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In the first part of th o p aper we calculate and di sc uss the distributi on function of the 
r'lectrons ot a slightl y ioni zed plasma under tlle influcllce of a n exte l"J\a l m agn ctic fidel 
and of an e.m. wave of the typc E = Eo cos",t. 

It is shown that , taking into account both clast ic and inelastic collis ions between elec
tron s and molecules, it is possibk to calcu late cxplicitly the mean pll'ctronic energy due on ly 
to thc absorpt ion of the extraord inary wave of the dectric field and ("Imt it is maximum a t 

t he gy romagnetic r esonance (w= "'H = e [J{ ). Tile study of the ef"fects of in elastic colli sions 
me 

sho\\"s that in order to have an equal C'lectron ic temperature, t he intensity of t hc electric 
fic'ld must br, in the caso of inelast ic coll isions, a bout fi ve tim es grcater than that for elasti c 
collisions on ly. 

In the second pa rt of the pa,pe r w e calculate, for the wave E = Eo cos",t, t he compo ne nts 
of the complrx dielect ri c p .rmittivity tenso r, that a re give n b.v expressions dependent in a 
rat her compli cated way on Eo. It is shown th at if Eo is s ufficiently small they can be simpli 
fied and, usin g a suitable perturbation techn iq ue' , it is possible to calculate a nonlin eflr d is
persion relatio n. This rela tion co nta ins explicitl y Eo, and, for Eo--+O, becomes t he Appleton
Hal·trec formula,. FurthClll1ore, it s hows that in the nonlinear case, too, the electri c field 
is split up into t,,·o compo ncnt s whose propagation is never independent. 

In the third pa rt of the paper we calcul ate and tudy til(' elec tronic distributio n function 
and t he complex di electric permittivity tensor for a wave of the type E = Eo[l + ~cos(at+ !3) 1 
cOSwt with w"""'H» a. 

1. Introduction 

The study of nonlinear propagation of electromagnetic waves in plasma has recently 
aroused the interest of many scientists. In general , the methods used in describing the process 
of propagation of electromagnetic waves in plasma are based on a procedure of lineariimtion 
of the equations that give the mathematical represen tation of the physical problem. A very 
important physical characteris tic of the aforesaid nonlinear effects rests on the fact t hat they 
can be produced by relatively small electric fields. This can be understood quite easily if we 
consider a slightly ionized plasma in which the electron-electron and electron-ion collision 
frequency is mu ch less than the electron-molecule collision frequen cy. J n fact, the propagation 
of an electromagnetic wave in a plasma causes a relatively high increase of the kinetic energy 
of the electrons. This is mainly due to two facts : the first is the quite large value of the mean 
free path A of the electrons in the plasma (so that they can acquire considerable energy from 
the wave between two collisions), t he second is that due to the smallness of the ratio 

0= ~ ~3.4· 10- 5 between the mass of the electron and the mean mass of the molecules, the mean 

energy transferred in a collision from the electrons to the neutral component of the plasma 
is almost, negligible. As a final resul t we see that the energy distribu tion of the electrons 
is altered (with an increase of their temperature and mean energy). This variation depends 
on the quantities E, H , w that characterize the wave in the plasma. So that the parameters 
that characterize the plasma from the electromagnetic viewpoin t (as the dielectric permittivity 
Eik, the susceptibility X. k, the conductivi ty O"ik and so on) will depend on these parameters 
(E and w mainly) and on the parameters that characterize the plasma from the kinetic view
point (as the mean free path A, the collision freq uency v and so on). In this way in t he rela
tions that give the electric polarizability P or the conduction current density j c that is 

P i= XikE k 
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the electrical parameters ~ ik, X ik, and (J ik will depend on E also and the quantities P i and j Ci 

will no longer be proportional to E. Therefore, the electrodynamic processes in the plasma 
and the same propagation of electromagnetic waves will become nonlinear. There are two 
types of approach to the theory of nonlinear effects in plasma: the first one is a generaliza tion 
of the mean free path method and the second one is the statis tical method based on Boltzmann 
equation. The fundamental equation of the first method is Langevin's equation 

dv e [ v ] - +vv= - E+ - X 8{ , 
elt m c 

(1) 

e, m, v, v being respectively charge, mass, collision frequency, and velocity of the electron; E 
is the electric field of the radiowave, 8{ the external magnetic field in which the plasma is 
immersed . Knowing E, (1) allows us to calculate v, furthermore putting by definition: 

where n is the electronic density and L is the total current density, it is possible to calculate 
the conductivity (J ik and the dielectric susceptibility X ik by means of the equation 

In this way are obtained the expressions of the dielectric permittivity ~ ik( ~ ik= 47r [ Xik+ Oik]) and 
of the conductivity (J ik that must be substituted in the equations of the wa\"e propagation. It 
is easy to see that these expressions of Eik and of (J ik do not depend on E and so the propagation, 
also of a very strong wave, is linear. To overcome this difficulty [Ginzburg and Gureyich , 1960], 
the electronic collision frequency v (that enters into the expressions of Eik and of (J ik ) is considered 
dependent on the electronic temperature T., e.g., in the following way,) 

(2) 

being T the molecular temperature and v(O) the collision frequency in the absence of an electric 
field (Te= T). In order to calculate Te a differential equation is established equating elTefdt 
to the net power gained by the electron, in the following way: 

(3) 

Given the rather complicated structure of this equation, the usual method to solye it consists 
in disregarding, at first, the dependence of von Te. In the final formulas obtained in this way 
is introduced v, given by (2), and so it is possible to calculate Te as a function of the \"arious 
parameters of the plasma among which is the electric field. In this way Eik and (J ik depend on 
E and the equations for the propagation become nonlinear. It is clear that this type of approach 
to the theory of nonlinear propagation presents defects and contradictions that are typical of 
the mean free path method. This method, worked out particularly by Townsend and Huxley, 
is based on the calculation of the distance traveled by the electron under the influence of the 
accelerating field during the intenral of time between two successive collisions. The mean 
distance traveled by an ensemble of electrons per unit time gives the diffu sion yelocity of the 
electrons through the gas. The intensity of the field is always supposed to be weak: the calcu
lation is done by supposing that all the electrons have the same velocity, then the mean value 
of the results is calculated by means of an electronic distribution function , preyiously unknown. 
A maxwellian distribution function is employed to obtain results which do not contain the above 
mentioned mean values. This method has the drawback of being valid only for weak fields, 

1 This dependence is valid for electron-molecule collisions [Ginzburg and Gurevich, 1960]. 
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which are not able to deviate the electronic distribution function from its stationary form 
(maxwellian) , without the possibility of exactly defining the general validi ty and t he order of 
magnitude of the employed approximations. Furthermore, according to Huxley [1937, 1940, 
195] , and Huxley and Crompton, 1962 ,] the method of the mean free paths can be employed 
whenever we suppose that among all the various electron-molecule types of collision the binary 
ones are by far the most important and that the motion of the particles can be divided in to 
short periods, in which the collisions occm, separated by comparatively long intervals during 
which the interactions with the other particles can be neglected in compariso n to the action of 
tbe field. It is e\Tident that if the behavior of a physical system call be outlined in t he above 
mentioned way, it can be analyzed by means of Boltzmann's in tegrod ifferential equtttion. 
From a more general yiewpoin t, we do not see bow it would be possible to base th e theory of 
nonlinear propagation on the equation (1) of dynamics, when we are faced with ttn electron gas, 
wi th a statistical yelocity distribution. 

1.1. Fundamental Equations of the Statistical Method 

We are interested in the lower E layer of the ionosphere, i.e. , the zo ne between 80 and 95 
km height. Th e molecular temperatme of this layer varies slowly from 205 oJ{ (at 80 km) 
to 217 OK (at 95 km). Let us suppose that the temperature gradient is zero and let us take a 
mean molecula,r temperature equal to 210 OK. The molecular concentration is of about 1014 

mol/cm3 in this layer. The electron density varies from 5.102 el/cm3 (at 80 kill) to 5. 104 el/cm3 

(at 95 km) and therefore it is much inferior to the molecular one. The statistical state of the 
ionospheric plasma is described by means of two distribu tion functions: one f( r,v, l) Jor the 
electrons, the other F(R,V,f) for the molecules; these are the solutions of the following system: 

in which CII represents the collision term for electron-electron in ter action, Cn the collision term 
for molecule-molecule in teractions and last CI2 and C21 , the collision terms for electron-molecule 
interactions and where we ha\Te indicated with 'Y and r , the external accelerations acting on the 
electroni c and molecular gases, respectively. Taking into account thc characteristics of the 
ionospheri c plasma, the seco nd of the written equations can be simplified in the followin g way: 

which, after in tegration, gi ves the following (maxwellian) distribution function for the molecular 
velocities. 

( M V { MV2 } 
F=N 27rkT) 2 exp - 2kT 

where N is the molecular density . JVloreover, as N is much greater t han n (electronic density), 
the first equation of the system can be simplified, neglecting 0 11 with respect 0 C12; in this way 
we obtain: 

(4) 

0!2 is given by the following integral operator that we will indicate with J {j } 

C12 = J { j} = II [j(v ')F(V')-f(v)F(V)]g<T(~, g)dVdQ (5) 

where g= Iv- VI is the modulus of the relative velocity, <T(~,g) is the differential cross section, 
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-tJ the scattering angle, v' and V' are the velocities of the electron and of the molecule b efore the 
collision (after the collision they become v and V r espectively). Taking into account the char
acteristics of the ionospheric plasma, it is possible to simplify (4), [Davydov, 1936 and 1937] . 
' Ve have already said that 0, the mean energy lost by an electron in a collision, is much less than 
1. In the case of elastic collisions, 

2m 
0= M"'-'3.4 .10- 5 

in the case of inelastic collisions the energy lost by collision is noticeable, but because these 
collisions are much less frequent than the first ones, the mean \Talue of 0 is always much less 
than 1. For this reason, the rms velocity of an electron is much greater, also in strong fields, 
than the mean directed velocity, so that the symmetric portion in v, of the electronic distribution 
function is much greater than its antisymmetric portion. Moreover, as 0 is small, the collision 
term (5) can be expressed in differential form ; in this way (4) becomes the Boltzmann-Fokker
Planck equation. For these reasons let us de\'elop the elec tronic distribution function in 
spherical harmonics in velocity space, putting: 

fe r, v, t )=jo(r, v, t) + av ·fl(r , v, t )+x(r, v, t) (6) 

v 
where aV=j"vf If we put this equation into (4) and integrate all over dQ (differential of the solid 

angle in velocity space) we obtain: 

(7) 

Putting again (6), multiplied by a v into (4) and integrating again all over the solid angle dQ 
we have: 

(8) 

where we have put: [Ginzburg and Gurevich, 1960; Davydov, 1937; Chapman and Cowling 
1960]: 

J . .f } 0 0 [ 3( k TO) it ] ~ 10 =- - v V 1 +- - 0 
c. 2v2 ov mv ov 

In this way, starting from (4), with the approximation (6), we have obtained (7) and (8) . To 
establish these equations we employed th e properties of monodrom y and orthogonality of 
j o and fl expressed by (6) and we supposed that the function X and the functions that can be 
obtained by it with the application of the various operators of (4) are very small in respect to 
the functionjo and of the corresponding ones, obtained by applying to it the various operators 
of (4). It is easy to see that if the electronic density varies smoothly and if the variation of 
the electronic current along a mean free path A is small with respect to the product of the 
electronic density and the velocity, that is if, 

A I ~~I< < n(v) 
then 

x~-v'8 1 fl ! "'-'ojo 

so that the function X is small not only with respect to jo (as we supposed to derive (7) and (8)) 
but also with respect to If11 . It is clear that with th e system composed of (7) and (8) i t is 
no t possible to determine corrections to j o of the order of ojo. 

36 



2. Electronic Distribution Function for a Monochromatic Wave 2 

Let us suppose thttt the plasma is homogeneous, in this case (7) and (8) become, 

oio e 0 { 2 } 0 0 { 3 [ kT oJ } -'-+-- - v E . fl ---;; - vv 1 +- - j; = 0 ot 3mv2 0v 2v- OV mv OV 0 

ofl +~ o}o E+~ [J{ X f + vf = 0. ot m OV me 1 1 
(10) 

In order to solve this system of four equa tions we must defin e two relaxation tim es. The first 
is the relaxation time TE of the electric field that is defined as the time necessary Lo change 
s ubstantially the field (if E = Eo cos wt then TE"-'W- 1). The second is the relfl,xfttion tim e TT of 
the electronic energy; TT is of the order of (OV)-l fl,S can be seen by integrating (3) with Eo=O. 
Following Gurevich (1957], we can distinguish two Cfl,ses: the firs t in which the electric field 
v,tries slowly (Te > > TT), tbe second in which it varies quickly (Te < < T7)' Now we must 
co nsider the case in which the fi.eld varies quickly because we stud y the phenomentt related 
with tb e propagation of It monochronMtic wave: 

E = Eo cos wi (ll) 

which pulsation is equal , or vc ry near , to the gy]"opulstLtion of the medium . Tn fact the value 
of the magnetic fi.eld of the earth , thttt enters in to (10) varies, in the zone of the ionosphere 
in which we are in teres ted, between 0.35 Gauss alld 0.45 Ga uss so that , being W~WH' T e~1.4·1 0- 7 

sec, because WH =e I [f{ I/me ; moreover T T~(ov)- l is abo ut 4 .10- 3 sec, being o~3 .4 .10- 5 and v~8 .106 

coll/sec. From the~e calcuhttioll s we see that in our case (:~) < <1. Therefore let us develop 

io and fl into a power series of tlw parameter ( :~) puttin g, 

j~ = / 00 +.fod-}02 + . . . 

we find that in the zero order approximation we can neglect the variation of the distribution 

fun ction due to collisions (of the ord er O[ }/TT) in respect to t.he firs t term of (9)(because of the 

order of ~{ ' ..... j /Te) so °t~o= o . Therefore, 

}oo = }oo (v) 

that is, in the zero order approximation, the symmetric part of the dist.ribution fun ction is 
independent of time. If we put into (9) 

o}oo flO = - U -
OV 

we see that u satisfies Langevin 's equation (1). This equation can be solved for E given by 
(ll ) and gives the followin g expression for th e persis tent part of flO 

f' A() o}oo -+ B ( ) o}oo . 
10 = W Tv cos wi . W Tv Sin wi. (12) 

2 So me resulLs of this section a re al ready conta ined in th e paper "SuJl 'cccitazionc dell ' "a irglow" per mezzo di rad ioo ndc" , by 1'. Catd iroia, 
Published in )/ uovo Ci men to Supp!. X IX Series X No.2 (1961) . 
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The two vectors A(w) and B (w) are given by: 

(13) 

where q, is the angle between Eo and fl{. Given that io(v, t)"'-' joo(v) + i01 (v, t) and ioo(v) > > iOl (v, t) 

we have: 

Oi01(V, t) =~ ~ [vv3 (1+ kT ~) 1< -~ v2E·f J=~ oJ' 
ot 2v2 ov mv ov 0 3mB 10 2v2 Ov 

from which 

_ _ { 0 OJ'} t:dOl(V, t) - 2v2 OV t 

which is not limi ted for t-c>+ co. Stipulating then the existence of the electronic distribution 
function we must impose the condition J' = 0, that is, 

( kT 0) 2e 
vV 1+ mv ov ioo- 3mB E·flO = O. 

This is the differential equation forioo. Seemingly it is not self-consistent because the time is 
explicitly contained in the expression E·flO , but noting that ioo must contain only the rms 
value of the electric field, we obtain, 

having put 

(14) 

so that, 

{ 
{ ' mvdv } 

ioo=C exp - Jo e2E~ 
kT+ 3mB ",,(v) 

(15) 

where the constant C must be determined from the normalization condition, 

So'" 47rv:!00(v)dv= 1. 

We see that the method suggested by Gurevich is particularly clear and precise, because the 
distribution function in the nth approximation is obtained by imposing the condition of bound
edness for t-c> + co of the subsequent approximation. Keeping in mind that the magnetiC' 
field fl{ produces a plasma anisotropy breaking up the plane polarized electromagnetic wave 
into two elliptically polarized waves, it is important to get the electronic distribution function 
for an ellip tically polarized electric field E. We express E in terms of its components along the 
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th ree principal polarization axes, 

where Ello is the plane-polarized field parallel to fH and E~o and Eto are two circularly polarized 
fields in a plane perpendicular to fJ{ and rotating, respectively, in the same sense or in the opposite 
sense of the electrons in the magnetic field. For such an electric field the distribution function 
(15) is still valid provided that E~cp(v) is replaced by, 

(16) 

It is clear that at the gyromagnetic resonance (W~WH) the ener gy transferred to the plasma is 
mainly due to the action of the E~o wave. Therefore, let us consider in Egcp(v) only the part due 
to this wave, in this case (15) becomes, 

where we have put, 
v 

v(v) =
'A 

(17) 

(18) 

with A= (7raoN)- l b eing ao the "radius" of the molecule , N the molecular density and A the mean 
free path of the electrons that we take as a constan t . According to some authors (Phelps, 1960; 
Sen and Wyller , 1960] it would be better to choose v proportional to v2. We have chosen a 
linear dependence for the greater simplicity of the final formulas obtain ed, this is tantamoun t to 
substituting in them a suitable value Aerr, [or the mean free path, that takes into account the 
dependence of A on v. Putting, 

e2E"i~A2 . 
38k2T2 , 

by means of (17) we can calculate the mean energy <f> absorbed by the electrons 
of the plasma under the action of the component E~o of the electric field , we get: 

( "I 3 "I 5 ) W - - - , -+-' 'Y + J.L 
< >=3kT( ')1/2 2 4 2 4' 

f 2" /' i J.L (1 "I 3 ) 
W r __ , -+-' 'Y + J.L 

2 4 2 4' 

(19) 

where W(k, m; z) is the Whittaker function [Whittaker and Watson, 1958] of parameters k, 
m, and argument z. From (19) we have, 

(O<f» =0 
OW W = WlI 

(19.1) 

so that the energy absorption is maximal at the perfect resonance, W = WH (see figs. 1 and 2). 
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FIG U RE 1. Values oj <.> calculated by means oj (19) in 
which: /j = 3.4.10- 5, WlJ = 7.388·1 ()6 plds/sec c01Tesponding to 
[f{ = 0.42 gauss, },, = 10 cm c01'responding to a pressure 
p =6.7.10- 3 mmHg, 1' = 210 oK . 

It is possible to see clearly that the energy absorption maximal for W=WH . More

over for weak electric fields and for iJ1creasing~ all the curves tend to t he same 
WJI 

horizontal asymptote that is equal to the value of the energy of the electrons in 
thermal equilibriurn with the molecules. T'hevariouscurvescoTlcspond tothe 
following val ues of the E.LO component of the electri c field : 

C urve 1 E~0=1O-3 volt/cm 
C urve 2 E.i:o=7.5·10- ' volt/cm 
Curve 3 E.i:o=5·1O-' volt/cm 
Curve 4 E .i:o=2.5 ·10-' volt/cm 
Curve 5 E .i:o= 10-' volt/cm 
Curve 6 E .i:o=5·1O-' volt/cm 
C urve 7 E ":-0= 10- ' volt /cm 
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F I GUR E 2. Values oj <.> calculated by means oj (19) with 
the same values oj the parameters as Jar fig ure 1 . 

For t his figure we can make the same observations as those that we made for 

figure 1. The various curves correspond to different values of ~ namely: 
WH 

Curve 1 
Curve 2 
Curve 3 
Curve 4 
Curve 5 
Curve 6 
Curve 7 

W=WJ{ 

w=O. 7 Wll , w=1 .3 Wl/ 

w=O.5 WIl, w=1.5 Wfj 

w=2WH 
w=3w/l 
w=4w/I 
w=5w/l 



From the asymptotic representation of the Whittaker fun ctions, it is possible to see that 

lim < f(w» = lim < f(WH» =-23 kT, 
w~co WIl --tOO 

From which we see that if the frequency of the wave is far from the gyro frequency, the elec
tronic distribution function tends to become ma.x·wellian with a temperature equal to the 
molecular one, At the perfect resonance (17) becomes, 

r 1 
-( T) ( ) - n (T) '1 { V mvdv " Joo V - Loo exp - ') 2E 2\2 

.okT+ ~e .LO/\ 

I.. 3mov2 .J 

(20) 

If the electronic temperature is much greater than the mol ecular one, that is, if 

~ 1.T«e2E~~A2 
2 c - mov2 

(20) becomes: 

(21) 

We have Druyvesteyn 's distribu tion function [Druyvesteyn f\,nd Penning, 1940], wherein 
appears the rms value of the electric fwld as it should be, With the aid of (2 1) we can calculate 
the fraction P W ) (v:2: vo) of electrons having a velocity exceeding a cer tain value Vo and the 
mean energy <EW» of the electrons, T'hese quantities are given by, 

( 1 3 3 (mv2 )2) ll' - - , - ' - 0 __ 0_ 

P HT) ( > ) 8 W 8 P[E~oA 
V_ Vo = (~) [30J 3/ '1( mv~ )1 /4 _. { ~ (~')' } 

r 4 8 eE "J..oA cxp + 16 0 eE ;'oA 

(22 ) 

(23) 

:\Ieasuring <EW» in eV, E~o in volt/em, t.. in em and the pressure p in mmHg, we have: 

(23,1) 

We have found several expressions for the electronic distribution function in a slightly ionized 
gas under the action of an alternating electric field and a constant magnetic field , considering 
only elastic collision between electrons and gas UlQlecules, As a result of such calculations 

[see fig , 3 and eq (23)] it was found that for E~o'""l (that is , for a field intensity of some milli-
p 

volt per cm and a pressure of some 10- 3 mmHg) i t is possible to have electrons accelerated in 
such a way that their mean energy is several e V so that thf(Yr can collide inelastically with the 
molecules, 

Let us now study the effect of these collisions on the electronic distribution fun ction . 
In a number of researches (Davydo v [1937], Druyvesteyn and Penning [1940], Smit [1936]) 
approximate methods have been developed in order to take into account this effect an d recently 
a detailed study has been carried out by Ko vrizhnykh [1960]. The result achieved by him 
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sol ves, in principle, the problem raised by us, even if the final formulas are generally too cumber
some to be numerically calculated. Due to its laboriousness and to the uncertainty of the 
experimental data required for its application, Kovrizhnykh's method is difficult to be em
ployed for practical purposes. Consequently, we thought it advisable to adopt, for the evalua
tion of the effect of inelastic collisions on the electronic velocity distribution, a semi-empirical 
procedure particularly useful at least as far as our problem is concerned. Let us consider a gas 
(like air or the ionosphere) consisting essentially of poliatomic molecules. In this gas not only 
the levels of the electronic configurations but also the rotation and oscillation levels whose 
energy is rather low (of the order of (10 - 4+ 10- 2) eV for rotation levels and (0.1 + 0.5) eV for 

) 
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I 
0.25 

\ 
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i\~ 
o 5, 10 15 20 25 

E in eV 

FIG URE 3. Shape of the function p*(,) (v > vo) given by (22) 
for 1i =3.4·10- 5, El.o= 1O- 3 volt /em, p = 10- 3 mmHg (that 
is for El. o/p = 1 corl'esDonding, according to (23.1 ), to a 
mean electronic energy equal to 6.73 e V), A= 66 cm. 

From this figure it is possible to see that in this case we arc compelled to take into 
account a lso of inelastic collisions. 

I 
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<:E> ) 
in eV 

0.75 

O. "jJ 

O. 25 , ..................... : ................ ... ' ....... L., ....... ..-II .......... . 

FIG U RE 4. BehaviOT of <.> (for W = WH) as a function of El. •. 
C urve 1: values of <.> calculated by means of (19) in which 0=3.4 .10-' 
Curve 2: values of <.> calculated by means of (23.1) in which 0=3.4.10-' 
Curve 3: values of <.> calculated by means of (19) in which 0= 1.6.10-' 
Curve 4: values of <.> calculated by means of (23.2) in which 0= 1.6.10-' 



o cillation levels) can be excited. Therefore inelastic scattering with molecular excitation 
takes place also at low temperature and can absorb a considerable amount of electron energy. 
K eeping in mind the expression of the collision term for elastic collisions, 

we write down in the same way the corresponding term for inelastic collisions, 

] 0 [ (kT of ) ] J (lll el) {)· }= + ---;;_ v2R(v) -_. +vf 
2v· oV m ov . 

where R (v) is , corresponding to ov, the electron energy loss due to inelastic collisions. We can 
then take in to account this term, by substituting in the formulas for the energy distribution 
of the electrons for elastic collision only, the expression ov with 

R tot (v) = ov(v) + R (v) 

which corres ponds to the introduction of an "efficient" energy loss for collisions given by, 

a Idfl _ R (to t) (v). 
Iv) - v ( etO (v) 

The energy loss o(crn (v) as a function of Lhe elecLron velocity has beel! experim entally 
determined in many papers (for instance [Crompton, Huxley, and Sutton, 1953]). From the 
experim ental data olle CH.n dedu ce that, up to energies of about 2 eV, for air and the ionosphere 
o ( ern is nM]"ly co ns tant and in both cases it corresponds Lo abouL 1.6 .1 0- 3 (tobe compar od with 
0= 3.4 .10- 5 for eh1 sLic collisions only) . Let us now J)oto that in the formulas Jor electronic 
energy distributi on in th e case of elastic collisions only, the parameter a appears only through 
the ratio E2/0. This lea ds to the con clusion that, in order Lo take into account lhe c fl"ect of 
in elast ic collisions, it is suffi cient to substitute E 2/0 with E2/0( Cr[) in the final formulas . Thus 
we can say that tite efl'ect of t he in elnsLic collisions is to r educe Lhe vahle of E 2 to n, valueE2( red ) 
such that E 2(rCd )/0= E 2/0(C[f). "Ve have then 

. a 
{ - ( --. ~

-

E (red )-E o (eIT) 

For Lite air and the ionosphere we sh all obtain 

-1 - 1 r....J 1. 
. . ~3.4 . 10- 5 1 
E (rcd)-E l.6. 10 3 5 E 

The electronic mean energy is therefore r educed (see fig. 4) from its value (23. 1) for 

(.0 

(23.2) 

3 . Nonlinear Dispersion Relation 3 

Taking (6) into account we have, 

3 A. Airoldi or our JJ1stitute has contributed to U10 work contained in this section . We take the occasion to thank her for tbe aid given in the 
numerical computations. 
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Putting the z axis along the direction of the external magnetic field [J{ we have, 

_ w; Fc ro 3 II 0100 d. 
(J z z - - -3 v ----'---+ .) --;:;-- v • a w- /1- u V 

(24) 

where Wp is the plasma frequency , that is, 

The knowledge of the expressions of Eik and (J i k allows us to study the problem of the propa
gation of electromagnetic waves in a plasma. In order to solve this problem, it is possible to 
use in the lineal' approximation two methods that, in general, are equivalent. The first con
sists in the integration of the equations of the wave propagation, the second is related to the 
calcuhtion and the study of the dispersion relation. The difference between these two methods 
lies in the fact that: while the first one (the integration of the equations of the wave propagation ) 
allows us to obtain quan titatively exact results only in relatively few cases; the second, on the 
contrary, gives a much more general description, also if it is only qualitative, of the propagation . 
More precisely we have that in the case of a uniform plasma the two methods that give equal 
results, in the nonuniform case the knowledge of the dispersion relation allows us, very often, to 
write down approximate solutions of the equations of the propagation. These solutions are , in 
general, the first term of a geometrical optics series. We m Llst stress the fact that if we base the 
analysis of nonlinear propagation of a monochromatic wave launched in a plasma on (24) we 
are compelled to admit that the deviations from linearity are not very strong. In fact we mLlst 
suppose that there is no harmonic generation so that the main effect of nonlinear propagation 
consists in increasing the absorption coefficient and in modifying the velocity of the wave and 
not in a substantial variation of the shape of the monochromatic signal (caused by harmonic 
generation). For these reasons it ought to be possible to write down an approximate solution 
of the wave equation in the following way, 

(25) 

where now, 

it is clear that for Eo ----'70 this formula must become the Appleton-Hurtree formula. 
Weare now faced with the problem of calculating the integrals (24). If we consider the 

collision frequency II a linear or a quadratic fun ction of the velocity of the electron it is easy to 
see that, in the case [J{ 7""0, it is not possible to give closed expressions for the components of 
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~ and g. Furtherm ore, putting v= const., i t is possible to calculate all these in tegrals that are 
given by expressions that do not contain Eo. On the other hand if we evaluate, in this case, 
the mean energy of an electron we easily arrive at the following formula 

< ) =~ kT [1 +e2E~<p(v)J 
t 2 3mBkT 

so that , also if we have a noticeable heating of the phsma, the propagation is linear . All 
these difficulties can be overcome if we consider only weak fields for which the electronic 
distribution function does not appreciably deviate from its stationary form (maxwellian). 
In this way it is possible to calcula te this function by developing j~o in T ttylor series of Eg, 
stopping the expansion after the first two terms and taking then v= const. If we indicate 
the new distribu tion function ob tained in this way wi th j(v, Eo) we have 

that is: 

the mean energy of an electro n calculated by means of this fun ction is given by, 

where, 
e2 E~<p(v) 

a= 2mBkT 

so that we define as a weak field a field satisfy ing the following inequflli ty/ 

(26) 

(26. 1) 

(27) 

(28) 

(28.1 ) 

By means of (26 .1) it is possible to calculate all the in tegrals (24) and the following expressions 
are obtained, 

1 A 2 v 
!T zz=-4 U!p -z-+ ? 

7r U! v-

(24.1) 

2 

A U! p 
f zz = 1- ---.-----+ 2 w- V 

'It must be said that this inequality can be too strong, what is important is that t he second term at the right of (27) does not become much 
greater than the first. 
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where: 
(29) 

for Eo'"'-'O, that is A=l, these formulas become those of the linear approximation. Before 
calculating explicitly the dispersion relation it is better to find the expression of the components 
of ~ and g in the usual reference system for the study of wave propagation. To this aim let u 
put the external magnetic field H in the plane yO z of the ne,v reference sys tem at an angle e 
with Oz axis . It is easily seen that the matrix that allows us to pass from the old reference 
sys tem to the new one is given by 

1 o o 

1'7'= 0 cos e sine 

o -sin e cos e 

If we indicate with e:k the components of the complex dielectric permittivity tensor (de

fined by e;k= eik-i~ CTik ) in the new reference sys tem and with ;;k the components of the same 

tensor in the old system, we have 

Introducing for simplicity's sake the notation 

IJ = w- ill 

we have: 

Let us consider the two Maxwell equations: 

10H 
v X E= - -

C ot 

for the plane electromagnetic wave (25) propagating along the z axis they give, 

(30) 

the two Maxwell equations and (30) are equivalent if we suppose that there is not harmonic 
generation of the fundamental frequency w. Furthermore we have, 

oE+. w E - O - ~ - n -oz C 
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but if the electric field is sufficiently weak the propagation will be almost linear so that it ough t 
to be possible to disregard the right member of the last equations ; this, on the other hand, 
agrees with the spiri t of the perturbation techniqu e that we have adop ted .5 So , 

in this way (3 0) becomes, 

where, n ow, this is n ot a linear homogeneous system in the t hree unkn owns E ox , E oy , Eoz as it 
happens in the linear case, but i t is a more complicated system owing to the presence of Eg in 
the expressions of ~ ; k ' However, in this case, too, it is easily shown that there exis ts a nonzero
solution for E ox, E oy , E oz provided that the following determinant is equal to zero: 

from which we have (compare with (6. 1) [Budden, 1961]), 

AX 

) T= WH 

W 
Z- !'.. .,. -

W 

01' (compare with (2.3) [Gall et, 1963]) 

A b2 
n2= 1- ----------==== 

(J2- iT(J - (J cos 8[B± .JI + l J2j 
being, 

v 
1'=-' 

WH 

sin 2 8 
Tc=---' 2 cos 8 

W 
(J=

W I{ 
B 

r c(J((J2-A b2+ i r(J) 

((J2-A 62) 2 + r 2(J2 

(:31 )-

(31.1) 

For A = 1 (linear case) (3 1) becomes Appleton-Har tree 's formula . In t his Ci\se, as i t is known 
[Sen and WylIeI' , 1960], the results obtained by the statistical theory and by t he mean free path 
t heory must coincide. The two signs that appear in (3 1) show that in the nonlinear case too, 
the field is split up into two components whose propagation is never independ ent, gi\Ten thi\t 
under the square root there appears the total value of the electric field. We will call these two 
waves ordinary generalized (O.G.) wave and extraordinary generalized (E.G. ) wave, iden tifying 
them with the corresponding ones of Appleton (O.A. and E.A., respectively) in the limit E r,--'>O 
for every propagation condition. Let us put 

' It i s clear that we can d isregard the right hand side of the las t equation if ~ I~I< <1; this is the usual cond it ion for the vali dity of II' .K .B . 
e n · 

approximation. 
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and A becomes 

(32) 

It is interesting to notice that the electronic density n , that is X, does not appear in (32) so that 
all the results that are obtained for the Appleton-Hartree formula when is varied only n are 
valid also now if we substitute X with AX. rrhe zeros of n2 are located at the points, 

AX+ iZ= 1 AX+ iZ= I ± Y 

and one of the values of n2 is infinite for, 
. (l_ i Z)2- y2 

AX= (l-~Z) (l-iZ)2-P cos2 8 

In this way we see that for A = 1 we obtain the well known results of the linear theory [Budden, 
1961]. Furthermore the two values of 112 are infinite for, 

Y =±(-I±iZ) if sin iI>~0 

Z =±i if cos iI>~0 

these poles are also branch points for 1\ if 8=~ . It is easily seen from (15) and C26.1) that in 

these points we have fooCr) == 1, j(v, Eo) = m, for these reasons all the integrals (24) diverge. 
Moreover A = 00 and in this case the perturbation technique that we have used is no more valid. 
Given that the dispersion relation (31) depends on W in a much more complicated way than 
Appleton-Hartree's formula, we have studied i t using an electronic computer. By means of 
(31) we have calculated the refraction index }.L and the absorption index x using the relation, 

from which, 
1\2 = (}.L_ix)2= M-iN 

}.L= [H -J.lvJ2 + N2+ M }]1/2 

x= [H -JAf2+N2_M }]1/2. 

In the numerical calculations we have taken as a constant: 
(1) The molecular temperature T, T = 200 oK 
(2) the external magnetic field 1&1 I, 1M I = 0.42 Gauss for which wH = 7 .388 .106 puIs/sec 
(3) the electronic density n, n = 104 el/cm3 

(4) the mean energy lost by an electron in a collision, 0= 1.6 .10- 3 

(5) the direction of the propagation, we have put 8 = 0 (longitudinal propagation) in this case 
7r 

we have, for symmetry, iI> = 2' 

We have varied: 
(1) The ampli tude Eo of the electric field 
(2) its pulsation around the chosen value of Wl/ 

(3) the electronic collision frequency 1'. 
The figures show the results that we have obtained. 

From the figures 5, 6, and 7 it is possible to see that the absorption index is in the non
linear case greater than that calculated by means of Appleton-Hartree's formula, moreover, 
it increases with increasing electric field. For a field equal to, or less than, 10- 4 vol t /cm we 
do not have appreciable deviations from the linearity. For low values of the collision fre
quency (fig. 5, 1' = 2.5.106 coIl/sec) the absorption index of the O.G. wave increases very much 

for W""WH, with increasing I' this increase disappears (figs. 6 and 7) and for equal Eo and ~ 
WH 

the ratio between the values of x for the O.G. wave (and E.G. wave) and the values of X 

for the O.A. wave (and E.A. wave) tends to 1 with increasing v. 
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JIi... 
wH 

FIG URE 5. Values of x for p= 2.5·1 06 call/sec. 
C urves 1 (0 .0. and E .O.) Eo = 1Q-3 volt/em almn=2.49 
C urves 2 (0.0. and E .O.) E o= 7.5·1Q-' volt/em a'm .. = 1.40 
C urves 3 (0 .0 . and E .O.) E o=5·1Q-' volt /em a3rn,,=O.62 
C urves 4 (0 .0. and E.O .) E o=2.5·1Q- ' volt/em a'rn,, = O.15. 

- 2 ,0 L-______ ~ __ ~ __ ~ __________ ~ ________ ~ 

0. 5 0 . 60 . 70 . 8 0 . 9 1 . 11 . 2 1. 3 1. 4 1 . ') 

FIGUR E 6. Values oj x fo 1' p= 5·106 call /sec. 
Symbols same as in figure 5 

al Ul BX= O.67 a2I1lu = O.J8 aJrnltx=O.17. 

As it is seen from figures 8, 9, and 10 the behavior of the refraction index f.J. is similar to that 
illustrated for X when Eo, w, /1 are varied . 

The fact that the propagation tends to become linear with increasing /1 is easily under
standa ble. In fact if Eo and w remain fixed the power transferred from the wave to the elec
trons is unaltered, while with increasing /1 also the power dissipated by the electrons increases 
due to the collisions, in this way the electronic temperature tends to become equal to the 
molecular one. 
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FIG URE 7. Val1te s oJ x fa?' v= 7.5·106 call/sec . 
Sym bois same as in fi gure 5 

Q.ll11 !u;= O.32 uZulIu= O.18 u311lI!.x= O.08. 

0 · 50 . 6 0 . 70 . 8 0 . 9 1.1 1. 2 1. 3 1. 4 1. ) 
w 
"'H -

FIG U RE 8. Values oJ J1.fo?' v= 2 .5·106 coil /sec. 
Symbols same as in figure 5. 

a lU1llx=2,49 a :!lJlax= lAO (t 3I!lR)(= O.62 a 4ml!.x=O.1 5 

From figures 8 and 9 it can be seen that with increasing nonlin earity also the wave number 
of the O.G. wave increases. This fact generalizes a preceding result [Epstein , 1962] according 
to which with increasing nonlinearity, the wave number of an electromag netic wave passing 
through an isotropic plasma is also increased. 

The value of a, given by (28) varies along the curves traced in the figures, for every curve 
the maximum value of this quantity is indicated that, in general, is achieved by a for w ~WH' 
It is seen that for some propagation cases the condition (2 8.1) is not fulfi lled. For this reason 
it is interesting to see if we obtain different results takwg into account other terms in the 
development of f oo in series of E~. To this aim we have calculated the third term of the ex-
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F I G U RE 9. VaZ,ues of }J. .for v= 5· 1(Jl colt/sec. 
Symbols same as in fignre 5. 

a IIII"x= 0.62 (l, 2max = O.38 a. 3mfl, x=rO.17 
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If we consider the method used to calculate (3 1) we see immediately that we obtain the new 
dispersion relations taking for A the values given by (33) and (34) . The figures 11, 12, 13, 
and 14 show the results obtained in this way. For electric fields equal to, or less than, 10- 4 

volt /em, the results calculated by means of the "alues of A given by (29), (33), and (34) are 
practically equal. For stronger electric fields, of the order of 10- 3 volt/cm, or for low collision 
frequencies (fig. 11 and ]3) the results are quite different. With increasing v (figs. 12 and 14) 
these differences disappear. given that the nonlinearity of the medium is decreased for the 
reasons explained before. 

The prohlem that arises when we want to treat strong fields and low yalues of the collision 
frequency does not consist in choosing a parti cular form for A but in showing that, in this 
case, we can still use the dispersion relation. In fact, as it can be seen from fi gure 8 it is possible 
to find some propagation conditions for which there is a strong difference between the phase 
velocities of the O.G. and E.G. wayes. This causes, of course, a strong deformation of the 
monochromatic wave launched in the plasma. In this case we have harmonic generation and 
(25) and (30) loose their meaning. From this analysis we infer that it is not possible to treat, 
using a dispersion relation , the problem of nonlin ear propagation of a r ather stron g electro
magnetic wave in a plasma with a rather low value of the electronic collision frequency. We 
think that this problem could be solved in a satisfactory way by trying to integrate directly 
the system constituted by the equations of Boltzmann and of Maxwell. In fact , it is clear, 
that the electronic distribution function (15) from which we started in order to obtain (31) 
is valid only if the wave remains monochromatic. 

4 . Electronic Distribution Function for an Amplitude Modulated Electric Field G 

The system of equations that we must integrate is given by (9) and (10), that is , 

(9 ) 

(10) 

wh ere now 
E = Eo[ l + 17 cos (at+ml cos wt (35) 

with wH~w» a, 0 :::; 17 < 1, 0 :'Sf3<27r. We begin by defining three relaxation times: the first 
is the quick relaxation time of the electric field T E. " ., it is determined by the frequency of the 
carrier and is of the order of w- I, that is, T E. Q. '"'-'W - 1 ; the second is the slow relaxation time of 
the electric field T Es., it is determined by the frequency of the modulating signal, and is of the 
order of a - I, that is , T E.S. '""a- 1 ; the third is the relaxation time of the electronic energy T r that, 
as we know, is of the order of (OV) -l. We shall suppose that 

(36) 

If we remember the calculations of section 2 we see that (36) can be satisfied for values of a 
t ill to some k c/s. From the fact that TKs. > > T r derives that now the electronic dis tribution 
function must depend explicitly on time by means of the fun ction cos (at +f3). In this way 

we have the first term of (9) of the order of f o/!,",-,_ l _ . fa. Let us put, as for the monochrom atic 
aTE .•. 

wave: 7 

f = - u afo. 
1 av 

6 All the resu lts contained in this section will appear, in a work by one of us (0. D . n.), in a more complete and elaborate form . 
1 It is easy to see that this method of in tegration is tantamount to dcveloping the fUllctions /0 and f, in a double series of powers of the pa· 

rameters (T~;q. ) < < 1 and ( ::.:. ) < < 1. We shall calculate the first terms of these developments. 
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FIGU HE 11. Values oj x J OT p=2.5·1 0G call/sec. 
1(0.0 . alld E.O.) a. with A gh'cn by (29) Eo~ 1O-3 volt/em 
l (O.G. and E.G.) a2 with A given by (33) Eo ~ IO-3 volt/em 
l (O.G. and E.G .) a3 with A given by (34) Eo~ I (}-3 volt/em 

3(0. 0 . and E.G.) a with A gi ven by (29) Eo~ 5· 1O-' volt/em 
3(0.0. and E .G.) a' with A given by (33) Eo~5·JO-' volt/em 

FIGURE 12. Values oj x for p= 5· 106 colt/sec. 
Symbols same as in fi gure 11. 

We have 

but 1.L (which gives the current) must vary in time at the rate of the frequency w of the carrier, 
so ou/otr-vwu, in this way, disregarding terms of the order of a/w, we have, 

Ofl _ au ojo 
at at ov 

and (10) beco mes the usual Langevin's equation, 

AU e [ u GfJ - +vu=- E+ -X crt . at m c 
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FIGURE 13. Values of p. for ,,= 2.5.106 coli/sec. FIGURE 14. Values of p.for ,,= 5.106 call/sec. 
Symbols same as in figure 11. Symbols same as in figure 11. 

We already know (see sec. (2)) the solution of this equation for a monochromatic wave, taking 
into account that (35) can be written as, 

E=Eoh cos {(w+a)t + i3 } +Eo cos wt + Eoh cos {(w-a)t-{3 } 
and remembering (13) we have the persistent part of fl given by: 

fl =[ A(w) +~ 1) { A(w+ a) + A(w-a) } cos (at + m 

1 } . )] oro +2 1) { B(w + a)-B(w-a) sm (at+i3 ~v COS wt 

+[ B (w) +~ 1) { B(w + a) + B(w-a) } COS (at+i3) 

+~ 1) { A(w-a) - A(w+ a) } sin (at+m ] ~o sin wt 
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1 n the calculation of E . f 1 we disregard terms of the order of ~= T E. q., that is, we put, 
w TE .•. 

Eo· A(w-a) = Eo· A(w) = Eo· A(w+ a) } 

Eo· B(w-a) = Eo·B (w) = E o· B(w+ a) 

and we define a function Z(t) by: 

Z(t) = [l+11 cos (at + mF 
in this way (9) becomes, 

(38) 

(39) 

010 e 0 [ 2 { E ) 2 B . } ~ Ofo] 0 0 [ ( k TO) .f ] bt+3mv2 ov v o·A (w cos wt + Eo· (w)coswtsmwt ,!:.(t) ~v - 2v2ov vv3 l +mv OV .io = 0· 

On account of (36) we see that the first term of this eq uation (of the order of j~/TE .• ) can be 
disregarded with respect to the second term (of the order of fO /TE .Q) and to the third term 
(of the order of .fo/T T) so that taking the mean , over the period of the carrier, of the resulting 
equation we obtain , 

.i.. ~ [vv3 {l +(lcT + e2m (v)2(t))~} .r]= o 2v2ov mv :1m2ov <P OV J O 

a first integmtion gives 

where A(t) is an unknown function of time, it can be en,sily seen that, unless it is not identically 
zero, fo diverges strongly for v= O, so that A (t) = 0 and 

{ f V mvdv } fo(v , t) = C(t) exp - Jo e2E~ ~ . 
lcT+ 3mo <p(v)'!:'(t) 

(40) 

The study of this distribution function is made easy by the fact that it is iden tical with (15) 
provided that we substitute E~ with E~Z(t). In particular we have the mean energy (t) 
depending on time, (t(t» ),8 and taking as before only the wave E l.O it is given by (19) 
where now 

furthermore we h ave, as before, 

( O(t(t»)) = 0. 
Ow w = WH 

Taking into account (38), (37) for fl can be simplified in the following way 

furthermore putting, 

f1=[1+ 11 cos (at+i3)] [A(w) cos wt + B(w) sin wt] ~: 

. 47r f OO 3fd E+ OP 
J I= 3" en Jo v 1 v=~ · ~ 

(37 .1 ) 

it is possible to evaluate the conductivity and the dielectric permittivity of the plasma. It is 

, See figure 15. 
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easy to see that disregarding terms of the order of ~= TRq. the components of these tensors 
W T E. s. 

are given by (24) provided that we substitute E5 with E5Z(t). We can still use approxi
mation (26), so that the components of the complex dielectric permittivity tensor can be written 
as 

(41) 

being 

where E;k(W) is the expression that we obtain in the lineal' theory for the carrier. 
see that e;k is varied, around its steady value E;k(W), by the quantity ll.ik(W, a, t ) . 

By (41 ) we 
Let us now 
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FIGURE 15. Behamor of «(t»for KL,= 
5. 10- 4 volt/em. 

Oiher constants same as in fi gure I, for various values of 'I. 



hwn ch ll1 the plasma, besides the wave (35) , also another wave of the type, 

ET' = EoT' cos (yt + A). (42 ) 

Jndicating with 'P(w, v) the function given by (14) and with <pCy, v) the S1t me fun ction wi th w 
replaced by l' and where cp is su bstituted with the angle between EaT' and [J-{, i t is easily seen that 
the electronic distribution function io(v, t ) is either: 

r ( v mvdv } io(v, t )= C(t) e:A1J i - J o --~2 ------------l 0 kl'+3:no [E~'P(w,v) Z ( t ) + 2E~T' <p(I',v) cos2 (I't + A) ] 
(43.1 ) 

or 

( 4:3.2) 

EqulLtioll (43. 1) is valid if 7e » 7" (43.2) is valid if 711 < < 7,,711 being therelax~ttion timeo! the 
elec tric field (42) which is: 7e~I'- I. Furthermore it must be noticed that in the calculation of 
(43. 1 ~md 43 .2) we h~we neglected terms proportionlLI to the product of th e two waves (35) 
a nd (42) ; i t is possible to make this approximation if t here is no phase correlation between 
t he two field s. Let us suppose now that the electric field (42) is small and that I' is far from 
the gyromagnetic frequency so thltt we can' neglect in (43) the part due to this wave, in this 
way io(v, t) is given by (40). The equation for the propagation of the wave (42) is, 

(44) 

and given that the wave (35) contribu tes to j CO Il{iJ the propagation conditions of the wave (42) 
will depend on those of wave (35) . vVe can s till use the approximation (26) ; an easy calcu
lation shows that in this case (44) becomes, 

where f (l') and .d l') are the expressions that we obtain in the linear theory for the wave (42) 
and where Of is -given by: 

It is clear that the wave (42) does not remain monochromatic and that these considerations 
constitute the starting point for a microscopic theory of cross modulation. 

This paper presents some results of a research program in progress at the Jstitu to di Scienze 
Fisiche dell 'Universita di Milano with the contribution of C. N. R . 
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