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A coll ision-free or low collision magneto-ionic medium is eas il y perturbed by a driv in g 
or pumping wave, even of m oderate power. Unless the p ump wave has lo ngit udin al propa­
gation, it will ge nel"ilt e lon gitudina l electron velocities as well as differe ntial sp ace c ha rge 
densit ies. These q uant it ies, as well as t he tra nsverse, pump fi eld electro n v rlociti es, will 
a ffect the propagation of a ny (low pow er) signal or probin g wave propagat ing t hro ug h the 
medium, whi ch now has oscilla ting and traveling elecl ro n velocity a nd electron density 
ripples. 

If t he pump wave has a n angular frequ ency w'" and t hat o f the s ignal wave is w" two 
first order s um a nd difference frequ ency (W±I=Wp ± W,) waves a rc gC' nerat ed in the m edium . 
It is s hown that t he generat ion of t hC'se waves, for wh ich ~ pec i fi c rdract ion laws hold, is 
greatly C' nh a nced if a pa ram et ri c travelin g ,,·ave r esona nce develops in t he syst em or if t he 
nonlinear dr iving for ce experi ences a local r esonance. Under certain co nditi o ns, s um a nd /or 
d iffere ncC' freq uC' ncy wa ve, usua ll y wit h two kinds of po la rizat ion, will radi ate' away from 
the reso na nce in tr ract ion r('gion. Th is ge neration is dealt with in c\('t ail for homoge neo us 
medi a, with " discont inuo Lls boundary, a nd for s low l.v inhomog('neous 0 11<'S. 

Waves of thi s kind s ho uld be generated easily by a topside sounder o f mod era te po wer. 
It s hould also be possible, with prese nt day t ('c hniqu('s, to record sum a nd difl'e r(' nce fre­
qu ency " echoes" at the gl ound , if a very powcrful pump wave trans mitt('l" were used . It is 
in te rest in g to note t hat not on ly the t rue heig h t of no rma l re fl ec tion (at w,=w., where 
W e is t he a ngula r p lasma freq ue ncy) b ut a lso th e electro n density gradient, at tt,h e same 
le vel, should be obt a in a ble by s uch measu re me n ts , p rovided wp»w,. Since Wp could be 
left un cha nged , whi le w , is swept thro ugh the so undin g ra nge of int erest, the tec hnica l 
a rra nge me nts for s uch experime nts, wh ich m ight be very rewa rdin g, s ho uld not be overly 
co mpli cated. 

1. Electromagnetic Wave Reflection From the Oscillating, Isotropic, Ionized 
Medium 

We assum e that t he signal- or probing- wave, of angular frequency w., and the high power 
" pump" wave, have polarizations and angles of incidence upon the ionized as shown in figure l. 

The pump wave generates a nonlinear variation, t,.l\T, of the mean electron density N ., 
a nd a longitudinal electron velocity, VL, in t he direction of the pump wave normal. These 
electron density and velocity "fluctuations" travel through the medium, locked to the high 
power wave, and can be written as follows [Rydbeck , 1961], 

(1.1) 

0 .2) 

where W p and kp are equal to twice the corresponding parameters of the lineal' pump wave . 
'Y and v~ are proportional to the square of its amplit ude. 

Besides this nonlinear " plasma wave," (1.1) and (1.2) , one must also consider the lineal' 
tr ansverse electr on velocities, V1'.X and V 1',Z) of the pump wave . The totAI electron velociLies 
Associ,lted with the pump wave thus become 

(1.3) 
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1.1. Only Electron Density Oscilla hons Considered 

In order to distinguish between the two nonlinear effects, we first study the reflection prop­
erty of the ionized medium when the velocity fluctuations are neglected, i.e. , we assume 
Vv = O= VT, and disregard, for the moment, the fact that these velocities, in reality, always 
differ from zero when !J.N does so. 

The wave equation describing the propagation of the signal wave now can be written 
[Rydbeck, 1963], 

(1.4) 

where if; is proportional to Vy (the electron velocity of the signal wave) and is related to Ey 
in the following (arbitrarily) normalized manner 

1 aif; 
E =--· 

Y jws at (1.5) 

co= l/&o =the electromagnetic wave velocity in vacuum, and 

(1.6) 

is the mean electronic plasma frequency. 
We introduce (see also fig . 1) 

k Wp k Wp k' l P= c n ,,; p,x= c nv,x= p SIn 'Pn. v, 
00 1 

and r (1. 7) 

k w" k v, z=c~ np , z= 1) cos 'Pn, p , J 
where np is assumed to be a known function of the angular pump frequency, Wp. In order to 
make our results more general we do not specify the dispersion relation determining k p , since 
one can, in principle, think of other types of pump waves besides electromagnetic ones. 

N ext we introduce the variable 

(1.8) 
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and assume that if; can be written as follows , viz , 

where 

and W q denotes the angular frequency of an unperturbed wave, 
reduces to a constant, as it will in absence of the pump wave, 
tionary monochromatic wave. 

N ow, let us introduce the characteristic parameter 

o = 4w~ (l - dq)2 
0, q w2 I - n 2 ' 

{J P 

where 

ITa can now be written 

where IT ~2 ) is a proper solution of the Mathieu equation 

(d~2+ 00,q+ 20j cos 2u)m2)=0, 

and 

(1.9) 

(1.1 0) 

i.e., for 'Y = O. When ITq (u ) 
(1.9) represents a plane, sta-

(1.11 ) 

(1.12) 

(1.13) 

(1.14) 

It is inter esting to notice that the important parameter OJ is independent of W q (and leq ). The 
solution of (1.14) is now for our purposes written 

n=+'" 
IT ~2)= {3q e~q1t L: iXq, nei2nu, (1.16) 

n=-co 

where J.i. q is the proper root of Hill's determinantal equation, j 

(1.17) 

and the amplitude coefficients can be obtained from the relations 

(n = ... , - 2, - 1, 0, + 1, + 2, ... ). (1.18) 

As is well known from the theory of Mathieu equations, instability regions are centered 
.around the OO, q values 1, 4, 9, etc. In this connection we are mainly interested in the first , and 
most important one (0o, q= 1) , since we will neglect the formation of higher order "side bands" 
,w= wq± mwp, (m = 2,3 , ... ). When this is the case, and if 07« 1, we can write [Rydbeck, 
1954], 

(1.19) 

According to (1.17) Ij ~ J.i. q I does not differ much from I ~ ';OO ,q I· 

1 See Whittaker & Watson: Modern Analysis, p. 4IG, 
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When 81 = 0, i.e., for an unpumped medium , we have 

(1.20) 

Since >/;Q must reduce to exp {j(wqt- kq; ) } in this case (no waves are assum ed .to come' from 
z=+ CD), we must according to (1.13) use the upper sign in (l.20). For the moderately 
pumped medium we therefore write 

and obtain _ _ n=+'" 
>/;q= ei(wqt-kqTJ +ibqU{3q ~ aq, nei2nu . 

n=-ro 

If we introduce (1.21) in (1.17), we obtain 

sin G bq) = sin aq { -Vt::..(0) cos aq-.y' l-t::..(O) sin2 aq } , 

where 

With the notation 
t::..(0) = 1 +2~, 

where ~2< < 1, we obtain the following approximate "bridging" solution of (l.23) , 

where it is to be noted that, by (1.19), 

32 _ 32 28 82 0 2 82 
71"2 ~- 71"2 90 1= 1. 181~ l' 

The instability zones thus are determined by the relations 

(1.21) 

(1.22) 

(1.23) 

(1.23a) 

(1.24) 

(1.25) 

(1.26) 

Wben8o. q= 1, bq=±jt, (e«l)· 
in amplitudes as 

In the center of the instability regions the waves thus vary 

( 'Y --} or, if 1-n;= w;/w;, like exp l ± '2 (wpt-kp7') • It is interesting to note that this growth or 

decay is independent of W q (and kq ) . As "viewed" by the traveling pump wave, the amplitudes 
of all other waves in the system do not appeal' to change. It depends upon the boundary 
condition whether one gets growing or evanescent waves (with time) , or both. In our particular 
case, where no waves are assumed to come from Z = + CD, the unstable waves grow with time and 
decay with kpr. In directions transverse to'Tcp, the amplitudes change with t ime only. 

By (1.18) the amplitude coefficient relations can be gi\'en the following practical forms 

(n+ b q/2)(~+n+bq/2)aq,n=t (aq,n- l+ aQ,n+l) (n= ... , -2, - 1, 0, + 1, + 2, ... ). (1.27) 
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If we neglect the ao, ± 2 terms, ao, +1, and ao, -1 become 

01 aG.o 
a", +1~4 (~+ 1 + b,,/2) ( 1 + b o/2) (1.2S) 

01 aQ, o 
aQ, - 1 ~-4 (,100,Q- 1 + b,,/2) (1-6,,/2) 

(1.29) 

If we make use of (1.25) these relations can be given the following final form s 

~!!..! aq. o 
a". +, = 2 {-J00. ,,+ 1 +~ (,ro;;+ 1)2- (- OJ 2)2} 

(1.2Sa ) 

01 aQ .o 
aq. -I~-2 { ,ro;;- 1 +~ (~+ lF-eu4 } ' 

(1.29a) 

from which it appears t hat laQ. +,1 and lao. -II are equal to aQ.o at the boundaries of the instabili ty 
zones. At .the center or these zones a", +,= ± jaq. o, where the upper sign correspo nds to growin g 
waves (with t ime), and aQ. - l= ± ja".o, 

From (LIS) i t follows that higher order coefficients experience resonances (and tbe assoc i­

ated mixed frequency field instabilities), when -JB;;= ± 2, ± 3, etc. 
N ext let us introduce the followin g notations, viz, 

q= o: WO--7W" 1 
q=+ l: W+I--7WS+ Wp ~ if 01--70 , 

q== - 1: W_I--7Ws- w" J 
The corresponding f [unctions become: 

(1.30) 

,f . - e+i{(w+l+b+lwp/2)t-(k+t+b+;kp/2)r l {3 { ~ + ~ e+i(w1,t - kpT) +~ e-j(wj,l - k /,T) + } (1.32) 1"'+1- +1 ~+l.o ~+ 1. + 1 ~+ l . - I . , . , 

f - I = e+j{ (w- t+b-twp/2)t- (k- t+ b-tkp/2);:l{3 _ 1 {a_I. o+a_l. + le+j(wpt-~,;) +a_l, _ Ie-j(wpt - ri'> +. , , }. (1.33) 

Similar expressions can be written down for q= + 2 (w+2--7ws+ 2w p; 01--70), q= - 2(W_2 ws- 2wp ; 
81--70), etc, The total field is 

f tot = ~fq (q = , . ,,-2,-1, 0, + 1, + 2, ' . ,), (1. 34) 
q 

The frequencies W Q and the amplitude coeffici ents (3" are determined by the boundary 
conditions, and so are ko. x, Thus, if the incident signal wave has an angular frequency w" 

and an angle of incidence 'PI . ., one obtains 

wo + bowp/2= W s, (1.35) 

ko. x + bok p. x/2 = ks. x= ~: sin 'PI. s = ko. s sin 'PI. S) (1.36) 

relations t hat can be satisfied only when 1m (bo) = 0, i.e. , outside the instability zones. 
Thus, according to (1.31) , there are waves of frequ encies w., ws±wp, ws± 2wv, etc., presen t 

in the system, Therefore (1.33) and (1.34) yield 

(1.37) 
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(1.38) 

which can only be satisfied when Im (b ±l) = 0. 
In the following we will neglect the instability zones, which will be discussed in more detail 

in sec. 1.3 in connection with a study of the self oscillation properties of the pumped medium. 
If we neglect the instability zones, we also neglect bq, which is very small outside the same 

(if ~2< < 1). Relations (1.35) et seq. now reduce to 

(1.39) 

These relations yield the reflection laws for the sum and difference frequency waves 

. 1 (. .) SIn 'PI. ±l = -±-- WS Sll1 'PI. s ± Wv sIn 'Pr. v . 
Ws Wv 

(1.40) 

If we include also the higher order waves this relation assumes the general form [Rydbeck 1962] 

sin 'PI. n ; (Ws sin'PI.s±nwv sin 'PI. v) (n= ... , - 2, -1,0, + 1, + 2, ... ) . 
Ws nwp 

(l.40a) 

If 'PI.v= 'PI . ., we notice that 'PI.n = 'PI. s. Furthermore, if 'Pr.v=O, and wv= 2w s (degenerate 
parametric pumping) we obtain the peculiar result 

(1.40b) 

Thus, we obtain a reflected wave, of effective frequency w., in the signal wave incidence direction. 
In order to demonstrate the general nature of (1.40a) we have in figure 2 sketched the first 

order wave spectrum for 'PI.V= O, and wv< w s• 

If we make use of (1.11), and (1.15) relations (1.28), and (1.29) can be written as follows, 
if bq is neglected , 

(1.41) 

which shows that the resonance ( Iaq. ±d ---i> (X») also depends upon the angle, 'Pu. v- 'PrI.s , between 
the wave normals of the pump and signal waves. As a matter of fact, one readily verifies 
from (1.41) that, independently of the form of np (i.e., of the dispersion law assumed for the 
pump wave), a q• ±l can be written in the following practical fashion 

INCIDENT PRIMARY 
SIGNAL WAVE, Ws 

~ MEDIU M IT 

/, ,/ 
#.'// .... ' 

~------- .... 

(l.42) 

F I GURE 2. Demonstmting first order wave spectrum 
obtained from the pumped, i onized medium. 
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which demonstrates that the system resonances are of (parametric) traveling wave type. 
Moreover, it is interesting to notice that the higher order coefficients (according to (1.18» 
similarly can be wI'itten 

and 

if O'q.n+! is neglected with respect to a q• n- I, and {Xq. -,,-I with respect to O'q. -n+!o 

According to (1.42) the first order resonances appear when 

and 

(1.43) 

(1.44) 

(1.45) 

As will shortly be shown, it depends upon the boundary conditions which ones of these reso­
nances that are physically possible. 

If we next introduce the boundary reflection and transmission coefficients of the unperturbed 
signal wave, viz, 

R leo. s. z-ks. z. T _ 2ko. s. z 
s. O le + k ' s' O- k + k' 

o, S,Z S, z O. S,' s, z 

(1.46) 

where ko. s= wslco, and neglect a-terms proportional to ei (which is not permissible in or 
near the instability regions), the boundary conditions (Ev, and Hx continuous for each fre­
quency component) by (1.5) yield the following first order fields , if 0'0. 0 is put equal to one. 

MEDIUM I (z::;O) 

E - EO [ eJ(Wsl-kO S xX-ko s zZ)+ R e+J(wsl-ko s xX+kO s zz) y- y . • . . s.O . . . . 

+T R ~ W+ I e+J(W+Il-ko + 1 xX+kO +1 zz) s.O ' 0,+1~0.+ 1 ••• • 
W s 

(1.47) 

where E~ is the amplitude of the unperturbed signal wave, and ko. s. x = le s. x, ko. ± I. x= k±l. x, which 
are related to each other by (1.39). The sum and difference frequency "reflection" coefficients 
become 

R k+l. z- ks, z- kp . z (k k ) 
o. +! = k + k O. + 1. z= O. + 1 cos CPu. + 1, etc. 

O. + I.z + 1,Z 
(1.48) 

R k _l. z- k s. z+ k 1). Z (k k . ) 
0, - 1= k + k O,-1.z= 0. - 1 cos CPU.-I, etc. 

O.-1.z -1.z 
(1.49) 

MEDIUM II (z?,: 0) 

(1.50) 
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where the sum and difference frequency "transmission" coefficients ar e 

TO. - 1 
ko. - 1. z+ ks. z- k p . z 

ko. - I . z+k- l • z 

(1.51 ) 

(1 .52) 

It is interesting to notice that, for k p= O (nontraveling pump wave) these r eflection and tr ans­
mission coefficients, R o. ± I, To. ±I, r educe to the r egular ones for a frequency shifting network:. 

According to (1.42) 

(ao.o= l ) (1.53) 

'Y w! 1 1 
R o.-1a o.- I= '? ----.x k + k k k k ' 

.;..J Co D, - l ,z - l .z - 1,z+ s, z - p,Z 
(ao.o = l ) (1.54) 

since ao. ± I by (1.39) can be written 

'Y w; 1 
ao. ± I =-2-2"' k2 (k ± k )2' 

Co ± 1, z- S, z p , z 
(ao. o= l ). (1. 55) 

R elation (1.55) is quite gener al in nature. As will be shown in section 3, for example, similar 
t r aveling wave r esonance coefficients are obtained also for the much more complicated m agneto­
ionic medium. 

According to (1.53), and (1.54) only two par ametric resonances are left in the sys tem, viz, 

(1)56) 

The other two resonances cancel out due to the boundary reflection effec ts. According to (1. 50) 
there are two sum and two differ ence frequency waves generated in medium II. The t erms 
exp { -j (k s. z± k1J• z) } r epresent associated waves or "side bands" of the signal wave caused 
by pump modulat ion of the sam e. These waves do not in t hemselves satisfy the wave equation . 
The r emaining waves, represented by the terms To. ± I exp { - j k±l.zz } can be consider ed as 
natural waves (bq assumed to be zero) and are, t o first order , independen t solut ions of M axwell 's 
equations. Since the energy balance at the boundary (z = O) of these waves, and of t he sum 
and difference frequency waves in medium I , requires that t he sign of k ± I., be equal to t he sign 
of - (ks.z±k p.,), the resonance (1.56) is possible, if only the condition Ik±l.zl = Iks.z±k p.zl 
can be satisfied (a situation more easily attainable in the m agneto-ionic medium). 

If the pump and signal waves tr avel in posit ive z-direction , i .e., if k p • z and k s. z are positive 
(which we have assum ed from the beginning), the natural sum frequency wave in medium II 
always travels in negative z-direction , i.e., towards the boundary. As far as the difference 
frequency wave is concern ed, we have to distinquish between the two cases wp~ws . If 
wp> w" the natural difference frequency wave travels in positive z-direction if k p. z<k". z, 
and in negative direction if k p • ,>ks. z. vVhen W p < ws, the situation is reversed. 

At degenerate par ametric r esonance Ik-11 = Iksl . This reson ance therefore is possible only 
if 21k sl '2 kp , i .e., if n (w s) '2 n p . If kp is determined by the properties ofthe isotropic ionized layer 
only (for an unguided electrom agnetic pump wave), this resonance is not possible for traveling 
waves. 

If we assume that k p= O (for example if wp2= w/), the degenera te parametric resonance 
r equires that 
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which y ields one exponentially decreasing wave (\ll it h z) in medium II, a nd one exponen tially 
in creasing; the energy flow associated with t his pail' is negative (at t he frequen cy ws= w,,/2). 
This gener ates the "amplified " signal returning at the peculi ar a ngle - CPr. s f rom t he boundary. 
The pum ped ionized medium now acts as an "amplifying" wall , or resonan t reflection a mplifter , 
t he necessary power being supplied by the pump wave. Obviously one could consider par a­
metric plasm a amplifiers operatin g on this pr inciple. 

1.2. Electron Velocity Oscillations Also Considered 

This case leads to a m ore involved wave equation th an (1.4), since the equation of motion 
of the electrons now becomes 

(1.57) 

If this r elation is in troduced into Maxwell 's equations one obtains the following wave equation 
[Ry dbeck , 1963], 

where 

(l.58a) 

Since this equation unfortu nately can not be r educed to a Mathieu equ atio n when Vp ~O, we 
solve it to first order by series expansion of the following type (qui te an alogous to the :Mat hieu 
series wh en bq= O), viz, 

./, = e+J(w qt-'kii {3 {a +a e+J2U+a _ e- J2U+ } 'I" Ii q q,O q, + 1 q, 1 ' •• (1,59) 

Kext, we pu t 
vp , z=v~, cos 'P{f! p cos 2u; v", x=v~ si n cpd~k cos 2u, (1.60) 

where 'PJ~)l' is the angle t hat the electron velocity of t he pump wave mak es wit h the z-axis. 
We have used 2u as the general p ump wave propagation factor, although t his is not correct 
if both linear and nonlinear pum p wave quantities ar e considered . The t:"N and the longi­
tudinal velocity oscillations (lh), which constitu te the nonlinear componen ts of t he high power 
pump wave, h ave a u-value differen t from that of t he tr ansverse, and linear pump wave 
velocity. H owever , for t he sake of simplici ty, and since it is natural to tr eat the effects upon 
t he sign al wave of the lat ter velocity separ ately, we use the same u throughout and later 
adjust the velocity angle, 'PJi~)p and u to the relevant case under study, 

If we inser t (1.59) and (1.60) in (1.58), and retain only the linear 'Y and Vp terms, we obtain 

after som e r earrangement of terms, rem embering that p~ [exp { j(wQt -k~;) } ] 
= (w; /c~) exp {j(wqt - kqr }, 

_ { T W SW 'V ( v) ) l (' f _) 
aO,± l-aO, ± l 1± ;y W~ l cos 'Pn , l,-CPn.S ) , I ao,o- 1 (1.61) 

wher e 
vp , 

(Vphase) w = Ws 
(1,62) 

which is a measure of the velocity modulation . It is impor tant to notice from (1.61) that the 
system r esonances, as one might expect, r emain unch anged, even if the effects of the pump 
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wave velocities are considered. Furthermore one notices, as is physically evident, that the 
electron velocities generated by the pump wave do not affect the propagation of the signal 
when I cpi~).P -CPII. sl= 7r/2 , i.e., if the pump velocities are transverse to the signal wave normal. 

(1) Considering only the nonlinear plasma wave component of the pump wave. The 
pump wave in medium I now has the angular frequency wp /2. One finds [Rydbeck, 1961], that 

(1.63 ) 

where n p/2= n(w p!2) , and Vp/2 is the amplitide of the linear, i.e., the transverse pump wave 
velocity (of angular frequency wp/2). 

From these relations it is evident that it is not permissible to neglect the nonlinear, 
longitudinal electron velocity generated by the pump wave. The effects of t:"N, and Vp are of 
the same magnitude, even though the system resonance is not displaced. 

(2) Considering the transverse, linear pump wave velocity only. The pump wave in 
medium I now has the angular frequency Wp. By (1.61) we obtain 

(1. 64) 

(ao.o= l) 

since cpNp = CPn.v( ± )7r/2, in this case. Here we note that, for transverse pumping, i.e., the 
pump and signal wave crossing each other perpendicularly, the interaction will be approxi­
mately at a maximum, and much more efficient than in case 1, where ao. ± 1 is proportional to 
(V p/CO)2. 

1.3. Notes Concerning the Instabilities of the Pumped, Ionize d Medium 

The instability regions, and their effects upon the wave propagation have been neglected 
in 0UI' previous investigations. Let us therefore, for the sake of completeness, prove that 
self oscillations are impossible in the infinitely extended (from Z= O to + co), ionized medium. 

We now have to evaluate bq (1.25) for the unstable waves . It can be verified, for example 
from (l.43) and (1.44), that 

.JOo. q±n= ;n {l k q±nI2- lkq ± nkp I2}, 

which yields the important relations 

.JOo. o± n = .JOo. ±n =fn. 

(1.65) 

(1.65a) 

Let us, as a typical example, study the unstable sum frequency wave. It appears from (l.28a), 

and (l.29a) that we get unstable Wo, and wo+ wp waves, if .JOo.o+ I -70, and if .JOO .+1-1 -70. 
We thus infer from (1.65) that these resonances are identical. Since bo, and b+1 by (1.25) 
now assume the forms, 

we notice that within the instability range in question 

which, for waves growing with time, at resonance yields 

(.JOo.o = -l; .,/00• +1 =+ 1) 
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(1.67a) 



It is now necessary to retain the a +l, - l term in (1.32). The growing wave, of complex 
frequency wo+ bowp/2, by our previous relations, assuming b+1 = bo, now can be written 

(1.68) 

:and the corresponding sum frequency wave 

(1.69) 

where it has to be noted that we, as before, must require that 

(1. 70) 

Since we are investigating the conditions for possible self oscillations, eventual waves present 
in medium I must leaye the interface. 1'hey therefore assume the forms 

where 

If 

lCo.o,x = k o,o sin CPI,O, and k o, + 1. x= lco,+1 sin CPr,+!, 

w e require that 

I. e., CPI ,O=CPI,+l' M oreover , 

and, by (1.70), 

1.e. , 

Wo . k 
- SIn CPI 0= 0 x, 
C ' , 

o. 

Wo + Wp . k + k --- SIn CPr 0= 0 x p x, 
Co ' " 

Wp le7). X - = - , 
Wo Ico. x 

which puts an additional restriction on Wp (note: Wo unknown), 

(1. 71 ) 

(1. 72) 

(1.73) 

(1.74) 

The boundary conditions (Ey , and Hx continuous for each frequency component) next 
yield the following two relations , 

ko.o.z+leo, z+ bolev. z/2 , 
ko,o, z+ le+t, ,-kv. ,+ bole1), zl2 

a+J, 0= _ leo. +J, z+ leo. z+ leP . z+ bolep. z/2 
ao, +t ko, +1. z+ le+1, z+ bolep, z/2 

By (1.28a), and (1.29a) we next obtain 

a +l. -l, 
ao,O 

a + l. o= +f!.! 1 ,a+!.o, 
an,O 2 {~+ 1+-J (,1oo,o+ I)2-(-OJ/2) 2} ao,+! 
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(1.75) 

(1. 76) 

(1. 77) 

(1. 78) 



-------- --~ 

where it is to be noted that by (1.65), (1.65a), and (1.70) 

(1. 79, 

Since growing, self oscillations can only be sustained, if (1.77) an d (1.78) yield iden tical 
ampli tude coefficien t ratios (Ci+ l, a/Cio, 0)' i t is necessary t hat 

1. (1.80) 

and that 

2. Ci+l. - l Ci+ l.O --=--, 
Cio,O Cio. +1 

which is possible if 

k - k + k t 11at Yl·elds Ci +l. - 1= I = Ci+J.O, + 1,'- 0,' P,ll 
Cio,o CiO. + 1 

(l.81) 

of if 
(1.82) 

Condition (1.81) , which is one of the resonance condi tions (1.80) , yields 1/;°= 0, 1/; 'H= O, and 
therefore also clo = O= cl+l . 

Condition (1.82), which yields nonvanishing fields for the resonfl,nce condi tion k +J, z= 
- (lco. ,+k p , z) only, by (1.73) implies that 

which is impossible for a pump wave running in posit ive z-direction (k l). ,>0), as h as been as­
sumed originally (pump source outside the medium ). 

We have thus shown that growing self oscilla tions are not possible for the infini tely ex­
tended (from 2= 0, to + 00) ionized medium, which in this respect is analogous to the parametric 
traveling wa\Te amplifier. This is not necessarily so for a bounded m edium . A discussion of 
this in teresting case is ou tside the scope of the presen t communication, however. And so is 
the case of wave reflection wi thin the instability regions (which are \Tery narrow for weak 
p umping.) 

2. Generation of Natural Sum and Difference Frequency WavEs in a Slowly 
Inhomogeneous Medium 

We have seen in the preceding paragraph how the boundary condi tions at Z= Zo determine 
the possible parametric traveling wave resonances and the ampli tudes of the sum and differ­
ence frequency waves. Naturally one would like to know wh at happens in an inh omogeneous 
medium , if resonances occur at some specified level Z= zo o 

Let us therefore consider an inhomogeneous medium, bu t a slowly varyin g one, so that 
par tial reflections of the signal and pump waves can be neglected. F ur therm ore w e limit our­
selves, for the sak e of simplicity, to an analysis of the difference frequency waye. Since the 
medium is slowly varying in (the z-direction) the signal wave ass umes th e form exp {j (w st 
- lc s,xx- J ' k s,zrlz)}, and similarly the pump wave can be written cos (wl' t - k p,xx- J ' lc p" dz) . 
T he natural, uncoupled difference frequency waves fLre written 

Since lc _l ,x= lc s,x - k p,x, (1.4) now yields the following difference frequency field, 

1/;(- I)=Ci { rr (2) r Zrr (l) ~dz_n( l) r 'rr (2)~dz ~ , 
J'I J '3 .) 
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(2.2) 



- --- -------

where 

.and 

For a slowly varying medium O'.~C)'"1-1-, and therefore by (1 .. 5) 
~JiC- l . z 

(2.4) 

One notices that the two coupling in tegrals may "gener~l,te" natural :difference frequency 
waves at or neal' their respectilTe tl'a ITeling wave resonance levels (compare (1.55)) 

(2.6) 
:and 

(2.7 ) 

If , for example, Ie p. z< 1e s. z, and w p< W S) these resonances actually yield forward , natuml differ­
·ence frequency waves, and backward (i.e. , " reflected" from the resonance r egion) if Ie P. z> le .u . 

If we assume that (2.6) holds at some specified lel'el Z=Zo, we can write as follows for the 
slowly varying medium 

(2.8) 

where 

(2.9) 

Since we only need to know the electric field of the emerging natural , difference fl'eq uency 
wal'e (i.e., the wave radiated from the interaction region), we can limit ourselves to such 
z-regions, or Iz-zol distances , for which 1;\'2> > 1. If we make use of the asymptotic form of 
the Fresnel in tegral , and assume that the condition for forward radiation is satisfied, relation 
(2.5) yields the following difference freq uency fields , viz , 
::<zo, W 2» 0 

(0'.0 .0= 1) (2.10) 

E~- J)= E~ 

1 'Y w~ r ;- +i CL: L,. zdzt ,,/4) 1 
-21e_1• z 2cf 'l2[j{ e I 

,) 

(0'.0. 0= 1). (2.11 ) 

Relation (2.10) is analogo us to the forced difference frequency part of (1.50) . This waITe, 
(2.10), which alone does not sa tisfy the wave equation, is associated with the signal wave and 
can be considered as a "modulation" or sideband of the same. Its resonance is independen t of 
the sign of le s. ,- Ie P. Z) as it sho uld be. 
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It appears from (2.11) that ~ 'fie is a measure of the difference frequency radiation efficiency 

of the interaction region. If fj-{ is small, i .e., if the medium parameters vary very slowly, the 
radiation is large, provided the region is so extended that W2 is large at its outer edges. 

If we next consider the second resonance (2.7), which takes place at the same frequencies 
as the former one, (2.6), one finds that (2. 5) yields same result as (2.10) and (2. 11). The dif­
ference between the two resonances is purely formal. 

If le v. z~ le ,., and wv~w., we obtain a " reflected" natural difference frequency wave, i.e., 
when the associated difference frequency wave (nonlinear driving force) travels in negative 
z-direction. When the opposite conditions hold, we get a forward difference frequency wave. 
Since the natural sum frequency wave radiates in the running direction of the associated sum 
frequency wave, a "reflected" sum frequency wave can be obtained only if t he pump wave runs 
in negative direction and with - lev z> le s.,. This is in contrast to the case of the disboundary, 
which always yields also "reflected" sum and difference frequency waves. 

The amplitude of the difference frequency reflection coefficient now can be written 

which corresponds to 

iT " oRo, _ lao,-1 ww~l i of (1.47). 

The frequency dependent phase of the frequency shifted "echo" is 

(le" ,-lev, z- le- 1. z)dz 
~ 2(k" ,-lcv, ,) 

(2.12) 

(2.13) 

Since Zo depends upon w, (as well as wp ), the echo delay, r , counted at the level Za for a pulsed 
signal wave (<Pr, , and <Pr. p assumed to be zero) becomes 

_ 'Oq,o. - I { + (2le -1. z) ") ( 1 + 1 ) r---~ Zo-Za -- r - -- , 
'Ow , f}{ 'o .J Vg" Vg , -I 

(2.14) 

where Vg, s and Vg, - I are the group velocities of the signal wave and the natural difference fre­
quency wave. For a forward wave emerging at Z=Zb(>ZO), we similarly obtain 

(2.14a) 

We thus get a change in effective reflection height of (k p , ,If}{ ) ' 0 which may be a large 
quantity. It is a measure of the "frequency shift reflection thickness" of the interaction 
region. As the disp ersion is very large, it is not sufficient to make use of the first phase­
frequency derivative only to determine the time of arrival of the frequency shifted wave. 
Such a discussion lies outside the scope of the present communication. 

Since 

and 

one can sketch the frequency shifted wave normal paths about as shown in figure 3. 
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FIG U RE 3. Demonstrating wave nonnal path of the 
fre quency shifted downcoming wave. 

t z INTERACTION REGION 

+n/177T1 TT77 TlTI TTTI TT717771777!7Tl 

--- ----z~Zo----

3. Electromagnetic Wave Reflection From the Oscillating Magneto-Ionic 
Medium 

Let us assume that the static rnagnetic field lies in the x-z plane, and that its electronic 
angular gyrofl'equency is WH, with com ponen ts WL = WH cos 0, WT = WH sin 0, along the z and x 
axes, respectively. 

If we introduce the following opera,tors, viz, 

(3.1) 

and limit ourselves to th e case 'Pr,s = O= 'Pl, p (i .e., vertical incidence) we obtain the following 
no nlinear wave equations for the (second order) electron velocities , VJ2) ,vF) , v?) , [from the 
nonlin ear magneto-ionic theory, R ydbeck , ] 962]. 

D (2)_ P2( D2.1, + P 2 OV;U) p 2 p 2.1, - II v ll - p W£L e'Yx ern ~ - WT em e'Y z-!/, (3.2) 

D (2) _ p 2 ( P 2S (2) .I, + P 2 S (2) OV;Y) _ p 2 P2S (2) .I, - II 
VX - p WL e 1 "Yx em 2 at Wr em e 2 'Y z- x, (3.3) 

D OV?) _ (P2 0 2V;X+P2 03V;y) + (P' 02 + 2 P4) .1, _ -=st- W1' WL e ot 2 em ot3 em ~ WL e 'l'z-II" (3.4) 

a 

where II y , IT x , IIz are nonlinear driving terms to be specified later. It is wor th noting that a 
anni hilates longitudin al magneto-ionic m odes. 
Furthermore 

(3.5) 

By (3.5) relation (3.4) can be given the alternate form 

(3.6) 

T he second order polarizations, m2) and SF), are related to each other as follows 

(3.7) 

R elation (3.3) can now be transformed to 

(3.8) 
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Thus SF) = Si2) , when D= O, i.e ., when one has system (traveling wave) resonance. When 
this is the case v?) = Si2) V[2 ) • 

D can b e written 

1~2 D-P2 {[1~2 ( w~./2)+ 2J ~_P2 1'(W~/2)2 02 _ 2} 
P - P e 1 + P; W e at e " P; ot2 WL 

\ 
-----y_________________-J 

Do 

XP; {[p; (1+ W;~2)+ W;J ~t +P; ~(w;~~y ~t22- wi } ' (3.9) 

~----------------~I 
Dx 

Do annihilates the natural ordinary magneto-ionic mode and the plasma oscillation (for which 
P;= O), whereas Dx annihilates the natural extraordinary mode only. D can be used to study 
the transient behavior of the magneto-ionic medium. 

By (3.9) one can also write 

(3. 10) 

where 

(3. 11) 

and no and nx denote ordinary and extraordinary refractive indices respectively. One notices 
that b= O at the fourth reflection level (r eferred to the angular frequency) at which Inxl2= co. 

In the neighborhood of this level D is conveniently written 

D p 4 p> X 2 (1 1) (1 1) 
=- e P dW e I -n~- I -Tj~ I -n;- I -n~' (3. 12) 

where nd is the efI'ecti ve refractive index of the wave, of angular frequency Wd, upon which D 
{)perates. 

N ext, let us in troduce the dri ving force polarization ratio 

Relation (3.2) now yields 

S _ 'Q _ . w[, 1 -71~ 
d- J d- J - I - X _n2 

W a d d 

If the pum p (high power) wu,ve hu,s the Vy velocity 

(3. 13) 

(3. 14) 

(3 .15) 

where, quite arbitrarily, kp could refer to an ordinary or extraordinary pump wave, the other 
pump wave velocities b eco me 

with 

Q _ y I -n; 
P - L,p I - X _n2 

1J p 
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The differential space charge density becomes 

The signal wave, of angular frequency W s, is written 

71 s Y T. s Vs j( t - k z) Ps= Po - -- -;- e Ws 8 , 
Co 1- X s J 

where 
T 1-n; 

Qs= J L. s I - X _n2 
s 8 

1/;x, 1/;y, 1/;z can be written [Rydbeck , 1962] 

.1. _ p 2p 2 oUrx • • 1. p 2p 2 0H '!I ' 0 2 P 20WZ 
'l'x - e - x-We -2i/:' 'l' y= e v- We Tt-' 1/;z= ott z- We~' 

(3.18) 

(3.19) 

(3.20) 

(3 .21 ) 

If we limit oUl'selves to a s tudy of the smn ftnd difl'erence frequency Lerms only, we find 
that 

p = p =_ o Vs. x (1 _ X s ) _ o Vp,x (1- X II ) , 
x x,d V p• z 02 - I - n; Vs. z 02 1 -n~ (3 .22) 

p = p = -v OVS• 11 (1 - X s )-1' OVP• 11 (1- X II ) , 
Y Vsa P. z 02 1- n; s, z 02 1 -11~) 

(3.23) 

(3.24) 

and 

(3.25) 

vVe evaluate next Px, Py, P ZI and W from these r elations and obtftin for the sum and 
dJfl'el'ence terms (index + and - , respectively) 

+ v w± ( Q + Q)] j(w /-k Z) 2 Ll. ± - a s11s p a p111) s e ± ± , 
Co 

(3.26) 

.I,± - _ VsVp 2 [ (1- 2) { k (1-~) ± k (1--~) ") + X W± ( ± )] jew /-k Z) 
'l' y - 2 W± 11± as p 1-11; a p s 1 -11~ J ± Co a s11s apnp e ± ±, 

(3.27) 

.I,±- .VsVp 2 [± {k + "T W± ( + )}_( LYs + Xp ) ( Q Q) ] j(w /-k z) 
'l'z - J 2 W± a sap ± Ll. ± Co 11s 11p I -n; I -n; 1 =f s 11 e ± ±, (3.28) 

where 
(3.29) 

2 Note: In what follows w . denotes W~ I. etc. 
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We now write (3.14) as follows : 

IIi ~ wW - X±) (1-X ± -n'.J { ~± • • + H i+ Y, T . ± (! -n ~).~ } . 

. VsVp t ± 
-J2:' 

where 

and by (3.26), (3.27), and (3.28) obtain 

~±= w~ [(1-n~ ) { ask p (1-1~~;) (l ± Q±Qp) 

± apks (1-1~~;) (l ± Q±Qs)+ Y T ,± [ ± asa p{ k±+X ± : : (ns+ n p) } 

-CXs~; + ;p~) (1 =t= QsQp) ] } + X ± : : {asn s(l ± Q±Qp) 

(3.30) 

(3.:31) 

± apn p(1 + Q±Q/!) } ] / cw±t- k±Z) . (3.32) 

First we notice that ~±= O, if WT = O. This is due to the fact that the differential space 
charges and the longitudinal velocities (which form longitudinal plasma wave pairs coupled to 
the transverse wave by WT) are zero in this case. Had we considered second order terms in the 
pump wave field (which could easily have been done) this would not have been so. The trans­
verse magnetic field thus is a very important factor in the nonlinear interaction theory. 

When X s-71, or Xp-7 1, we have longitudinal driving force plasma resonance and 1 ~±I-7 00 

(in the collisionless case) . In this connection it is worth noting that 

X Y" Y" } -- -7 - - T- +l_ --"!: (I-X) , 
1 -n~ I - X y~ . 

if X -71 (Y~»12(1 -X)YL I ). 
X Yi 

-1 - 2 -71+Y2 (I-X) , 
- no 7' 

If these driving force resonances occur in the traveling wave resonance region, the generation 
of sum and difference frequency wave may be greatly enhanced. Even if there is no resonance 
of the latter kind, sudden driving force resonances may cause appreciable sum and difference 
frequency radiation . 

Another level of considerable interest is the fourth reflection one, where In sl or Inp l-7 oo. 
At this level, determined by b= O (which indicates that it is a gyroplasma oscillation resonance 
coupling), all electron velocities (and the differential space charge density) become very large. 
This is in contrast to the plasma resonance level, where only the longitudinal velocity becomes 
large (and P./p , if n ./p= n x). 

In ionospheric applications this important resonance level is difficult to reach, except from 
a topside sounder. Nloreover, traveling wave resonances , which are necessary, since D other­
wise would grow to large values [see (3.10)], might be critical to obtain at this level in practice 
(b would have to be zero both for w± and for W s or W 1J . 

Before we continue the discussion, let us express the driving force velocities in the corre­
sponding Ev fields . We have 

1- n; e EO 1 1-n; e EO 
Vs = -----v-- -- " y, anc Vp = -----v-- -- P. y , 

L 1. s mws L 1. p mwp 
(3.33) 
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and find that 

(3.34) 

(3.35) 

We now obtain the fin ftl formulae, 

(3.36) 

and 

(3.37) 

where 

In order to s tudy the sLftLio nary solutions, we prese nt D (3. ]0) in a n al ternate form , vi;!' , 

D ±=X 2 ( I - X" )(n~-n~,±)(n~ -n~.±), 
. ± L± ( l -n2 )(1- 11 2 ) o, ± x, ± 

(3.38) 

where 
(3 .39) 

Since we want to study what happens at or neaT' the traveling wave resonances (D ±= O), 
especittlly to obtain the fil1lplitudes of t he natund sum and difference frequency waves, we 
neglect the (in this ptLl'ticuhu case) ins ig nificant las t terms in (3 .36) fL nd (3 .37). By (3.38) we 
can wri te 

(:3 .40) 

(3.40ft) 

N ext, let us, in fLnalogy with paragraph 1, determine the natural waves, that leave, or 
approach, the boundary 2= 0 between the ionized m edium (medium II) and vacuum (medium I ). 

We have the following sum and difference frequency waves to consider: 

M E DIUM II 

Ex= E -;+ TJ~~ lej( w±t-kO.±z) +Tt~ l ej(w±t-kx, ±z) l 
E = E ±+_ l_ T.(o) ej(w±t-ko ±z)+_I_ T. (x) ej(w±t-kx ±z) I' 

v V j Qo,± O, ± l ' jQx.± O, ± l ' ) 

(3.41 ) 

where jQo. ± and jQx. ± are sum and difference frequency polarization ratios of the natural 
sum and difference frequency waves. 

MEDIUM I 

(3.42) 
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If we break up the associated wave, E~, in two components, lX± and f3 ±, with the (natural) 
polarization ratios Qo, ± and Qx, ±, we obtain 

The boundary conditions now yield 

T CO) - 'Q I - n± . T CX) _ f3'Q I - n ± 
O,±l--lX±J o,± I-n ' O,±l - - ±J X,± I - n ' 

~ ± ~± 

(3.43) 

(3.44) 

(3.45) 

The "reflected" field, i.e" the wave leaving the boundary (z= O) in medium I, thus is com­
posed of two parts, with polarizations Qo, ± and Qx, ±, respectively. Since the energy flow in the 
z-direction is 

the energy balance at the boundary requires that 

Sign (no,±)= i w n ± w 'n 
>- -Sign _.' s p " po 

Sign(n )= 1 ws±wp 
x, ± .J 

(3.46) 

For sum frequency waves n o, ± and n x, ± are thus always negative (if we assume kp to be positive, 
i.e" a pump wave incident upon the boundary in medium I) . The natural sum frequency modes 
travel always toward the boundary in medium II. When W p < w s, the natural difference frequency 
modes travel towards the boundary, if kp< k s, and away from it, when k p>ks• When wp> 
W s the situation is reversed. 

and 

If we make use of the fact that 

Q± - 1 
Qx,± 

the "reflected," frequency shifted field in medium I can finally be written 

(3.47) 

(3.48) 

E =E~,y Eg,y e W p W s (1- n;)(1 - n;) j 1 l + no,± + 1 1+ nx,± } ~± jw±*o 
y 2 mw± w!w± I -n~ l Q~,±+ ln±+no,± Q;,±+1n±+no,± e , 

(3.49) 

(3.50) 

where it is to be remembered, that Qo, ± Qx. ± = - 1. 
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W e notice from (3 .49) and (3 .50) th a t only two r eson ances r em ain (compare the similar 
si tuation in section 1) , viz, 

or 
-(ws±wp)no, ±=wsns±wpnp, i 
- (ws±wp)nx, ±=wsns±wpnp j ' (3 .51) 

It is also importan t to note t hat these r eson ances by (3.46) correspond to Lhe co rrect signs 
for no, ± and n x, ±, and ar e thus physically possible, if Ino, ± I = I (wsn s± wpn 1)) J(w s± wp) I, or if Inx, ±I 
= I(wsn s± wpnp) J(ws± wp) I· 

The possibilities to obtain these r esonances are co nsiderable since n o. ±, n x, ±, n . and np 
m ay vary within wide limits in the m agneto-ionic medium. The degenerate case w+= 2w" 

which is of particular in ter est if one wish es to study t he possibilities of obtaining econd 
h armonic r adiation or second h armonic echoes (E~,y= E~,y= ttmplit Llde of higher power pr i­
mary wave, wp = w" etc.; ~+ ass umes a simpler form) has bee n investigated in detail by the 
author [R y dbeck , 1962]. 

The second degenerate case, w_= - W s (which leads to t he same reso nance conditions, al­
t hough C is different from ~+ of t he previo ll s case) is of par Licula l' in terest, if one wishes to study 
the possibili ties of degenerate parametric a mplification in the m agneto-ionic medium. 

Finally, let us r eturn to t he in ([uence of t he r esona nces of t he driving for ces, il si tua tion 
that is somewhat different when we discuss th e m ag nitude of E y , instead of V~2) . 

1, F our t h r e fl ect ion r eso nance. 
Assume that I npl~ oo . W e t hen find from (3.32) th at 

~± <x ( I -n~Jnll' 
I.e., 

IEy l (lUed I UIllI) <x ln~ { nl~~, ± +nl~~. ± } I, 
± o,± ± X, ± 

which demonstrates t hat t he influence of t he driving force reso na nce is extremely strong . This 
appears to b e t he most in teresting nonlinear r esonance in t he magneto-ionic medium . 

2. Plasma r esonance. 

a. n p= n X• 1)' One finds that 

IE I l -rz; { 1+ no.± l + rzx, ± } 
y (med ium I) <X I -n2 n +n + n +n . 

± ± 0. ± ± x, ± 

In contrast to what might be expected , t his driving force r esonance produces no enhanced 
effec ts , 

b . Np=no,p . One now finds that 

IE I I -n; 1 { 1+no, ± 1.+nx,± } 
y, (medlumII) <X I -n~ l - X p n±+no, ± +n±+nx.± ' 

i. e., the effect of the driving force resonance is very profound. A more detailed study of sum 
a nd difference frequency gener ation caused by t his r esonance will appear in the final section 5 
of t his communication . 

A fur ther a nalysis of th e tr aveling wave r esonances, (3.5 1), in teresting as i t may be, is 
outside th e scope and aim. of the presen t communication . That in teresting ph en omena, 
applicable to topside sounder ionogram interpretations, can be found is likely, 
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4 . Genera tion of Natural Sum and Difference Frequency Waves in a Slowly 
Inhomogeneous Magneto-Ionic Medium 

In order to analyze the resonance radiation of sum and difference frequency magneto-ionic 
modes, we make use of (3 .36), which by (3. 10) for our present purposes can be written 

For t he slowly inhomogeneous medium the solution to (4. 1) now can be written 

(4.1 a) 

If we assume that resonance takes place at some specified level Zo, where, for example 

and condi tions fLre such (see section 2) that a forward extraordinary magneto-ionic mode is 
generated, we obtain 

[For definition of f}{ see (2.9). ] 

( 4.2) 

e +j(J;okx • ±IlZh /4). I 7r J. 
(lc~ . ± - lc~ . ± )2kx. ± -Y2 f}{ 

(4.3) 

Althou gh the amplitude coefficients are much more complicated than in the isotropic 
case, dealt with in section 2, the radiation featlll'e is essentially the same. Furthermore it shou1d 
be pointed ou t, see (3.32), that the pump wave, for example, does not have to be of extr aor­
dinary kind in order to genemte fLl1 extraordinary natural mode. This is a typical feature of 
the nonlinear propagation theory. 

Tn conclusion a few words should be sfLicl about the my paths. Since we fLre defLling with 
an fLn isotl'opic medium t hese will devifLte from t lte phase paths . In order to make the dis­
cussion more general, we assume arbitrary incidence, and noting the direct similarity between 
the coupling integrals of (2.5) and (4.2), write the phase of the downcoming difference frequency 
wave as follows, 

(4.4) 

where Xl and X2 are the ray positions corresponding to Za , i .e., X2 for the downcoming difference 
frequency wave [note: 'Ps.O= ('P S)N. =O, etc.]. 
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U t he sig nal wave carries the inform ation, for example in p ulses, t he position or t he down­
coming difference frequency wave is determined by t he co nd itio n thn,t 

o<Po , - ' = 0 
o\Os,o ' 

(4.5) 

n,nd by 

(4.5a) 

if t he pum p wave cn,rries the inform ftt ion . The ray direction of the n,ssociltted wn,ve, 

thus h as the rrty direction of t he signrtl wave or t he p ump wave, if t he former or the l rttter 
carries the informrttion. T his is ttll other ch ar acteristic feature of the nonlinear propagation 
th eory. 

Since 

etc., n,nd 

we obtain 

O<PO. - I W ., 
- - -= - - cos \Os 0 

O\Os, 0 Co • 

. 1 (. .) 
S Ill \0 - 1,0=- w" sin \Os,o-WI, sIn \0". 0 , 

W_ 

[ ( Zo { lftn \Os+-~- (~cllJ s) +t<ln \0 + 1 (~ cln _ ) "'>. clz J z" cos \Os 1/,s de 'P, - 1 cos2 \0-1 n_ de <;- 1 ) 
~ ______________________ ~y J 

,.L 
(4.0) 

For n, very slowly vary ing m edium X2- X, thus n,pproxiJ1l rttcly beco mes [compar e (2 .14)J 

J (2lc_l . z) '\ 
X2 -Xl~ l zo- za+ ,J f}{ Zo j )L. 

(4.7) 

Due to the " heigh t dispersion " the ray path of the downcoming differ ence frequency wave is 

deformed, n,s if th e frequency shift reflection took place at t he level zo+(21~{ ')zo' insteftd of 

at Zo0 F or this chn,nge th e wave norm al paths in figure 3 h ave not been corrected . 
R eturning to our pr esen t case of m agneto-ionic ver t icrtl incidence (\O s. 0= 0= \0- 1, 0) ' we obtain 

( 4.7a,) 

The difference fr equency wave therefor e does not come down wher e the signal wave enters, if 

Since 

(1~S ~~s )m = =f Y 1"sYL, s (] -n~G )) ,IY~',s-4 ( :-Xs) 2Yi..' (4.8) 

133 

-_. , 



o would h ave to be equal to 00 or 900 for JL safely to be equal to zero. Since the nonlinear 
driving terms disappear if 0= 0 0 (unless we consider second order quantities in the high power 
pump field), we have to select 0= 90 0 , i.e., tr ansverse magneto-ionic propagation, in order to 
obtain reliable traveling wave resonance effects recorded at the same transmit ting and re­
ceiv in g site (for example in a topside sounder). 

5 . Sum and Difference Frequency Generation When the Nonlinear Driving 
Forces Have a Resonance 

For the sake of simplicity we limit ourselves to one r esonance only an d assume that the 
sign al wave experiences longitudin al plasma resonance at som e specified level Z= Zoo If H is 
the scale height of the electron density, we write accordingly 

(5.1) 

We now have to include (a m odest) collision frequency v s> and replace 

where 

If the signal wave is of ordinary type, n s= n s. 0 (see 2b of sec. 3), ~± near and at the resonance 
level can be written 

where ks~O . We have (naturally) neglected triple split coupling of th e signal wave an d like­
wise have assumed it to be of practically constant amplitude through the importan t part of 
the resonance region, a h elpful but somewhat crude approximation . 

Noticing that b± can be written 

(5.3) 

relation (4.1) yields 

( !f+k2 ) (([2 +F ) E ± '" >/;± j{w±t - f ;a (ks±kp)dzl 
dz2 O, ± dz2 X, ± y = l - X s- jos e , (5.4) 

where 

o 1 ? 

.1,±=_Eo Vp,y,± (1-n2)(1-n2)(1- n2 )(1 - n2 ) _ Wj, w,W± (l -X _ n2 ) 
'Y 8, Y 2 11 , 0 , ± x, ± X ± c~ ± ± 

and 
(5 .6) 

l.e. , the a-c electron velocity that the pump wave would generate, in an isotropic medium. 
Since the evaluation of ordinary and extr aordinary natural sum and difference frequency 

waves follows the same procedure, we take the ordinary sum and difference frequency waves 
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as characteris tic examples. By (4 .1) we obtain approximately 

(5 .7) 

~----------~yr-----------J 

FI d + e - J f~~ (kS+ kp+ kO ,+) dZ 

where it has to be remembered that leo. + must be positive for a downcoming wave. The coupling 
integral, d + , now becomes (since les~ O) 

where 

One finds that 

d = d* (y U ) = --.- dy I y e +jy 

+ , + - '" y - JU+ ' 

u= oJI(1c1J + leo. +) and y= (zo- z) (le ,,+leo, +) . 

r J27rC- u+, U +>0 

d*(+ co, u+)= i j7r, u+=O 

Lo, u+<O. 

(5. 8) 

(5.9) 

(5 .10) 

Assuming lev to be positive (pump Wfw e running in pos itive z-direction), we thus find that a 
sum frequency "echo" is obtained only if the electron density gradient is posi t ive. This is in 
accordance wit h the physical situat ion , since the signal wave runs in direction of increasing X s' 

In order to demonstrate how the "reflected" difference frequency wave is being built up 
in the driving force resonance region , we have in fi.gure 4 presented the ampli tude of t he coupling 
integral as a function of y. One notes the (infi ni te) plas ma resonance for 0' = 0, and t he moder­
ate field per tmbation in t he resona nce region , when H < O. 

If we assum e t hat the pump frequency is larger than 2w S) so that a difference frequency wave 
in principle co uld propagate away from the resonance region, the coupling integral becomes 

where 

L = osH (le1J+ leO,-), and y= (zo-z) (k,, + leo._). 

I t appears from (5. 10) that 

}i'IGU RE 4. Depicting buildup of downcoming 811m 
f requency wave . 

74±- 758- 65----10 
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(5. 11) 

(5 .12) 

(5. 13) 

IJ(y ,u)1 

J( y ,O ) 
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'rhus, also in the difference frequency case (w p > 2ws) a positive electron density gradient is 
required for a downcoming wave to be generated. 

For the ordinary forward sum frequency wave the coupling integral becomes 

r (J = osI-I(kp-ko. +) 

f}'+= f}'(y,(J),wLere 1 
..... y= (z -zo)(kp-ko. +) 

r (J = osI-I(ko. +-kv) 

f}' + = - f}'*(y, (J), where ~ (kv< ko. +) 

Ly= (z -zo)(ko. +-k1,) 

(5.14) 

Thus, even the generation of a forward wave requires a positive electron density gradient. 
The downcoming sum frequency wave, at the level Z=Za, finally can be written 

(5.15) 
where 

Since 
Ws 7r ko. + f ' I-I Ws 1 

P= Pm.x=- -Ik I' or =-Ik I' . v, e v+ ko. + Vs p+ ko. + 
(5.17) 

an optimum that should be attainable at some levels in the ionosphere, the order of magnitude 
of IR<g). HI is v~.ywclcov s , if Wp is moderately larger than 2ws. 

If we assume the pump wave (the high power wave) to be pulsed, and the signal wave to 
be continuous, the sum frequency "echo" delay becomes 

( 5.18) 

if Wp is so large that (np) zo~l. For the difference frequency "echo" delay we similarly obtain 

T~) ~~ { ZO- za+ I-I (2;.p -1) }, (5.19) 

provided that Wp- Ws is so great, that (no._ ) ,o ~l. These relations yield 

(5 .20) 

and 

(5.20a) 

By sum and different frequency pulse "echo" measurement of this kind it is thus in 
principle possible (if Wp-Ws is large enough) to obtain not only the true ordinary reflection 
height, zo(Xs= l), but also the electron density gradient, N .jH , at the same. Since the pulse 
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measurements have to be done at relatively high frequencies , for example i.=30 Mc/s, T ~) 
and T ~) can be determined with much greater accuracy than at the unshifted signal frequency 
W S' Another advantage is the fact that W p , if it is large enough, can remain unchanged, while 
w. is swept through the probing frequency range of interest. 

The immediate question one asks oneself is the following: Is it practically possible to 
perform sum and difference frequency pulse echo measurements of the type just discussed, 
using ground based equipment? If w;> >w~, the amplitude of RJ?)+1 by (5.16) approximately 
becomes 

(5.21) 

where 

(5.22) 

If we assume u to lie in the range 0.08 to 4, i.e. , within a u-ratio of 50, 1-/;::: 0.20 (1-/rnax = 1), 
and wp /27r= 30 Mc/s, w8/27r= 5 M c/s, we obtain 

IR I"'" 2v~. y i 8 1O- 4Y , 
0, + 1 Co jJ. T, 8 

3 • v~, y T which, with V8= 10 , Ylelds I RO.+11 ""'Co 1 T, 8 ' If the ground based pump transmitter has an 

effective mdiation aperture A, and the ionospheric absorption is neglected at the pump fre­
quency, V~,y becomes 

where Po is the tmnsmitter power and r the distance from the ground to the zo- level. Con­
sidering the fact that the returning sum (or difference) frequency travels practically without 
absorption and that the atmospheric noise level at the sum (or difference) frequency is very 
low, compared to at i8= 5 11c/s, we may assume that a v~}, y/co-ratio of 10- 5 would yield 
a detectable echo at the ground (provided the regular ionosonde at 5 Mc/s is powerful enough). 
With an effective antenna area of 104 m2, and 1'0= 300 km, P o becomes 5 MW. It thus seems 
to lie within the possibilities of present day techniques to perform ionospheric sum and differ­
ence frequency measurements as outlined. Beyond doubt practical experiments of this type 
would be very interesting and probably also rewarding. 

The research reported in this communication was partly done at the Ionosphere Research 
Laboratory (IRL), Pennsylvania State University, and partly at the Research Laboratory of 
Electronics, Gothenburg, Sweden. The author is much indebted to the IRL for its hos­
pitality, The Air Force Cambridge Research Laboratories, Bedford, supported two thirds of 
the research under contract AF61 (052)-451 with the Research Laboratory of Electronics, 
through the European Office of Aero Space Research. 

6. References 

Rydbeck, O. E. H., and E , Agdur (1954), The propagation of electronic space charge waves in periodic structures, 
Transactions of Chalmers University of Technology, No. 138. 

Rydbeck, O. E. H, (1961), Dynamic nonlinear wave propagation in ionized media (DNWP), I , The isotropic 
medium, Research Report No. 27, Research Laboratory of Electronics (RLE), Chalmers University of T ech­
nology (CUT), Gothenburg, Sweden. 

Rydbeck, 0, E. H. (1962), The magneto-ionic medium (DNWP) II , Research Report No. 28, RLE. 
Rydbeck, 0 . E. H. (1963), Electromagnetic nonlinear wave interaction and reflection from a plane ionized 

medium (DNWP) III, Research Report No. 29, RLE. 
Rydbeck, 0. E. H. (1964), Dynamic non-linear magneto-ionic wave propagation , Arkiv for Geofysik (Trans. 

Roy. Swed. Acad. Sci.) to be published , 

137 



7. Additional Related References 

Wi lhelmsson, K. H. B. (1962), Reflection of electromagnetic wa ves from a n ionized stream in the presence of 
a high power primary wa ve (DNWP) V, Research Report No. 31, RLE. 

Wilhemsson, K. H . B. (1962), Scattering of electromagnetic wa ves by an anisotropic medium with a harmoni­
cally time-varying dielectric tensor, Research Report No . 32, RLE. 

Thomasson, A. R. (1963), Reflection of electromagnetic wa ves from a dielectric plane layer varying periodically 
in space a nd t ime (D N WP) VIII, Research Report No. 34, RLE. 

Thomasson, A. R. (1964), Microscopic t reatment of t he interaction between a plane electromagnetic wave 
and an oscillating medium (DNWP ) XIII, Research Report No . 44, RLE. 

Copies of t hese reports can be obtained from t he Librarian, Research Laboratory of Electronics, Chalmers 
University of Technology, Gibraltargatan 5G, Gothenburg S, Sweden. 

(Paper 69D 1- 447) 

138 


	jresv69Dn1p_111
	jresv69Dn1p_112
	jresv69Dn1p_113
	jresv69Dn1p_114
	jresv69Dn1p_115
	jresv69Dn1p_116
	jresv69Dn1p_117
	jresv69Dn1p_118
	jresv69Dn1p_119
	jresv69Dn1p_120
	jresv69Dn1p_121
	jresv69Dn1p_122
	jresv69Dn1p_123
	jresv69Dn1p_124
	jresv69Dn1p_125
	jresv69Dn1p_126
	jresv69Dn1p_127
	jresv69Dn1p_128
	jresv69Dn1p_129
	jresv69Dn1p_130
	jresv69Dn1p_131
	jresv69Dn1p_132
	jresv69Dn1p_133
	jresv69Dn1p_134
	jresv69Dn1p_135
	jresv69Dn1p_136
	jresv69Dn1p_137
	jresv69Dn1p_138

