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The theoretical solution of the problem of the propagation of radio waves through an
ionized medium depends on Maxwell’s well-known equations, together with the equation of

motion of a free electron.

This last equation, in general, contains a large number of terms.

In addition to the purely electromagnetic terms, there are others expressing the interaction

of the electron with the medium itself.

index of refraction as a function of the applied radio frequency.

The solution requires one to determine the complex

The problem is even more

involved, in some cases, because magnetohydrodynamical terms may enter into the ex-

pression.
on the complex index of refraction.

Sound waves or shock waves in the medium, for example, can impress themselves
As a result, dynamical and magnetohydrodynamical

interactions can lead to the coupling of fields that otherwise would be independent.

1. Introduction

I wish, first of all, to extend a welcome on behalf
of Dr. Ernest K. Smith and myself, cochairmen of
this conference. My task this morning would have
been much lighter 1if only two distinguished Soviet
scientists, Prof. V. L. Ginsburg and Prof. A. V.
Gurevich, had been able to accept our invitation.
Their joint paper [1960] on “‘Nonlinear Phenomena
in a Plasma Located in an Alternating Electromag-
netic Field”” is a classic. It reviews and extends the
basic principles and applies them to an examination
of general nonlinear problems.

Their paper is far too long and detailed for me to
review here. Perhaps I should just commend it to
vour attention and then sit down. But such brevity
1s hardly in the tradition of conference chairmen.
Besides, [ should like to discuss some relatively
unfamiliar nonlinear processes that may occur in
certain types of ionized plasmas.

Various contributors to this conference have asked
me to explain the qualifying adjective, “nonlinear,”
which defines the type of processes we are discussing
here today. Let me say, first of all, that “nonlinear”
does not signify “irregular” or “‘nonuniform.” The
mathematician, the physicist, and the engineer each
has his own definition of ‘“‘nonlinear.” At first sight
these explanations may seem to be very different,
but they are actually only alternate ways of ex-
pressing the same basic facts.

,

To the mathematician, quantities such as £ ((111;’
d’E : .

d’ ete., are linear in that they depend only on the
first power of F£. Differential equations involving
these quantities have solutions of the form:

1 Harvard College Observatory, Cambridge, Mass.

And if two solutions are simultaneously present, the
complete solution is simply the sum of the two, or

'/'Tfl(f) ‘|‘/.>(f)

Mathematicians call this the principle of super-
position.
Mathematical quantities involving the square, or
higher power, or cross product of the foregoing, such
7\ 2 7!
as F? <{”‘> ' B (/I" ete., are nonlinear. Mathemati-
dt dt
cally, we recognize the nonlinearity because the com-
plete solution is not the sum of two elementary
solutions. Cross-product terms exist. The two dis-
turbances react on one another. For example,

E2=13(t) + 230 +(0),
and so on.

Physically, /£ may represent an electric field that
varies with the time. Any number of electromag-
netic fields may exist simultaneously in any medium.
As long as the disturbances are linear, we may repre-
sent their total effect as the sum of the individual
disturbances. But if the phenomenon is nonlinear,
the total effect may depend on the cross product of
the individual disturbances.

The engineer has a practical definition of nonlinear
phenomena. As long as a simple filter can separate
the different superposed periodic disturbances passing
through a circuit, they are linear. But when the
two or more disturbances have interacted in such a
way that they cannot be so separated, then the
phenomenon 1s nonlinear. Under certain circum-
stances where he wishes to induce artificial mixing,
the engineer will use a nonlinear device such as a
rectifier or detector.

Many of the differential equations of mathematical
physies are linear in the first-order. They may
contain, however, certain nonlinear terms that are
negligible unless the variable is exceptionally large.



Consider the following equation:

A’
dt’

+ W E+BE*=0,

where B is small. When B is zero, this equation

has the solution:
FE=A sin wt.

But when we substitute this into the original
equation, the term in £ becomes

2

B —BAASIIE wt:&;

(1—cos 2wt).

In other words, the perturbations have caused the
harmonic of frequency 2w to appear.

To obtain a general solution, we may employ
the complex Fourier series:

©
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Substituting this into the differential equation, we
get

Z [,171w2(n2__1) 6“’"['*‘6 ZZ A,,LAm,eiw(mJ.—m') t—().

Carry out the double summation by first summing
over pairs of m and m’ such that

m-+m’=mn.

Then we can write
Z‘,[Anwg(n?—1)+ﬁZAmAn-m g
n m

Hence we must have

Anw2(7l2— 1) ‘l_B Z AmAn—m:O'

This infinite set of simultaneous equations is, of
course, nonlinear in the 4,’s. The solution contains
higher harmonies, though they may have progres-
sively smaller amplitudes.

The most familiar nonlinear ionospheric process
has received the name Luxembourg Effect, because
it first showed up in connection with radio Luxem-
bourg. The Luxembourg Effect is a particular
example of a general phenomenon that might be
more accurately termed ‘“The Interaction of Acoustic
and Electromagnetic Waves in an lonized Medium.”
The medium may or may not contain a magnetic
field.

In the Luxembourg Effect, a radio transmitter of
high power produces an intense electromagnetic
field 1 the ionosphere. If an audio frequency
modulates the carrier, the electron velocity field
responds to this modulation. In effect, the tem-
perature of the electron gas fluctuates by an ap-
preciable amount, according to the impressed audio
frequency. This temperature variation may also

be deseribed as a pressure variation, a irue acoustic
wave. 1 shall refer to the initial modulated wave
and the acoustic disturbance it produces in the
medium as the “unwanted wave.”

The various propagation constants that depend
on temperature or pressure of the electron gas in the
medium vary with the frequency of the acoustic
disturbance. If the density of the gas is high
enough to make the medium dissipative, the imag-
inary part of the complex index of refraction also
varies. A second radio wave, termed the “wanted
wave,” traversing the medium, will suffer from this
variable absorption. Hence the wanted wave ac-
quires some of the modulation of the unwanted
wave. Since this superposed modulation constitutes
an interference with the wanted wave, it is undesired
or “unwanted.” Thus the terminology.

The theory of this wave interaction was first
eiven by Bailey and Martyn [1934], who pointed out
the importance of magnetic fields, especially for
radio waves near the gyrofrequency. The formulas
they derived, however, were oversimplified, in that
they linearized the equations describing the inter-
action. As a result, their formulas do not properly
display the phase lag of the acoustic disturbance
relative to the modulation by an amount dependent
on the audio frequency. Menzel and Layzer have
developed a more detailed theory which will be
presented at this conference.

Experiments have shown that the Luxembourg
variety ol wave interaction rarely leads to cross
modulation in excess of a few percent. The amount
is very sensitive to a number of parameters. In the
medium itself the significant variables are: the
electron density and temperature, the frequency of
dissipative electron collisions, and the magnetic
field that fixes the electron gyrofrequency. The
phenomenon further depends on the power and
polarization, in addition to the radio and audio
frequencies of the unwanted wave. The frequency
and polarization of the wanted wave are also sig-
nificant. The angle of incidence on the ionosphere
determines the degree of penetration. Since the
unwanted acoustic disturbance 1is localized, the
oreatest interaction will occur when the wanted
waves travel through a significant portion of the
disturbed volume.

Although the original theory and observations
refer to the interaction of two separate and inde-
pendent waves, examination of the basic equation
shows that a single modulated wave in the medium
may interact with itself. As before, the fluctuating
field causes an acoustic disturbance in the medium.
This results in a variable attenuation coeflicient,
which reacts on the original wave. Since the phase
lag is a function of the acoustic frequency, the
degree of attenuation will similarly vary with the
acoustic frequency. In effect, some frequencies will
experience demodulation whereas others will be
excessively modulated.

The foregoing phenomenon, termed “self inter-
action,” indicates that any acoustic disturbance—
of whatever origin—can impress its modulation on



a wave traversing the volume. Rockets, missiles,
explosions; collisions of solar ion clouds with the
upper atmosphere, etc., represent potential sources
of such acoustic waves. The question requiring
study is the magnitude of the interaction, not
whether such interaction occurs. More specifically,
of the various kinds of interaction, are there any
that could be studied experimentally?

Clertain difficulties are obviously present, resulting
from fundamental differences in acoustic fields of
radio origin on one hand and of mechanical origin on
the other. For example, since the velocity of propa-
eation of a radio wave greatly exceeds that of sound,
the acoustic field induced by a modulated electro-
magnetic wave will be in phase over a large volume
of space. Hence the interaction with the wanted
wave will likewise be in phase over a large volume of
space.

A mechanical disturbance, on the contrary, prop-
agates with a much smaller velocity. Hence a
wanted wave, progressing through the perturbed
medium, will suffer high attenuation in certain zones
and low attenuation in others. The effect resembles
that of interference on optical frequencies. The
problem is complex and the total effect on the wanted
wave depends on the character and the extent of the
basic disturbance.

The details of the interaction require precise analy-
sis.  The limited volume of the mechanical disturb-
ance may well be offset by the intensity of the dis-
turbance itself. In a region where shock waves may
exist, numerous nonlinear effects may occur, com-
plicating the transport of electromagnetic waves
through the medium. The complex (dissipative)
index of refraction will probably contain significant
velocity-dependent terms of nonlinear character.
The effect on a radio wave transversing the medium
may still be appreciable. Magnetohydrodynamic
compression of the gas will significantly alter the
magnetic field, with attendant complication of the
mathematical problem.

M. Cutolo has demonstrated experimentally the
existence of a phenomenon sufficiently different from
the Luxembourg Effect to deserve a special desig-
nation. He refers to it as the “detection effect,”
since it depends on nonlinear ionospheric properties
for its occurrence. I prefer to call it the “Cutolo
Effect,” after its discoverer. 1 shall describe it
briefly, since Cutolo plans to devote his paper to
more conventional nonlinear problems.

Cutolo directs a beam of pulsed, modulated VHEF
waves upon the ionosphere. Of significance is his
use of the gyro frequency as the modulation fre-
quency. In the Luxembourg terminology, this
pulsed, modulated, VHEF wave, further modulated
at audio frequencies to carry intelligence, represents
the “unwanted wave.” Cutolo reports that a sec-
ond HF wave, the wanted wave, reflected from the
ionospheric region traversed by the intense, focused
VHEF signal, will have the audio signal transferred to
it. The amount of this cross modulation is very
sensitive to the exactness of match between the gyro
and modulating frequencies. Cutolo has found that

the effect occurs for both vertical and oblique ineci-
dence of the wanted wave.

I have not seen, up to this time, any quantitative
physical explanation of the Cutolo effect. An un-
wanted wave on the gyrofrequency would produce
a large interaction of the Luxembourg type. But
a VHF wave, modulated at the gyrofrequency, is
not equivalent to a pure electromagnetic wave on the
gyrofrequency. As is well known, such a wave can
be expressed as an unmodulated carrier and two
unmodulated sidebands separated from the carrier
by the gyrofrequency. To account for the Cutolo
effect we must suppose that some unknown iono-
spheric nonlinearity so mixes the carrier and side-
bands as to release the true gyrofrequency. It is
difficult to see, though, how such interactions occur
because of the very high frequencies employed.
Cutolo used a carrier of the order of 50 Me/s.

The following analysis will serve as an elementary
introduction to ionospheric theory for younger
scientists. The paper also considers various non-
linear effects. An electron of mass m,; and charge
—¢;, moving with vector velocity v; in an electro-
magnetic field E and H and external acceleration F,
obeys the well-known equation of motion:

dv;

m;
"

—eE—"lvxH+mF. (1)

This equation applies along with Maxwell’s equations
to define the physical state of the medium and its
interaction with the field.

The field F represents several varieties of mechani-
al actions.  In a macroscopic problem involving
the entire atmosphere, F will include the gravi-
tational acceleration ¢. It also represents the
collisional effects of nearby molecules, which may
act as a sort of resistance proportional to the velocity
and collision frequency ». As we shall note later on,
this collisional term may be anisotropic, because of
pressure gradients in the gas.

Maxwell’s equations are:

x OE  4r
curl H=vxH-= 23 T o J, (2)
oH
curl E:VXE;'—% ,5t,, (3)
div H=v - H=0, (4)

div E=v - E=4mp/k,

wherein J is the electric current, p. the density of
electric charge, « the dielectric constant and p the
magnetic permeability. Simultaneous solution of



these equations leads to

; ’E
VZE:% %7+VV - E, (6)
o’H
VzH:‘C‘,z'f e (7

When p. is constant, the last term of (6) vanishes
and we have the ordinary wave equations. For a
plane wave, polarized in the zz plane and traveling
along the z-axis, we have

E:im)eiiu(l—n‘”/(:)

(8)

where w is the circular frequency and ¢/n the veloc-
ity of light in the medium. Thus 7 is the index of
refraction. The quantity n» may be complex. The
unit vectors i, j, k are the customary Cartesian set.
This equation satisfies (6) when
n2=pu«. (9)
For nonmagnetic media, p=1. Hence x=1 for
free space. Part of our problem involves the
determination of the effective x when the space
contains electric currents and charges.
Return now to (1) in the form:

v
Cdt

(10)

€,
—eiE——(f VXH—ﬂliVVl.

The first term on the right represents electric forces
and the second, magnetic forces. The third term,
somewhat schematically, represents the resistance
that the charged particle encounters as it moves
through the medium. The quantity » is the number
of collisions per second experienced by the moving
ion. For convenience we shall drop the subscript 7.
The electrons, because of their great mobility, are
the major contributors to the current density J.

Thus:

J=—Nev, (11)
where NV is the number of electrons per ecm?®. Under
different assumptions we shall calculate the varia-
tions of v and J with the time. We shall then sub-
stitute the J, so calculated, into Maxwell’s equation

(2).

Case I. H=0, =0, E=const:v =—elt/m. (12)
Case I1. E=0, =0, H=const. (13)

Here take the derivative of (10) with respect to the
time. The resulting equation reduces as follows:

v e [dv (€Y
T %XH>7”<mC> (vxH)xH. (14)

Let v have two components v, parallel to and v,
perpendicular (German: senkrecht) to the field. The
triple vector product reduces to:

(vxH)xH=I?v,
so that:
(VN | AV
- % i 1
di2 WrVs, di2 0: ( 5)
and
V,=Vg6* 9Lt V, =V, ; o= eH/mec. (16)

The particle executes a spiral path with the Larmor
frequency w;. The radius, @, and pitch, p, of the
spiral are

(17)
(18)

(L:UOs/wL; p:'UOI)/wL'

Case I1I. E=0, H=0, v=const; v=v,¢*,

corresponding to simple damping.

Case IV. E=FEye'«', H=0, »=0, )

r. (19)

v=_(eE/iwm)et! J
Case V. At this point, let us consider a more general
problem for which we assume an electromagnetic
wave traveling parallel to the z-axis. lLet /£, and I,
be the vector electric fields and H, and H, the vari-
able magnetic fields associated with the radiation.
Let the magnetic field of the ionosphere be of magni-
tude H, in the direction of the propagation.

The general equation of motion, (10), breaks up
into equations for the three components:

do, e gp el
d m T mer "
dv, € ., el
dftj:—ﬁﬂ”—l_m V,—V, (20)
dv, ,
= —y,
dt J

Multiply the second equation by 4 and add to the
first, employing (16). The result is

gf(vr+ivy):(iwL_V) (Ux—i'ivy)—_;%(EI—}_iEV)' (21)

Maxwell’s field equations become:

oF, 10Il, O, 1M,
oz ¢ ot 0oz ¢ ot
_D[[uik aEI__41rNeZ)I, 9 (22)

0z ¢ ot ¢
oM,

kOE, 4wNev,
dz ¢ Ot ¢ J




Multiply the second and fourth of these equations by
7 and combine as before, to give:

2 EtiB) =22 (HAim,)
D (HotiH)=—22 @ 1B+ TN, 1 i),
(23)
Now introduce the complex quantities:
B =\ R )
A8 = B (24)

Hz+7‘,Hy:}]e:f:iw(t—nz/()

where V| £ and F1 are complex constants. With the

aid of (24), (21) and (23) become:

[1(—wpt+w)+v]V=—ell/m (25)
= (26)
1unH=—kwE+4riNeV. (27)

These equations contain four complex unknowns:
L H, Vand n. Of these, n is the only one uniquely

determined. / and V are, as one would expect,
merely proportional to £ We may solve directly
for n*

, 47r]\7€ 1
i R
el mw wTw, ZF zu ( )

the complex index of refraction. Let

n=n,Fik, (29)
where n, and n, are real. Then:
, 47 Né? wF wy,
2 z: 7 ;
n,—k mw (w:{:wl) +V (30)
47N €2 v
21, b= ST ‘
ke Mo (@TF )1 (31)
The propagation factor becomes:
giiw(l—nzlﬁ) :6:]:1'“;(!—",.2/0)—0)762/6. (32)

The last term of the exponent indicates an amplitude
that decreases exponentially with the distance.
The effect results from the collisions, which transfer
a certain amount of energy to the medium.

At this point, note the basic philosophy behind
these elementary derivations of the propagation
parameters. We have solved the general equation
of motion to determine the velocity of the electron
under the influence of external fields of force,
electromagnetic, magnetic, and collisional. Our
first objective was the calculation of the current

density, .. Then, substituting this back into
Maxwell’s equdtmn (2), we derlved in effect the
dielectric constant «, which by (9) is equal to the
squ(ue of the complex index of refraction. Equation
(2) thus takes the successive forms:

10E 47TJ 1 0E 4m’\eV AOE IwKE
curlefa ¢ cof ¢ c¢ol ¢

(33)

since v, E, and their derivations all have the same
time dependence, ¢!,

The physical significance of x becomes more
meaningful, pelhapx if we follow the steps indicated
by (33). Here we may use the complex form of (2),

il ;aE 4rd

+7*
_ <iI.‘;i,[d—étr—er\'e‘:)Pt[‘”“‘":/“
G ¢ .

= +1jw+47Ne?

) 1w | 4w Ne? 7 i w(i—nz/0)
l:i e T me i wliw) +V]]

/(JJI\

j: p [«(;tm(z nz/c) (34)

where we have used (25) to express V in terms of /7.
Now, solving for « we get

T 2
mmimy Ve 1 (35)
w oo, Tw
as before.

Now note some of the assumptions implicit in
these derivations of «x. In the strictest sense we
should have a different velocity, v,, for each electron.
We would then have evaluated the average v and J
as follows:

J——eNv——e S v —e f vio)ds,  (36)

where f(») is the velocity distribution function for the
electron gas.

The solution of this problem is far more difficult
than appears at first sight. The function f=f(»),
will generally depend on time and position. The
Boltzmann ‘transport equation is basic for the
determination of f.

df _of - )
GV Ve v.f+S=0. (37)

In the above, a is the acceleration and v, the gradient
in velocity space. The quantity, S, is the collision
integral, which depends on the rate of change in the
distribution function resulting from collisions. This



term takes account of the creation or destruction of
electrons in a given range of velocity. To calculate
S we must know the physical details of both elastic
and inelastic collisions.

The first three terms of (37) are vector abbrevia-
tions for the purely mathematical concept of the
total derivative of a function, f, that depends on the
time, on the coordinates, and the velocity components.
In rectangular coordinates, we may write

d%f(x,y,au,th) o Qf‘l_x of dy  of d=

tordt Toy dt Toz dt
of du  Of dv , of dw B
Sudt Tos it o0 ar T5=0 68

wherein %, », and » are the three velocity compo-
nents.

Let v/ and v be the vector velocities of the electron
prior to and after the collision. Let v; and v, be the
mitial and final velocities of the colliding particle.
Let f(v/)dv’ and f(v)dv symbolically represent the
number of electrons within the ranges dv” and dv, and
let F(v))dv; and F(v;)dv, similarly represent the
number of colliding particles in ranges dv; and dv,.

The relative velocity of collision becomes:

u=v—v, and u=|v—v,]. (39)
Let o(u, 8) be the differential scattering cross section
describing the probability that a colliding electron
will be deflected through an angle 6, during collision.
Define the solid angle d2=sin 9d0d¢ Then we may
express S as follows:

S— f f dvidQo(u, Ul (NEF (V) —f (vVIF (V). (40)

The problem of calculating S and f depends on a
precise knowledge of the target cross section, ¢, as a
function of w and 8.  We shall not consider it further
here, except to note that our arbitrary representation
of the collisional effects by the term mpv in (10) was
naive, to say the least. It was particularly an over-
simplification in that we assumed » to be independent
of v, in order to obtain a linear equation.

We should have been much more realistic if we had
assumed » varied with the velocity. Certainly the
collision frequency will depend on the temperature
of the electron gas. This temperature, in turn, will
vary with the impressed electric field. And if the
field is modulated, the modulation frequency will
cause v to vary at that frequency. Thus the absorp-
tion coefficient, £, (31), should also vary with the
time. It is this variable absorption that leads to
cross modulation, the Luxembourg effect, gyro-
interaction and Othel nonlinear responses, some of
which we shall be discussing during this conference.

But additional, still less obvious assumptions exist
in our oversimplified theoretical discussion. Max-
well’s equations apply, of course. We have ignored

possible reactions of the ionospheric plasma with the
terrestrial magnetic field. I refer particularly to
phenomena l\'mg in the realm of magnetohydro-
dynamics. We can at least infer the character of
some of these problems.

Rewrite (1) in the general form:

av; e, v,xH

m; W*éiE +”l F (41)

wherein a positive e; refers to an ion and a negative
¢; to an electron. We can take averages over a unit
volume as follows:

p=2.m;
pV:Zmlvl
J:Zeivi
=€ (42)

wherein p is the mass per unit volume. These sum-
mations imply, when relevant, integration over the
velocity-distribution functions previously discussed.

The force-field F breaks up into two parts; external
fields such as gravity and internal fields which result
from colliding particles. One may write the latter
force on a given particle, i, as follows:

Fint=>F,, (43)
J

where the summation is taken over all neighboring
particles 7. This term cancels out only when the
medium is uniform. If electric currents are present,
the term gives rise to forces simulated in our earlier
treatment by the collisional term, m;»v. This force
can also be expressed, for the entire medium, as a
sort of electrical resistance, 2, in the form RJ. It
also produces such major forces as pressure gradients.
Tangential forces, in the presence of sheer, lead to
the phenomenon of viscosity. In the presence of
temperature gradients it can even cause thermo-
electric effect. For example we may write
E=R(J—0vT), (44)
where 6 is a thermoelectric coefficient. In the strict-
est sense both 2 and 6 will be tensors rather than
scalars.
As we sum (41) over the individual particles and
employ Maxwell’s equations we obtain the general
equation of magnetohydrodynamic motion:

(Lv:—prLme-F

P (v><H)><H+— (vXE)

1

1
XEt By - B cat

(EXH). (45)



When A and I are constant or zero, the equatio
reduces to that of ordinary hydrodynamics, less the
second-order terms related to viscosity. The terms
represent the forces arising from the electromagnetic
fields. EXH is the Poynting vector, which repre-
sents energy flowing out of the volume element.
Hence the partial time derivative of EXH represents
the forces caused by radiation pressure.

Now multiply (31) by ¢/m and sum again. The
result is

1”.2‘2_: + (vXH)—R(I—0vT)  (46)

where m is the mass of an electron and » the number
of electrons per unit volume. In taking this sum
we have allowed for the fact that electrons, by virtue
of their small mass, are the main contributors to the
electric currents. In passing we may note that this
equation has several obvious limiting forms. It can
reduce to Ohms law

E—RJ, (47)

or to the electromotive force induced in a conductor
moving through a magnetic field

E——(vXXH)/e. (48)

Even (46) has its limitations. Acoustic waves
or hydrodynamic waves can directly produce changes
in J, by simple compression or expansion of the
current-bearing regions. Moreover, in a conducting
medium, H itsell may change under magnetohydro-
dynamic forces. Such changes in H produce flue-
tuations in J.  As we have just noted, variations in
J directly affect the dielectric constant. We must,
therefore, set up the equations governing the varia-
tions, not only of H but also of E.

The following analysis is by no means complete.
However, consider the steady-state situation, derived
from (46):

E4(vXH)/e—RI=0. (49)

Take the curl of this equation and reduce by means

of the Maxwell relationships. We get:
dH OH + vH
dt
2
—H.vv—Hy.v} %" R[ ZH—— aag (50)

744-758—

Now take the partial time derivative of (49) and
derive a similar equation for E. The result is:

O |

‘R o’E
+1 5 D=2 pE-5%5-vvE ] ©D

These equations are also subject to the equation of
continuity,
dp 0
o p+v Vp=—pV-V,
dt
or

—g{ +v - (pv)=0. (52)

For regions where the conductivity is high, R—0
and we recover the ordinary equations of magneto-
hydrodynamics. When the conductivity is low,
divide through by R. The electromagnetic equa-
tions then reduce to the simple wave equations for
E and H. 1In other words, for media of low conduc-
tivity, the hydrodynamic and electromagnetic fields
are independent. Otherwise the two  fields are
coupled. This means that, in effect, we can combine
the purely dynamic terms into a nonlinear wave
equation, in which the dielectric constant is a function
of the dynamical variations.

I shall not attempt to carry the analysis further.
My primary objective has been to show that non-
linear effects abound in this general problem. T
should point out one additional fact. The electrical
resistance I is closely related to the dumping factor k.
Since k, in turn, depends on both electrical and
dynamical factors, the factor £ introduces addi-
tional nonlinearities. Detailed solutions depend on
assumptions concerning the ba-ic physical conditions
in the medium. 1T have especially desired to empha-
size the importance of dynamical or magnetohydro-
dynamical effects on radio propagation.
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