, which is removed 
by collisions. Note t hat the nonabsorptivity of 
the Alfven mode (upper sign) persists even in 
transverse propagation . 
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We shall now gi ,-e a brief analysis of the ion 
gyroresonance referred to in case (iii) above. From 
(49) we have for longitudinal propagation (cp = O) : 
:;i?= (A +iC)/D . Taking the minus sign and Z = O 
(no collisions), we have 1i2= n2= 1-X[(l + y) -1+ 
'Y(1 - Y 1) - IJ, where Y1 =sI/w. There is therefore a 
singularity in n at t he ion gyroresonance (Y1 = 1). 
It can be shown that a finite Z will remove the 
singularity. For transverse propagation (cp = 7T/ 2) , 
we have 1i2=(A + B ± B )/ (D + E). Taking the + 

sign, we get after a little algebra (for Z = O, Le., no 
collisions) : 

When Y1 = 1 (ion-gyroresonance), n 2--'>2+ 'Y X. Thus 
n2~2, as X --'>O. It can be shown that with collisions 
n2~1, as X --'>O. (See fig. 10.) 
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7. Conclusion 

In the present paper we have giyen a microscopic 
hydromagneto-ionic theory, to Chapman and 
Cowling's second approximation, of a completely 
ionized hydrogen plasma. As a special case for no 
collisions, i.e. , v= o, our (49) reduces to the expres­
sions derived by Astrom [1951] for the longitudinal 
and transverse components. Furthermore the most 

general dispersion formula cleri ved rigorously from 
Denisse and DelcroL\:'s general conditions [1961 b] 
gives the same transverse and longitudinal modes 
of propagat ion as those obtained from our formula. 
As already stated in the introduction we have further 
agreements with the results obtained by Kantor 
[1963] in the limit of no collisions. All these provide 
an indirect check on the internal consistency of our 
theory. 

107 



2.8 

Y 104 ." J!... 
2 

2 .4 / 
/ 

;// 
Z : 0 

2 .0 
/ 

/ 

/ .-, , 
1.6 

.-
- ---- ~ .-.- OJ 

/ 
/ 

/ 
/ 

1.2 / 

/ 

1.0 U 
/ 

I 
.8 I 

L I 
/ 

/ c,: (U) . 0 
.4 / 

I 
I 
I 

2 3 4 5 6 1 8 9 10 

X 

FIGURE 13. 

1 

6 

5 

4 

3 

2 

I 
I 

/ 
/ 

/ 

z 5000 

-----~ \. ... 

u 

u -- --- --- -------
2 3 4 5 6 7 8 9 

X 

FIGURE 14. 

We note that the treatment can easily be extended 
to a neutral plasma of any degree of ionization. 
In its present formulation, it should have important 
applications to hydromagnetic wave dissipation in 
the solar corona. The treatment of collisions in 
our hydromagneto-ionic theory is broad enough to 
include any velocity dependence of the collision 
cross sections. For applications to hydromagnetic 
wave dissipation in the terrestrial ionosphere, our 
treatment should be extended to a partially ionized 
gas. Burgers' formalism should be adequate for this 
extended treatment, as is evidenced by Pipkin's 

work [1961] on the d-c conductivity of a partially 
ionized gas. 

The numerical applications that have been given 
here are merely illustrative and by no means exhaus­
tive of the results that can be obtained from the 
theory. 

It is a pleasure to acknowledge our indebtedness 
to Drs. Pfister, Poeverlein, Kantor, Prasad, and 
Lt. Finn for fruitful discussions, and to Mr. Arnold 
Shickman for the computations. 
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