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In 1937 Bailey and Martyn proposed a theory of ionospheric cross modulation along
the following lines. Radiation emitted by the disturbing transmitter is strongly absorbed
in a region of the ionosphere where the wanted wave is refracted and attenuated.  Absorp-
tion of the disturbing radiation raises the temperature of the ionosphere. If the amplitude
of the disturbing radiation varies with time, so will the resulting temperature inerease and
hence the attenuation suffered by the wanted wave. In the simplest experimental arrange-
ment the wanted wave is initially unmodulated and the disturbing radiation is modulated
at a definite audio frequency. In traversing the ionosphere, the wanted wave becomes
modulated at the frequency of the disturbing radiation and also at twice this frequenecy.

The Bailey-Martyn theory makes three quantitative predictions concerning the trans-
ferred modulation.  The first concerns its dependence on the power of the disturbing radi-
ation, and involves only the assumption that the effect is small enough to warrant a linearized
deseription.  The remaining two predictions concern the dependence of the transferred
modulation and its phase lag on the modulation frequency. These predictions involve
the additional assumption of a unique relation, valid for all values of the modulation fre-
quency, between the mean thermal energy and the mean collision frequencey of the electrons.
A relation of this kind can exist, however, only for modulation frequencies mueh less than
150 e/s. Since the experimental range of modulation frequencies extends to nearly
1500 ¢/s, the foundations of the Bailey-Martyn theory need to be reconsidered.

This paper deseribes a microscopic theory of ionospheric cross modulation. The
velocity-distribution function for the electrons enters explicitly into the theory; it is deter-
mined by a differential equation whose form depends on the modulation frequency. Knowing
the distribution function, one can calculate the absorption coefficient. The form of the
predicted absorption coefficient depends on the assumed form of the eleetron-molecule
interaction law. By numerical methods, we have calculated the transferred modulation
and its phase lag as functions of modulation frequency for a few simple interaction laws.
The calculations show that the effects of departures from a maxwellian velocity distribution

are indeed significant.
molecule collision law.

The predictions are sensitive to the assumed form of the electron-
Although the present theory is still highly idealized, the results

obtained suggest that further theoretical and experimental refinements could lead to an
experimental determination of the electron-molecule interaction law in the D region.

1. Introduction

1.1. The Bailey-Martyn Theory

The passage of a radio wave through a region of
the ionosphere in which it is partially absorbed
raises the electron temperature in the region and
hence changes its absorption coefficient. The ab-
sorption process is accordingly nonlinear: the attenu-
ation suffered by each of several radio waves passing
through the same region depends on that suffered
by all the others. This is the physical basis of
Bailey and Martyn’s [1934] theory of ionospheric
cross modulation.

1 The first five sections of this paper first appeared in slightly different form in
areport dated March 14, 1959, prepared for the U.S. Air Force. A much more
complete discussion of the Bailey-Martyn theory and its modifications (sec. 1)
and of the kinetic theory of a plasma in an alternating electromagnetic field
(sections 2, 3, 4) has subsequently been given by Ginzburg and Gurevich (1960),
along with an exceptionally complete bibliography, but the main results of the
present paper (sections 5, 6) do not appear to have been published previously.
An approach very similar to that used in sections 2, 3 has been outlined by
Bayet, Delcroix, and Denisse [1957], but their treatment of the distribution func-
tion differs from that of sections 4, 5. We are indebted to the referee, Dr. Julius
Cahn, for bringing this paper to our notice.
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In a typical cross-modulation experiment an
mitially unmodulated carrier wave (the “wanted”
wave) traverses a region in which a second wave at a
different carrier frequency (the “disturbing” wave)
is heavily absorbed. The disturbing wave is ampli-
tude-modulated at a definite frequency. On recep-
tion, the wanted wave is found to be modulated at
the same frequency and also at twice this [requency.

The main predictions of the Bailey-Martyn theory
do not depend on a detailed deseription of the
physical processes involved but follow from a few
general assumptions, the first of which is that the
phenomenon admits a linearized description. The
linearized energy-balance equation for the electron
gas has the form

de
—; KL—T

dt

e

(1.1)
Here e denotes the difference

e;g (T, —T,) (1.2



between the mean thermal energy of the electrons
and the mean thermal energy of the molecules, «
denotes the absorption coefficient of the medium,
I denotes the intensity of the ambient radiation
field, and = denotes the thermal relaxation time of
the electron gas. As (1.1) is linear, we may treat
the individual Fourier components of the radiation
field separately. The w-component of (1.1) is

1wey=kl y— 1 €0, (1.3)
which has the solution 2
o ’ -—i¢1

€= ATL‘L' ke L, o=tan " (wr). (1.4)

1+iwr (147207
The angle ¢ represents the phase difference between
the w-component of the radiation field and the
w-component of the electron temperature. In the
D and lower I regions, 7= 100 sec, so that the attenu-
ation factor (1472?72 is very small except at
audio frequencies.

The assumption of linearity also implies that the
variable part of the electron-molecule collision
frequency » oc e. According to Lorentz’s theory,
x o ». Hence, setting

K=kKo+ [Kwﬁf“'([w, y=vo+ fvw(ai“"(/w, (1.5)

we have
K OCV o OC € . (1.6)
Finally, if the region where appreciable modulation
transfer occurs is nearly homogeneous, we have
X, o<k, (1.7)
where X, describes the depth and phase of the trans-
ferred modulation. From (1.4), (1.6), and (1.7), we
have

T.=QQ4+7?)"'?  ¢.=tan™"(wr).

(1.8)

The predicted linear dependence of X, on 7., the
predicted variation of the phase lag ¢, with w, and
the predicted variation of the coeflicient 7', with w
can all be tested separately.

(1) Linear dependence of X, on I.. 1f the disturb-
ing wave is modulated to a depth M at a single
frequency » and if P denotes the total power of the
disturbing radiation, then

X =l I ™%

Toc P[(14-3M?)+2M cos wt+35M? cos 2wt]. (1.9)
Rateliffe and Shaw [1958] verified that X', oc P over
a wide range of P. Huxley et al. [1947, 1948]
verified the predicted linear dependence of P, on M

2 Equation (1.1) has the same form as that governing the current in an RL
circuit; = represents the time constant of the circuit and I the applied emf.

and showed that the predicted quadratic dependence
of Xy, on M was qualitatively in agreement with
experiment. These experimental results show that
a linearized description of ionospheric cross modulation
vs valid over a wide range of experimental conditions.

(1) The phase lag ¢(). Rateliffe and Shaw [1948]
and subsequent workers found that they could
secure good agreement between predicted and meas-
ured phase lags over a wide range of w by choosing
the parameter r appropriately. The required values
of 7 seem to be consistent with values derived by

extrapolating laboratory measurements [Huxley,
1959].
(i) The coeficient T,. Formula (1.8) for T,

agrees qualitatively, but not quantitatively, with ex-
periment [Ratcliffe and Shaw, 1948; Huxley, 1950].
The discrepancies between theory and experiment,
though not large, appear to be significant. Huxley
[1950] suggested that the two spatially separated
regions in which cross modulation oceurs in a typical
experiment—one on the ascending, the other on the
descending branch of the wanted ray—may have
sufficiently different properties to invalidate the
assumption of homogeneity underlying (1.6). Cal-
culations based on a two-center model [Huxley,
1950] do not, however, significantly reduce the
discrepancies.

The derivation of formula (1.8) actually rests not
only on the assumptions of linearity and homogene-
ity but also on a third major assumption: that, at
any given point in the ionosphere, the quantities
«, v, and 7 depend only on the electron temperature
and not explicitly on the modulation frequency.
Now, the relation between collision frequency (say)
and electron temperature depends in general on the
form of the velocity distribution of the electrons. If
the distribution is maxwellian, or has any other fixed
form depending on a single parameter, it is com-
pletely specified by 7', so that » becomes a function
of 7, But if the electron temperature does not
serve to specify the distribution completely, the
relation between » and 7, may be many valued.
In the present problem, the variable part of the
distribution changes appreciably in a time of order
w . Since this is short compared with the thermal
relaxation time 7 there is no reason to suppose that
the distribution remains accurately mawellian. It
is true that if the intensity of the incident radiation
field 1is sufficiently small, the velocity distribution
of the electrons will be approximately maxwellian.
But the phenomenon of cross modulation depends
entirely on the variable component of the velocity
distribution, and, as we shall see, this component
remains nonmaxwellian even in the limit of vanishing
field intensity.

This paper presents a theory of cross modulation
in which the electronic velocity-distribution func-
tion figures explicitly. Although the present theory
is more realistic than the macroscopic theory sketched
above, it is oversimplified in one important respect:
[t treats collisions between electrons and molecules
as if they were perfectly elastic. In reality, cooling
of the electron gas in the D and £ regions results
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from the collisional excitation of molecular
nitrogen. Basing themselves on the work of Kov-
rizhnikh [1960], Caldirola and DeBarbieri [1960,
1964] have recently extended the present theory to
allow, at least approximately, for inelastic collisions.

For the sake of simplicity, the following discus-
sion ignores the effects of the earth’s magnetic
field. This is permissible only if all the carrier
frequencies that figure in the discussion are much
oreater than the gyrofrequency. The modifica-
tions required when this condition is not met are
straightforward; they are described in the paper
by Caldirola and DeBarbieri mentioned in the last
paragraph.

chiefly

2. Reduction of the Boltzmann Equation

The Boltzmann equation for an electron gas in an
electromagnetic field has the form

of , of q of o
+q ()(+m, <E+('XB> oq ot

The following discussion of this equation is a gen-
eralization of the treatment of a wes akly jonized oas
in a constant electric field given by Chapman and
Cowling [1960, pp. 346-352].

We assume at first that the field is that of
linearly p()l‘m/od plane wave propagating in th(\
z-direction:

(/‘ [4 )1 (kz—pt),

/il

== [4’ ik *7/){;

B,

The distribution function f depends on the six vari-
ables z, q, t. Since |ck/p| =1, the magnetic force is
of order ¢/e¢ compared with the electric force. Simi-
larly, the second term on the left side of (2.1) is of
order ¢/c compared with the first term. Neglecting
terms of this order, we obtain in place of (2.1)

of  , of of )
) “ou ot &8
where
F—°E 2,
m = (24
In this approximation, f depends on only four
arguments:
f=1(z;u, q; t). (2.5)

We may expand f in Legendre polynomials of the
arcument u/g.  We shall need only the first two
terms in the expansion:

T=r®(q, t)+iFet%—20yfMd(q, 7). (2.6)

3 We adopt the convention that when a real quantity, such as F; or f, is repre-
sented by a complex expression, as in (2.2) and (2.6), the rml part ()flln\(‘\prossl()n
is to be understood. Note, however, that the quantities £, F, k, f (0 etc., are all
complex, and that both the real and imaginary parts of an oquzltion like (2.11)
are significant.
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Il the number density n of electrons is sufficiently
small compared with the number density of molecules,
we may neglect electron-electron and electron-ion

collisions. The collision term in the Boltzmann
equation, represented by of/6f, is then a linear
functional of 7:
6/ ,
=A(f)- 2.7
YA 27)
Lorentz showed that
m
Alug(q)|=—v(@)ug(q) r0< (2.8)

where m/M is the electron-molecule mass ratio, » is
the velocity-dependent collision {requency, and ¢ is
an arbitrary function. Davydov [1935] derived the
important formula

!/((/):I

Alg@) 1=y s g | ) 1
40 [(m)]

By inserting (2.6) into (2.3) and using the formulae
ol Lorentz and Davydov to evaluate the right side
of the resulting equation, we obtain differential
equations for the functions / and .

kT, 1 d
+ 1 7(
m qdq

The equation for fV is

"(0)
wf® (p+ /V)"F / (2.10)
or
. 1 1 a/(m
1) = — 2
Y ptivq 0q (i)

The left side of the equation for /' has the form

(0) /
\F

Here the brackets indicate a double average: over
direction in velocity space (to eliminate terms con-
taining Legendre polynomials 7, (u/q) with k>0),
and over time (to eliminate radio-frequency fluctua-
tions in f, which are of no physical interest).
Since we need to preserve audio-frequency variations
of /¥ the time-averaging must be over an interval
that is short compared with the reciprocal of the
highest modulation frequency of interest as well as
long compared with the reciprocal of the carrier

B (GF u/‘<“)>- (2.12)

frequency p; thus we must have p > >w. Applica-
tion of the well-known rule
(Re Ae™™ -Re Be™)y, =1 Re AB,  (2.13)

4The differential equation for (% the coefficient of Px(u/q) in the Legendre
expansion of f, involves only the functions f@ with j<k, so that the sequence of
approximations may be terminated at any point. By contrast, the equations
for the moments of f of order k involve moments of order k1.



where A denotes the complex conjugate of A, gives
/ (1) \
\1 O uf )
~1 ]«( > uaf(u)>}
_5 p+iv) " ou\q dq
B 1 - laf&ﬂ) ’lL a 1a]¢t0)>:|
Y=l I:q o7 T aq\g og I Z1¥
Since

1 2 w
0 2| 21 ep (2 ’
= [3 312(«1)]

averaging over direction in velocity space gives

(P

(7]‘ ?/f‘“)>

_ ] [laf”f I l?ﬁ’.’)]
21)2+u” Al q 9Oq 34 oq\q 0q
I o 1 0 gffi>
T 6pP? 72 0q g

(2.15)

Combining this result with (2.9) we have, finally,

of _m 1o 0 805 ]}
iy o) 1 +24° -0 19
where
1M kT,
Gmpz—}—v itk el

We may immediately generalize these results to an
arbitrary radiation field. The electric vector at a
given point may be written in the form

B (2.18)

where each Fourier component E; represents the
electric field of a linearly polarized plane wave. In
place of (2.6) we have

=79 (q,2) +ZQF (k- q)/" (q,t) exp (ik;x—p,t)

(2.19)
and in place of (2.10),

IR
 prtivg dg

@ _

J

(2.20)

Finally, the function 7© satisfies (2.16) with ©

62

given by

+IrT

m

1M
6776 m 2]

|
D3 v2

instead of by (2.17).

3. The Dispersion Relation

The electric current density produced by the
radiation field (2.2) is given by

o=t futiva—"L" [y g
_‘}L” o (g g, 4mie wf‘la dr
g ff i s
4 q :
- 4 (0) ’ ¢
- Jff d ap+w> (3.1)
J=3=0. (3.1)
From Maxwell’s equation,
curl B:cl E+4rjs (3.2)
and (3.1) we obtain
22 4me Pf P (457(13 )
A= J 3 ptiv
- 2__41ref(0) (47r Juls )
——p f 3] p2+y2
2 y 3
+i‘%ﬁm)d<¥p€)fy2>- (3.3)

In order to write this relation in a more compact
form we introduce the plasma (requency p,, de-
fined by
47ne’ >
p=—" (3.4)
and use the abbreviation
@—1 [0 Foew | (3.5)

where n denotes the electron density.
sion relation (3.3) then takes the form

The disper-

. o/ PN/ P :
(ck)*=p® ]’0\ z_l_ 5 )17 po\])2_|_ z/ (3.6)
The absorption coefficient « is defined by
k=ko+3x, (3.7)



The following approxi-
the conditions stated,

where &, and « are both real.
mate formulae, valid under
are often convenient:

])0/ pv \

])\1) / (Pe<<p),

(3.8)

= (1;—:)2@) (Pol < p, v_<p). (3.9)

The results of this section were first obtained by
Lorentz.

4. Absorption of Unmodulated Radio Waves

When =0, (2.16) reduces to an ordinary first-
order differential equation, whose solution is

f“’an(’oxp{— fq

0

]
()“’(1(/(1i7 (4.1)

D

where O 1s given by (2.21) and the constant (' is
determined by the normalization condition

G

]

47rf i ocdo=mn" (4.2)
JO

Formula (4.1) is valid for all values of the carrier
frequencies p; occuring in formula (2.21) for O
We recall that f© represents the isotropic part of
the distribution function averaged over a time inter-
val long compared with all the characteristic times
p; ' I the radiation field has only a single Fourier
component, ¥ represents the isotropic part ol the
distribution function averaged over a single period.

Formula (4.1) remains valid in the limit p=0
(E=const.). In this case
1M |F|? lcl',,, B ‘
S (p=0) (4.3)

and (4.1) coincides with a formula derived by C'hap-
man and Cowling [1960; eq (13), p.350].

When the carrier hequen(\ is very large, O is
eiven by

1 M| PP

_ kT
6 m p?

S L O R

f(°) is accordingly maxwellian, the electron tempera-
ture being given by Lorentz’s formula,
M|F >

)

kT, IcT,,;}— (4.5)

If the molecules are maxwellian (collision frequency
independent of velocity), the distribution function
is maxwellian for all values of the carrier [requency.
Otherwise the distribution function departs markedly
from the maxwellian form when 6>> kT, /m and
p=w.

(S
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If the molecules are rigid elastic spheres (v=g¢/I,
[=const.) the integral in (4.1) may be evaluated
explicitly; one obtains

FO=C" @+ A e T, (4.6)
where
—_ Mg - ml*p _M|F}?
=T, —sit, A, 40

5. The Variable Part of s

In this section we derive the equations governing
small departures from the steady-state velocity
distributions discussed in the preceding section.

Let

0(g,t) =6,(q) [1+0(g,1)]. 5.1)

The function 6, coincides with the time- independent
function that was called 6 in the preceding section.

We define new dimensionless variables z, .Y, ¢
g  1¢*
de=g ' X 20,
q
oo, =m0, g (5.2
JO
Note that
dr dX | do, .
X x°T ()‘,(' (5.3)

The function ¢ is the probability distribution function
of the dimensionless velocity variable z;

olat)=Pr{z<a}. (5.4)

It follows that
0(0,)=0, (=, )=1. (5.5)
The partial derivative 0¢/0r is the probability

density associated with z. In terms of the new

variables (2.16) takes the form
i ( X0,2 — 0(, O‘0>+< Y
+9|: +X0, 5~ (()g‘ O‘f):|} (5.6)

So far we have not made any assumptions about
the magnitude of the function 0(¢,). In order to
reduce (5.6) to an ordinary differential equation we
now set

O
ot
10¢
i) a

o=y (x) + o1 (2,1) (5.7)
and assume that 6 and ¢, are so small !Iml.tlleir
product may be neglected in (5.6). This will be
true if at least one of the conditions 6 =kT,/m,



M< <1, where M denotes the modulation depth,
is satisfied. Having linearized (5.6), we can deal
separately with the Fourier components of the
radiation field, just as in the elementary theory of
section 1. Let

(@) =0.(x)e'*,  @@t)=ps()e“. (5.8)
It is convenient to replace the modulation frequency
w by a dimensionless variable and to separate out
the velocity dependence of the function »(x). We
accordingly define

2=y 5= [ v@den (5.9)
w
Finally, since ¢, satisfies the equation
0 1 9¢ < )a% =
X056 oet 0, (5.11)
we have

O _ oy Xt (5.12)
o 0 J ’

where (' is determined by the normalization con-
dition ¢o(«)=1. Hence

P 9@4__ 3/2,—x <
X R~ — 00Xy . (5.13)

Omitting second-order terms in (5.6) and using
(5.9), (5.10), and (5.13), we obtain

o3 (05 (-

+mn%:ewoeg/2x3/2e—r.

0%

(5.14)

Since ¢ and ¢, both satisfy the boundary conditions
(5.5), ¢. must satisfy the boundary conditions

¢.(0)

Equations (5.14) and (5.15) together with the
dispersion relation (3.6) represent the formal solution
of our problem. The functions 6, and 6 are defined
by the radiation field. Given 6,, one finds the func-
tion z(¢q) and X(¢) from (5.2). Equation (5.14)
with the boundary conditions (5.15) may be inte-
grated numerically by the method described in the
appendix. Finally, knowing ¢., one can calculate
the variable part of the absorption coefficient from
the dispersion relation.

Equation (5.14) assumes a simpler form when
O ~kT,/m, so that the unperturbed distribution
function is nearly maxwellian. We may then write

=gpu()=0. (5.15)

K=, O,=const., 6,=const., (5.16)

so that (5.12 )becomes

9@:_2_ 1/2,-2

/2 5
3 yx x12e (5.17)
Setting
2
0o(r) =— = 0.y (x), (5.18)
\
we obtain in place of (5.14)
oy’ +(@—3)y —ilamy=—a*¢*.  (5.19)
The boundary conditions are
y(0)=y(=)=0. (5.20)

In the numerical work described in the next section
the function n(x) is taken to have the form

204D,

VT

n(x)= (5.21)

6. Some Numerical Results

Miss Cara Joy Hughes employed the IBM 7094
computer at the Harvard University Computing
Center to integrate (5.19) with the boundary con-
ditions (5.20) and with n(x) given by (5.21). In-
tegrations were carried out for every pair of param-
eter values (a,7) with « in the set (0.1, 0.2, 0.5, 1, 2,
5, 10, 15) and » in the set (—.5, .5, 1, 1. 5). The
integration procedure is described in the appendix.

For =0 the solution of (5.19) is

x3/26—z

yzl—f—ia

(r=0). (6.1)

The complete distribution funection f” corresponding
to this solution is maxwellian with a variable electron
temperature. The factor (1+4ie)~! in (6.1) cor-
responds to the factor (1-+iwr)™ in (1.4).

Figures 1 and 2 show the modulus and argument of
the function

j=(1+ia)y (6.2)

for r=—0.5, 1.5 and for a=2, 5. In both figures the
curves corresponding to r=—0.5 and r=1.5 differ
markedly from the curve for the maxwellian case
r=0. For r=—0.5 the peak of the function |7(z)|
occurs at a smaller value of # than for »=0, while for
r=1.5 it occurs at a larger value. In the four cases
with 70 the function arg 7 changes sign near
r=1.5. For large positive values of z, arg ¥ is
positive for r=1.5, negative for r=—0.5.

According to (3 9), the absorption coefficient «
varies dir ectly as the mean collision frequency
(the mean being defined by (3.5)) if the carrier



Fraure 1. The function |¥| (see eqs 6.2 and 5.18) for
representative values of r and a.
P
L _[CRZtommanni
s /// Nre15,e-2

9

Ficure 2. The function arg ¥ (see eqs 6.2

representative values of v and a.

and 5.18) for

frequency is sufficiently high.

By (3.5),
(5.7), (5.8), (5.18), and (5.21),

(5.2),

(Vw>ocf({1q‘—° q2d(¢Pv) o< (2r-+3) f([gaw.lir

o< — (27*+3)/'f oot 'droc — (2r+ 3)/'0wf ya" .
0 0
(6.3)

Just as in section 1, the assumptions of linearity and

homogeneity imply that X o & (see (1.7)). Hence
X o (2r43)rf,, f ya'd. (6.4)
JO

Note that X, vanishes for maxwellian molecules
(r=0). This means that the elementary theory
becomes rigorously wvalid in the limit when the
phenomenon it describes disappears.

By analogy with (1.8), we write

f yr lde=T(a)e~t'@.
0

The functions ¢(«) and 7(«) are shown in figures 3
and 4 for r 0.5, 0, 0.5, 1, 1.5. For r>0 the
curves ¢(a) have roughly the same shape. Com-
pressing the horizontal scale of the curve for r=0.5
by 25 percent would bring it into near coincidence

)
with the curve for »=0, but for r=1, 1.5, the scaling
factor increases markedly with z.  For r=—0.5, the

w2

ol

| | | | | | |

10 11 12 13 14 15

Ficure 3. Phase lag of the transferred modulation (see eq 6.5) as a function of modulation frequency for various collision laws.
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Ficure 4.

phase lag at first increases more rapidly with
increasing modulation frequency than in the max-
wellian case, then more slowly. The shapes of the
curves for 7=—0.5 and »=0 are entirely different.

If one were to use the phase-lag curve for 7=0 to
analyze experimental results relating to a hypo-
thetical gas in which the electron-molecule collisions
were elastic and were characterized by a velocity-
independent free path (the case 7=0.5), one would
over estimate the mean collision frequency v by 25
percent. If a higher value of » were appropriate,
the error could be much greater.

Turning now to the coefficient of transferred
modulation 7'(«) (fig. 4), we see that the curvature
of the function 7'(a) increases with increasing » over
the entire range —0.5<r<1.5. Compressing the
horizontal scale of the curve for »=0.5 by 25 percent
- would make it fall off more steeply at small and
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15

Amplitude of the transferred modulation (see eq 6.5) as a function of modulation frequency for various collision laws.

moderate values of « than the curve for »=0. 1In
general, one cannot devise a horizontal scale trans-
formation that, for a given value of 70, will make
both 7(a) and ¢(a) assume the forms appropriate
to the case »=0.

To sum up, the numerical calculations show that
significant departures from the predictions of the
elementary theory may be expected. Moreover,
values of the mean collision frequency derived by
using the elementary theory to analyze cross-
modulation data may be significantly in error. On
the positive side, the sensitivity of the predictions
to changes in the collision law suggests that further
theoretical and experimental refinements could
ultimately lead to an accurate experimental determi-
nation not only of the collision frequency but of the
form of the collision law.



7. Appendix

Cara Joy Hughes

Division of Engineering and Applied Physics, Harvard University

The following paragraphs describe the method used to integrate (5.19).

The same

method can be applied to the more general equation (5.14)

Consider the inhomogeneous second-order linear
differential equation
a@)y” +b(x)y +e(@)y=d(@). (A.1)

We may approximate (A.1) by the set of coupled
difference equations

a A% +b.Ay ey =d; (t=1,...,n—1) (A2
where
a;=a(x,), ete. (A.3)
X =To+h (A4)
L Oy,
Ay, 3[{+12]I]/: 1, pzy, =it ~/:/—| Yi-i,  (A5)

(A.2) 1s a set of (n—1) equations for the (n-1)

variables yo, 1, . . ., ¥,. The two boundary condi-

tions provide two additional equations, so that in

general the set of difference equations together with

the boundary conditions have a unique solution.
In the problem at hand, », and 7, are given:

Yo=Yrn=0. (A.6)

The equations (A.2) thus have the form

<Zj+g}j> .’/2+<—3T(.1_)!+(’1> h=d,
@it 1_}_‘?/1) . |+(/ ;’;

+<a,1 bi—1 Vio=d;, (2<i<n—2)

’ ..«I,, Ap— =
<_ : 1+(,r1 1>7//1 1+< o ‘)h

In matrix notation,

?//1 (/”,1. (1\7)

MY =D (A.8)
where M is a tridiagonal square matrix of order
(n—1), and Y, D are column matrices.

To solve (A.8), we write A in the form

M=LR (A.9)

where L and R have the forms

L (VA () 0
lrb 10 0
[ == () [;; ] ()

- =
ky 0 0
0 kg I'y 0

R=70 0 ky ry 0 (A.10)
O

The coefficients [, k,, r, must satisfy the equations

li"i—l"JFA'iy
2<i<n—1) (A.11)

L3
My 1=k1, My, 2="1, My —1=Uiki—1, My —

mg, 1’+l:"i

which may clearly be solved in serial order for £, r,
ly, ks, 75, ete. Thus L and R are completely specified

by M.
Let
I ={U] . (A.12)
Then (A.8) becomes
eSS (A.13)
or, again equating matrix elements,
w=d, U1 +u;=d; (2<i<n—1) (A.13%)

Hav g
olving

) o

which can be solved serially for the u,.
found U/, we then determine }” from (A.12)

kg +ryi = (1<v<n—2)

kn—l?/u-—117' Up—1 (‘\12,)
which can be solved in reverse serial order, beginning
with the last equation in the set. The solution is
now complete.
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One can estimate the accuracy of the procedure de-
seribed, as applied to the differential equation (5.19),
by (‘()Inpdllll” numerical solutions of this equation for

n=1 with the exact solutions (6.1). The numerical
soluti()ns were carried out for a grid spacing h=0.05
and with the approximate boundary condition
y(x=25) =0 in place of y(z= =)=0.
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