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In 1937 Ba iley a nd Ma rtyn proposed a t heo!"y of ionospheric cross mod ulat ion a lo n /,!: 
the following lin es. lladiat io n em.itted by th e disturbing tra nsmi tte r is strongly abso l bed 
in a r ('gion of the ionos phere where the wanted wave is refracted a nd attenuated. Abso rp
tion of the dist urbin g radiatio n raises th e temperature of t he ionosp here. If the a mplitud<, 
of the d isturbing radi at ion va ri es with time, so wi ll the r es ultin g temperature in crease a nd 
hence the attenuation s ufTered by the wa nted wavc. In th e simplest ex perim e ntal a rran ge
m ent the wanted wave is ini t iall .v unmod ul ated a nd the disturbin g nLdiat io n is modulated 
at a definite a udi o freque ncy. In traversin g t he io nosphere, the wa nted wave becomes 
modulated at the freque ncy of the di sturbing ra di ation a nd also at twice this frequellcy. 

The Ba il ey- M a rt.vn t heo ry ma kes three qua ntitative p redi ctions co ncern in g the tra ns
fC' rred modulat ion . The firs t concc rns its dependence o n th e power of the di st urbin g radi
at io n, :l nd in voh'es on ly the ass umpt ion j' hat t he dTcct is s ma ll l' nough to wa rrant it lineari z('d 
description. The rema inin g two p rC'd icti o ns co nccrn the depend encc of t Il(' tran sferred 
modulation a nd its phase lag on the modu lat io n frequency. TI1l'se p redi ct io ns in vo lve 
the additiona l ass umpt ion of a unique rela tion, vali d for all values of the modulat io n fre
que ncv, betw('C'n t1w mean tll('rm al energy a nd the mean co lli s io n frequen c.v of t hC' electro ns. 
A r elat ion of thi s kind can e xist, however, onl y for mod ulation freq uencies mu ch less t ha n 
150 cis . Since t he expC' rimental r a nge of modu la t ion fr eq ue ncies ex t cnds to nearl y 
1500 cis, t he founda tions of the Bailey-Ma rt y n t heo ry need to be reco nsidered. 

Thi s pap er describc's a mi croscopi c theory of ionospheri c cross modulat io n. The 
velocity-dist ribu t io n functio ll for the electrons e nters explicitl y in to t he theory; it is deter
min ed by a differentia l C'q uat ion whose form depends on the modula t ion freq ue ncy. Knowing 
the dist ri but ion fun ct ion, one can calcul at c the a bsorpti on coefficie nt . The form of the 
predi cted a bsorpti on coefficient depends on t he ass um cd form of the electron-mo lec ule 
interact ion I a \\" . By num eri cal mct hods, we have calcul ated t he tra nsferred modu lat io n 
a nd i t s phas(' lag as fun ctio ns of modulatIOn freque ncy for a few simplC' inte ract ion la ws. 
The calc ul at io ns sho w t ha t the effects of departul"C's from it maxwelli a n velocity dist ri bution 
a re indeed sig nifi cant. The predi ctions a re sens it ive to t he ass um ed form of t he eIPct ro n
molec ul e coll is io n la \\". Alt houg h t he present theo r." is sti ll hi g hl y idealihed, t he res ults 
obtained s llggC's t t hat furtlH'l" theoret ical a nd ex perim ental refinements could lead to a n 
experime ntal detC'rmin at io ll of the electro n-m olec ule inter action la w in the D region. 

1. Introduction 

1.1. The Bailey-Martyn Theory 

The passage of a radio wave through a region of 
the ionosphere in which it is partially absorbed 
Taises the electron temperature in the region and 
hence changes its absorption coefficient. The ab
sorption process is accordingly nonlinear: the attenu
ation suffered by each of several radio waves passing 
t hrough the same region depends on that suffered 
by all the oth ers. This is the physical basis of 
B ailey and Martyn's [1934] theory of ionospheric 
cross modulation. 

In a typical cross-m odulation exp erimen t an 
initially unm odulated carrier wave (th e " wa nted" 
wave) traverses a r egion in which a second wave at a 
different carrier frequency (the "disturbing" wave) 
is heavily absorbed . The disturbing wave is ampli
tude-modulated at a definite Jrequenc~T . On recep
tion, the wanted wave is found to b e modulated at 
the same frequency and also at twice this frequenc~'. 

The main predictions of the Bailey-Mal't~T n t heory 
do not depend on a detailed description of the 
physical processes involved but follow from a few 
general assumptions, the flrst or which is that the 
phenomenon admits a lincarized description. The 
linearized energy-balance equation for the electron 
gas has the form 

I The fi rst fi ve section s of t his paper first appeared in slightly different form in dd€t = KI - T - I €. 
a report dated l\ l arch 14, 1959, prepared for the U.S. Air Force. A much more 

(1.1) 
>com pl ete d iscussion of the Hai ley·M art yn t lleory and its modifications (sec. 1) 
and o f the kinetic theory of a plas.ma in an alternat ing electro magnetic: fi eld 
(sections 2, 3, 4) has subsequently been given by Ginzburg a nd Gurevich (1960), :Here € denotes the difference 
.along with an exceptionally complete bibliography, but the main results of the 
presen t paper (section s 5, 6) do not a ppear to have been published previou sly. 
An approach very simil ar to that used in secti ons 2, 3 has been outlined by 
Bayet, D elcroix, and Denissc [1957], but t lle ir t reatment of tile distribution fun c· 3 k(T T) 
tion differs from that of section s 4, 5. We are indebted to the referee, D r. Julius €=-2 .- 'In 

Cahn , for bringing this paper to OUT notice. 
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(1.2) 



between th e m ean thermal energy of th e electrons 
and th e mean therm al en ergy of the m olecules, K 

denotes the absorp t ion coefficien t oJ th e m edium, 
I deno tes th e intensi tv of the ambien t r adiation 
field , and T den otes th e thermal relaxation time of 
th e electron gas. As (J .1) is linear, vve m ay treat 
th e individual Fourier componen ts of th e radiation 
field sep aratel.". The w-componen t of (1. 1) is 

which h as th e solu t ion 2 

KT e - ':<P I w 

,1(1 + T 2W 2)' 

(l.3) 

(1.4) 

The angle cp represen ts th e phase differen ce b etween 
t he w-component of th e radiation field and the 
w-componen t of th e electron temperature. In th e 
D and lowcr E regions, T "'=' 100 sec, so t hat the attenu
ation factor (1 + T2W2)-1/ 2 is very small excep t at 
audio frequen cies. 

The assump tion of linearity also implies that the 
variable part of the electro n-molecule collision 
frequency v cc ~ . According to Loren tz's t heory, 
K cc v. H ence, setting 

we h ave 
(l.6) 

Finally, if t he r egion wher e appreciable modulation 
t ransfer occurs is nearly homogeneo us, we have 

(1. 7) 

wher e X w describes the depth and. phase of the tr ans
ferred m odulation. Fronl (1.4), (l.6), a nd (l.7) , we 
have 

(1.8) 

The predicted linear dependence of Xw on I w, t he 
predicted variation of the phase lag cp", wit h w, and 
th e predicted variation of t he coefficien t T w wit h w 
can all b e tested separately. 

(i) Linear dependence oj X ", on I w' If t he disturb
ing wave is m odulated to a dep t h M at a single 
fr equency wand if P d enotes the total power of the 
disturbing r adiation, t hen 

lccP[( 1 + ~M2) +2M cos wt+~M2 cos 2wt]. (1.9 ) 

R atcliffe and Shaw [1958] verified th at X w cc P over 
a wide r ange of P. Huxley et al. [1 947, 1948) 
verified t he predicted linear dependence of P w on 1\1 

2 Equation (1. 1) has the same form as that governing the current in an HI, 
circuit; T represen ts the time constant of tho circui t and I the applied emf. 
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a nd showed that t he predicted quadratic d ependen ce 
of X 2w on M was qualitatively in agreement with 
exp er iment. These experimental resu lts show that 
a linearized description oj ionospheric cross modulation 
is valid over a wide range oj experimental conditions. 

(ii) The phase lag cp(w) . R atcliffe and Sha w [1948) 
a nd subsequent worker s found t hat they could 
secure good agreement b etween pr edicted and meas
ured p hase lags over a wide range of w by ch oosing 
the p aram eter T appropriately. The required yalues 
of T seem to b e consistent with values deri,-ed by 
extrapolating laboratory m easurements [Huxley, 
1959). 

(iii) The coefficient T w. Formula ( l. 8) for T ", 
agrees qualitatively, but not quan ti tati\Tely, with ex
periment [Ratcliffe and Shaw, 1948; Huxley, 1950) . 
The discr ep ancies b etween theory and experiment , 
t hough not large, appear to be significan t. Huxley 
[1 950] suggested that t he t wo spatially sep arated 
regions in which cross modulation occurs in a typical 
experim en t- one on the ascending, t he other on the 
descending branch of t he wanted ray- m ay h ave 
sufficient ly differ en t properties to inyalidate t he 
assumpt ion of homogeneity underly ing ( l. 6) . Cal
culrtt ions b ased on a two-cen ter model [Huxley, 
1950) do not, however, significan tly r educe t he 
discrepancies. 

The derivation of formula (1.8) actually rests not 
only on th e assump tions of linearity a nd h om ogen e
ity but also on a third maj or assump tion : that, at 
any given p oin t in the ion osphere, the qua n tities 
K, v, and T depend only on the electron temperature 
and n ot explici tly on the m odulation frequen cy. 
N ow, the relation between collision frequen cy (say) 
and elec tron temperature depends in general on the 
form of the velocity distribution of the electr ons. If 
th e dis tribution is m axwellian , or h as any 0 therfixed 
form depending on a single p ar ameter, it is com 
pletely sp ecified by T e, so that 1J b ecom es a function 
of T e. But if the electr on tempera ture does n ot 
ser ve to specify the distribution comple tely, t h e 
relation between )} and T e m ay b e m any valued . 
In th e presen t problem , the variable p ar t of the 
distribution ch anges appreciably in a t ime of order 
w-·1 Since this is sbor t compar ed with the thermal 
relaxa tion time T there is n o r eason to suppose that 
the dis tribution rem ains accurately m awellian. It 
is true that if the intensity of the in cident r adia tion 
field is suffi cien tly small , the velocity distribu tion 
of th e electr ons will b e approxim ately m axwellian . 
Bu t th e phenom enon of cr oss modulation dep ends 
entirely on th e variable component of the velocity 
dis tribu tion, and, as we sh all see, this compon en t 
remains n onmaxwellian even in the limi t of vanishing 
field intensi ty. 

This p aper presen ts a theory of cross modulation 
in which the electronic velocity-distribution func
tion figures explicitly. Al th ough th e presen t th eory 
is more realistic th an the m acroscopic theory sketched 
ab ove, i t is oversimplified in on e imp or tan t respect: 
It treats collisions b etween electr ons and m olecules 
as if th ey were p erfectly elastic. In reali ty, cooling 
of the electr on gas in th e D and E regions results 



chiefly frol11 the collisional excitation of molecular 
nit rogen. Basing themselv es on the work of Kov
ri :dmikh [1960], Caldirola and DeBarbieri [1960, 
1964] have r ecently extended the present theory to 
all ow, at leas t approximately, for in elastic collisions. 

11'01" t he sake of simplicity, the following discus
sion ignores the effects of the eftrth's magnetic 
fi eld . This is permissible only if all the carrier 
frequencies that figure in the discussion are much 
greater t han the gYl'ofrequency. Th e modifica
Lions required when this condition is not met are 
s Lmigh tforward ; they are described in the paper 
by Caldirola and DeBarbieri men tioned in the last 
panLgraph. 

2. Reduction of the Boltzmann Equation 

The Boltzmann equation for an electro n gas in an 
elee Lromagne tic fi eld }l as tlJ e form 

oj oJ e ( q ) oj oJ - + q._ + - E+ - XB .- =_. ot ox m c oq ot 
(2.1) 

Th e following discussion oj' this equaLion is a gen
eralization of the treatmen L of a weakly ionized gas 
in a constant electric fi eld given by Ch apm a n and 
Cowling [1960, pp . 346- 352]. 

W e assume at first thaL Lhe field is that or a 
linearly polarized p lane Wctv e propagaLing in th e 
z-d ireetion: 3 

E x= E ei(kZ- Pt ) , B = c!c E ei(kZ-pt) . 
U p (2.2) 

The d is Lributio ll fun cLion j depends on the six vari
ables z, q, t . Since Ick/p l :::0: 1, the m agnetic force is 
o f order qjc compared with th e electric r01'Ce. Simi
larly, the second Lerln on the left side 0 I' (2. 1) is of 
order q/c cO lllp ar ed with the firsL terill. NeglecLing 
term s of this order, we obtain in place of (2. ] ) 

(2.3) 

where 

F= '£' E· 
m 

(2 .4) 

In this approximation , j depends on only four 
a rgumen ts : 

j=j(z ; u, q; t ). (2.5) 

We lllay expand j in Legendre polynomials of the 
argument u/q. W e shall need only the first two 
terms in th e expansion : 

(2.6) 

3 "\\'e adopt Lhe convention that when a real quantity, snell as Ex or I, is repre
sented by a eom plex expression, as in (2.2) a nd (2.6), tile real part of t il is expression 
is to be u nderstood. Note, however, that t he Quantities E, F, k, j (O) ,etc., are all 
complex, anel t hat both t he real and imaginary parts of an equation like (2.11) 
are signjficant. 
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II' the number density n of electrons is sufficiently 
sm all comp ar ed wi th the number density of molecules, 
we Jll ay neglect electron· elec tron a nd electron-ion 
collisions . The collision term in th e Boltzmann 
equation, r epresented by oj/ot, is then a lin ear 
functional of f: 

of 
-"--=A(j)· 
ot 

(2.7) 

Lorentz showed that 

A[ug(q)]=-v( q)ug(q) +0 ( ; } (2.8) 

wh ere m/M is the electron-molecule lllass raLio, v is 
the velocity-dependent collision frequency, and g is 
an arbitrary function . Davydov [1935] d erived the 
importan t formula 

+ 0 [(;)] (2 .9) 

By inserting (2.6) into (2.3) a nd using the formulae 
of Lorentz a nd D avydov to evaluate t h e righ t side 
of the r esulting equ ation, we obLain differential 
equations 1'01' the functions .J<0) a nd .t(l) 4 

or 

Th e equation fOl'f o is 

}(I) ___ 1_ ~ oPO). 
- p+iv q oq 

(2.10) 

(2.11) 

The left side of the equation for PO) has the form 

(2.12) 

Here the brackets indicate a double aver age : over 
direction in velocity space (to eliminate terms con
taining Legendre polynomials P k(u /q) with k> O), 
and over time (to eliminate r adio-frequency fluctua
tions in PO), which are 01' no physical interest). 
Since we need to preserve audio-frequency variations 
of PO), the time-averaging must be over a n interval 
that is short compared with t he r eciprocal 01" the 
highest modulation frequency o r inLerest as well as 
long compared with the r eciprocal of the carrier 
frequency p; thus we must have p> > w. Applica
tion of the well-known rule 

(2.13) 

• Tlw differen tial equat ion for J(" , the coeffi cient of P, (n/q) in the Legen dre 
expansion ofJ, involves onl y the fu nctions J ( j) with j5,k, so that the sequen ce of 
a pproxi mation s may be termi nated at any point. B y contrast, t he equations 
for the moments of J of order k involve moments of order k+ 1. 



"where A denotes the complex conjugate of A, gives 

-~ Re II' ~ F _U 'I!. _u _ { ( .) A ( At"(O))} 
-2 p+iv ou q oq 

Since 

averaging over direction in velocity space gives 

! F ~ (iF 1)f(1))\ 
\ x OU x" / 

=_~_V _IFI2l~( 2 9}(0)). 
o p2+ V2 q20q q oq 

(2.15) 

Combining this result with (2.9) we have, finally, 

orO) _ m l~{ 3v( ) [t· (O)+~ OPOl]} =0 ot M q2 oq qq. q oq , (2.16) 

where 

(2.17) 

We may immediately generalize these results to an 
arbitrary radiation field. The electric vector at a 
given point may be written in the form 

(2.18) 

where each Fourier component E j represents the 
eJectric field of a linearly polarized plane wave. In 
place of (2 .6) we have 

and in place of (2.10), 

j? )= _ _ l_ . ~ opO). 
pj+~V q oq 

(2.19) 

(2.20) 

Finally, the function PO) satisfies (2.16) with e 
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given by 

(2.21) 

instead of by (2.17). 

3. The Dispersion ReIn tion 

The electric current density produced by the 
radiation field (2.2) is given by 

jx=~ fU 1d3q = ie[x fU 2jO ) (q)d3q 

= 47rie F (,4-iO )d =_47rie F Li __ dfO ) d 
3c xJqJ q 3c xJ p+iv dq q 

= i ~ Fx (jW)d (~ ~), 
c y ;) p+~v (3 .1 ) 

(3.1') 

From Maxwell's equation, 

(3.2) 

and (3.1) we obtain 

(Ck)2 = p2_ 47re2p rpO)d(~~~) 
m J- ;) P+'iV 

= 2_ 47re2 rj(O)d (47r p2(i). 
P m J- 3 p2+))2 

(3.3) 

In order to write this relation in a more compact 
form we introduce the plasma frequency Po , de
fined by 

(3.4) 

and use the abbreviation 

(3.5) 

where n denotes the electron density. The disper
sion relation (3.3) then takes the form 

(3.6) I 

The absorption coefficient K is defined by 

(3.7) 



where leo a nd K a re both real. The following approxi
mate formulae, valid under the conditions s tated , 
are o ften convenient: 

(3 .8) 

(3 .9) 

The results of this section were first obtained by 
Lorentz. 

4. Absorption of Unmodulated Radio Waves 

\iVh en w= O, (2. 16) r educes to a n ordinary first
order difl'erential equation , whose solution is 

(4 .1 ) 

where 8 is given by (2 .21) and th e co ns tant C is 
d etermined by th e norm alization condi t ion 

471" 100 fO )(/dq = n. (4 .2) 

Formula (4. 1) is valid for all values or th e carrier 
frequ encies Pi occuring in formula (2.2 1) for 8. 
We recall that fO) represents th e isotropic p a rt of 
th e distribu tion function averaged over a tim e inter
val long compar ed with all th e ch aracteristic times 
Pi !. If the radiation field h as o nly a single FOUl·j er 
component, fO) represents th e isotropic p a r t of tb e 
distribu tion function averaged over a single period. 

Formula (4 .1 ) r em ai ns valid in th e limit ]) = 0 
(E = const.). In this case 

(p = O) ( 4.3) 

a nd (4.1) coincides with a formula derived by C hap
man a nd Cowling [1960; eq (13), p .350J. 

When th e carrier frequ ency is very large, 8 is 
given by 

( 4.4) 

f(O) is accordingly m axwellian , the electron temp era
ture b eing given by Lorentz's formula , 

leT = kT +1:. MJF!2. 
e In 6 p2 (4 .5) 

rr the molecules are m axwellian (collision frequency 
independent of velocity), th e distribution function 
is maxwellian for aU values o r the carrier frequency . 
Otherwise the distribution function departs markedly 
from the maxwellian form when 8 » kTm/m and 
p"""v. 
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If th e molecules are rigid elastic sph eres (v = q/l, 
l = co nst.) the integr al in (4.1) may be evaluated 
explici tly; one obtains 

(4.6) 

where 
_. mq2 
r/=--, 

2leTm 
A = MiF I2. (4 .7) 

2leT", 

5 . The Variable Part of 1'0) 

In this section we derive the equations governing 
small departures from the steady-state velocity 
distributions discussed in th e preceding section. 

Let 

8 (q,t) = 80(q) [1 + O(q,t) J. (5.1) 

The fun c tion 80 coincides wi t h t he tim e-indep enden t 
function t hat w~tS called 8 in th e preceding section. 
We cl efi ne new cl imensio n less y~.riables x, X, cp: 
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dx = qdq , X=1:.~, 
80 . 28u 

cp(x, t) = 471"n- 1 ra q2j(O)(q, t )dq. (5.2) 
.10 

Note t hat 

(5.3) 

The fun ction cp is th e probability distribution function 
of t he dimen sionless yelocity \' ~),J" i ftble x; 

cp(a,t) = Pr {x::; a} . (5.4) 

I t follows t haL 

cp(O,t) = 0, cp( 00 ,t) = 1. (5.5) 

The p~trti~tl deri \rati \'e ocp/ox is the probability 
density associated with x. In terms of the new 
variables (2 .16) tak es t he form 

So far we h ave not m ,.de any assump Lio ns about 
the m agnit ude of the function O(q,t). In order to 
r educe (5.6) to an ordinary ciifrere nti,ll equation we 
now set. 

(5. 7) 

and assume th at 0 and CPI are so small Lhat their 
product may be n eglected in (5.6). This will be 
true if at least one of t he cond it ions 8 "", kT.7/m, 



M < < 1, where M denotes the modulation depth, 
is satisfied. Having linearized (5.6), we can deal 
separately with the Fourier components of the 
radiation field , just as in the elementa.ry theory of 
section 1. Let 

8(x,t) = 8w(x)e iwt , 

It is convenient to replace the modulation frequency 
w by a dimensionless variable and to separate out 
the velocity dependence of the function v (x) . We 
accordingly define 

7] (x) = vfx)' v= l '" v(x)dcpo, (5.9) 

w 
(5. 10) 

a 2 (m /J.vl)v' 

Finally, since CPo satisfies the equation 

(5.11) 

we have 

(5.12) 

where C is determined by the normalization con
dition 'Po(cn) = 1. Hence 

Omitting second-order terms in (5.6) and usmg 
(5. 9), (5.10), and (5.13), we obtain 

X8 ~(8- 1 O'Pw)+(X_.!.)O'Pw 
o ox 0 ox 2 ox 

+ia7]'Pw= 8wceg/2X 3/2e-X. (5. 14) 

Since 'P and 'Po both satisfy the boundary conditions 
(5.5), 'Pw must satisfy the boundary conditions 

'Pw(O) = 'P w(ro) = 0. (5. 15) 

Equations (5. 14) and (5 .15) together with the 
dispersion r elation (3.6) represent the formal solution 
of om problem. The functions 8 0 and 8 are defined 
by the radiation field . Given 80 , one finds the func
tion x(q) and X (q) from (5.2). Equation (5.14) 
with the boundary conditions (5 .15) may be in te
grated numerically by the method described in the 
appendix. Finally, knowing 'Pw , one can calculate 
the variable part of the absorption coefficient from 
the dispersion relation. 

Equation (5. 14) ass umes a simpler form when 
8 """k Tm/m, so that the unpertmbed distribution 
function is nearly ma:x."wellian. We may then write 
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X =x, 8 0=const., 8w= const., (5 .16 ) 

so that (5.12 )becomes 

O'Po 2 1 '2 -x -=- x ' e OX -r; . (5. 17) 

Setting 

(5. 18) 

we obtain in place of (5.14) 

(5. 19) 

The boundary conditions are 

yeO) = y( ex> ) = 0. (5.20) 

In the numerical work described III the next section 
the function 7] (x) is taken to have the form 

( )_ 2(r+ W - T 

7] X - ! x. ,7r 

6. Some Numerical Results 

(5.21) 

Miss Cara Joy Hughes employed the IBM 7094 
computer at the Harvard University Computing 
Center to integrate (5 .19) with the boundary con
ditions (5.20) and with 7] (x) given by (5.21). In
tegrations were carried out for every pair of param
eter values (a,r) with a in the set (0.1,0 .2, 0.5, 1,2 , 
5, 10, 15) and rin the set (-.5, .5,1,1.5). The 
integration procedure is described in the appendix. 

For 1' = 0 the solution of (5 .19) is 

(1'= 0). (6 .1) 

The complete distribution function PO) corresponding 
to this solution is maxwellian with a variable electron 
temperature. The factor (1 + ia) - 1 in (6.1) cor
responds to the factor (l + iwr) - 1 in (1.4). 

Figmes 1 and 2 show the modulus and argument of 
the function 

y = (l +ia)y (6.2) 

for 1' = - 0.5, 1.5 and for a = 2, 5. In both figmes the 
cmves corresponding to 1'= - 0.5 and 1'= 1.5 differ 
markedly from the cm ve for the maxwellian case 
1' = 0. For 1'= - 0.5 the peak of the function ly(x)1 
occurs at a smaller value of x than for 1' = 0, while for 
1' = 1.5 it occurs at a larger value. In the fom cases 
wi th l' ~ 0 the function arg y changes sign near 
x= 1.5. For large positive values of x, arg y is 
positive for T= 1.5, negative for 1'= - 0.5 . 

According to (3. 9), the absorption coefficient K 

varies directly as the mean collision frequency 
(the mean being defined by (3 .5)) if the carrier 



FIGURE 1. The function ISiI (see egs 6.2 and 5.18) for 
representative values of rand a. 

/' ::..::.-..:::.~::~=-- ,---._. --
-.• \JI -.-.-.,:~~.~:--.~-.=~~.~~~ 
_.6 . 

-.I I 
_1 ,0 f 

frequency is sufficiently high. By (3 .5), (5 .2), 
(5.7), (5.8), (5 .1 8), and (5 .21 ), 

(v w) oe f~rqW q-2d(ltV) oe (21'+ 3) f d'P wXT 

oe - (21'+ 3)1'1 '" 'PwxT- 1dxoe - (21'+3)r8w 1'" yxT-1dx. 

(6.3) 

Just as in section 1, the assumptions of lineari ty and 
homogeneity imply that)C oe Kw (see (1.7)). Hence 

X woe (21'+3)1'8 wi '" yxT-1dx. (6.4) 

Note that Xw van ishes for maxwellian molecules 
(1' = 0). This means that the elementary theory 
becomes r igorously valid in the limit when the 
phenomenon i t describes disappears. 

By analogy with (1.8), we write 

Sa '" yxT- 1dx= T(a)e - i<r(a) . (6.5) 

The functions cp(a) and T(a) are s hown in figures 3 
and 4 for 1'=-0.5, 0, 0.5, 1, 1.5. For 1'2:0 the 
curves cp(a) have roughly the same shape. Com
pressing the hori zo ntal scale or the curve for 1' = 0.5 

FIGURE 2. The function arg y (see egs 6. 2 and 5.18) for by 25 percent would bring it into near coin cidence 
representative values oj rand a. with the curve for 1' = 0, but for 1' = I , 1.5, t he scalin g 

factor increases markedly with x. For r= - 0.5, th e 
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FIGU RE 3. Phase lag of the transferred modulation (see eg 6.5) as a function of modulation freg1wncy for various collision laws. 
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FIGURE 4. A 1nplitude of the transferred modulation (see eq 6.5) as a function of modlilation frequency fOT vaTious collision laws. 

phase lag at first increases more rapidly with 
increasing modulation frequency than in the max
wellian case, then more slowly. The shapes of the 
curves for 1'= - 0.5 and 1' = 0 are entirely different . 

If one were to use the phase-lag curve for 1'=0 to 
analyze experimental results relating to a hypo
thetical gas in which the electron-molecule collisions 
were elastic and were characterized by a velocity
independent free path (the case 1'= 0.5 ), one would 
over estimate the mean collision frequency ii by 25 
percent. If a higher value of l' were appropriate, 
the error could be much greater. 

Turning now to the coefficient of transferred 
modulation T (a) (fig. 4), we see that the curvature 
of the function T (a) increases with increasing l' over 
the entire range - 0.5 :::;1':::; 1.5. Compressing the 
horizontal scale of the curve for 1' = 0.5 by 25 percent 

. would make it fall off more steeply at small and 
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moderate values of a than the curve for 1'=0. In 
general, one cannot devise a horizontal scale trans
formation that, for a given value of l' ~O, will make 
both T(a) and <pea) assume the forms appropriate 
to the case 1' = 0. 

To sum up, the numerical calculations show that 
significant departures from the predictions of the 
elementary theory may be expected. Moreover, 
values of the mean collision frequency derived by 
using the elementary theory to analyze cross
modulation data may be significantly in error. On 
the positive side, the sensitivity of the predictions 
to changes in the collision law suggests that further 
theoretical and experimental r efinements could 
ultimately lead to an accurate experimental determi
nation not only of the collision frequency but of the 
form of the collision law . 



7. Appendix 

Cara Joy Hughes 

Division of Engineering and Applied Physics, Harvard University 

The following paragraphs describe the method used to integrate (5.19). T he same 
method can be applied to the more general equation (5.14). 

Consider the inhomogeneous second-order linear where Land R have the forms 
differen tial equation 

aex)y" + b(x)y' + cex)y = d(x). eA. I ) 

We may approximate (A.1) by the set of coupled 
difference equ at ions 

(i = l, ... , n - 1) (A.2) 

where 

Oi= O(.1;;), etc. (A.3) 

(A.4) 

(A.5) 

(A.2) is ,I, se t of (n - 1) eq u,l, tio ns for the (n+ 1) 
variables Yo, Yl , ... , y". Th e two boundary con di
tions provide two addition,),] equations, so that in 
general t he set of differ ence equations together with 
the boundary conditioJls have n, unique solu tion , 

Tn the problem at hand , Yo a nd Yn are give n: 

Yo= y,,= O. 

The eq ua tions (A,2) thus have the form 

(A,7 ) 

In matrix notation , 

Mr= D (A,S) 

where 1\1 is a tridiagonal square matrix of order 
(n-I), and Y , D are column matrices, 

To solve (A.S) , we write M in the form 

(A.9) 

1 0 0 

12 1 0 

!, ~ 0 L3 1 

o 

(A, 10) 

The coefficient s t;, Ie ;, !' ; must satisfy t he equations 

which mn~' clearly be solved in serial order for lei , 1'" 

12, le2, /'2, etc . Thus L Hnd H are co mpletely specified 
by 1\1. 

Let 

Then (A.S) becomes 
R }' = U. 

LU = D 

(A.12) 

(A.l:3 ) 

01', agaill equating matrix elements, 

(A,13/) 

which can be solved serially for the U ; , Having 
found U, we then determine J' [rom (A.12), giving 
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(A,12/) 

which can be solved in revel'se serial order , beginning 
with the last equation in t he set, The solution is 
now complete, 



One can estimate the accuracy of the procedure de
scribed, as applied to the differential equation (5.19) , 
by comparing numerical solutions of this equation for 
'1) = 1 with the exact solutions (5.1) . The numerical 
solutions were carried out for a grid spacing h= 0.05 
and with the approximate boundary condition 
y(x= 25) = 0 in place of y(x= co ) = 0. 
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