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A collision-free or low collision magneto-ionic medium is easily perturbed by a driving
or pumping wave, even of moderate power. Unless the pump wave has longitudinal propa-
gation, it will generate longitudinal electron velocities as well as differential space charge
densities. These quantities, as well as the transverse, pump field electron velocities, will
affect the propagation of any (low power) signal or probing wave propagating through the
medium, which now has oscillating and traveling electron velocity and electron density
ripples.

If the pump wave has an angular frequency w,, and that of the signal wave is w,, two
first order sum and difference frequency (w+;=w,+w,) waves are generated in the medium.
It is shown that the generation of these waves, for which specific refraction laws hold, is
greally enhanced if a parametrie traveling wave resonance develops in the system or if the
nonlinear driving force experiences a local resonance. Under certain conditions, sum and/or
difference frequency waves, usually with two kinds of polarization, will radiate away from
the resonance interaction region. This generation is dealt with in detail for homogeneous
media, with a discontinuous boundary, and for slowly inhomogenecous ones.

Waves of this kind should be generated easily by a topside sounder of moderate power.
It should also be possible, with present day techniques, to record sum and difference fre-
quency “‘echoes’ at the ground, if a very powerful pump wave transmitter were used. It is
interesting to note that not only the true height of normal reflection (at w,—=w, where
w, is the angular plasma frequency) but also the electron density gradient, at tthe same
level, should be obtainable by such measurements, provided w,>w,. Since w, could be
left unchanged, while o, is swept through the sounding range of interest, the technical
arrangements for such experiments, which might be very rewarding, should not be overly
complicated.

1. Electromagnetic Wave Reflection From the Oscillating, Isotropic, Ionized
Medium

We assume that the signal—or probing—wave, of angular frequency w,, and the high power
“pump’”’ wave, have polarizations and angles of incidence upon the ionized as shown in figure 1.

The pump wave generates a nonlinear variation, AN, of the mean electron density N,,
and a longitudinal electron velocity, v, in the direction of the pump wave normal. These
electron density and velocity “fluctuations” travel through the medium, locked to the high
power wave, and can be written as follows [Rydbeck, 1961],

Ai\r:’y]\‘r‘, COos (wpt—'zll)—,‘)) <] .1)
Z"L:Z"‘(I)z COS (w,;t_/?p’_‘): <1 2>

where w, and %, are equal to twice the corresponding parameters of the linear pump wave.
v and o9 are proportional to the square of its amplitude.

Besides this nonlinear ‘‘plasma wave,” (1.1) and (1.2), one must also consider the linear
transverse electron velocities, v, , and vy ., of the pump wave. The total electron velocities
associated with the pump wave thus become

Vp,z=0p,z 01, =0p COS @11, 10z SIN @11, 5,

Vp, =0, ;10z, ;= — 07 SIN @11, 10z, COS @11, (1.3)
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1.1. Only Electron Density Oscillations Considered

In order to distinguish between the two nonlinear effects, we first study the reflection prop-
erty of the ionized medium when the velocity fluctuations are neglected, i.e., we assume
v,=0=v,, and disregard, for the moment, the fact that these velocities, in reality, always
differ from zero when AN does so.

The wave equation describing the propagation of the signal wave now can be written
[Rydbeck, 1963],

2 19 W .
a“z—i-——z—zgaz— (;Jé {1+7 COS (w,,t—kp))} t//:O, (14)

where ¢ is proportional to v, (the electron velocity of the signal wave) and is related to £,
in the following (arbitrarily) normalized manner

1 oy
e T
Y (1.5)
co=1//me, =the electromagnetic wave velocity in vacuum, and
e’N,
we_\/_meo ’ e
is the mean electronic plasma frequency.
We introduce (see also fig. 1)
Fey="2 mp; bty =2 m, , =k, SIN 11, 5, ]
Cy Co i
and r (1.7)

Wy
kp, z:_c W 2:]&71, COS @1y, p, J
0

where 7, is assumed to be a known function of the angular pump frequency, w,. In order to
make our results more general we do not specify the dispersion relation determining %,, since
one can, in principle, think of other types of pump waves besides electromagnetic ones.

Next we introduce the variable

u="%(w,t—k,r), (1.8)
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and assume that ¢ can be written as follows, viz,

Y=y, = TFDIL (u), (1.9)
where
T 2
—C ] _YWe__ Y@ __
k=2, \/ 1=, oo (1.10)

and o, denotes the angular frequency of an unperturbed wave, i.e., for y=0. When II, (u)
reduces to a constant, as it will in absence of the pump wave, (1.9) represents a plane, sta-
tionary monochromatic wave.

Now, let us introduce the characteristic parameter

0 4“’%<1_d“ : (1.11)
0,¢— 2 \7 2]’ .
Wy \1—n2,
where
dg="g, 5T, 5T, 2Ty, ;=N COS (@11, p— P11, o) - (1.12)
1T, can now be written
=~ o, (1.13)

where II? is a proper solution of the Mathieu equation

s )
00,426, cos 2u> I =0, (1.14)
and
2w; 1 _
0= Z){ il’[::: (1.15)

It is interesting to notice that the important parameter 6, is independent of w, (and %,). The
solution of (1.14) is now for our purposes written

n=-+owo )
H(;Z):ﬁqcﬂ’/u Z Qy, 71()']2,”‘7 (11())

n=—c

where g, is the proper root of Hill’s determinantal equation,’

sin? (j g W)—A(()) sin? (’2’ \E;O_q> (1.17)
and the amplitude coefficients can be obtained from the relations
{(,uq—{—an)Q—{—Bo,q}aq,n—kﬂl(aq_,,ﬂ—}‘aq, n‘l):O (n: .oy —2, —1, 0, +1, +2, e ) (118)

As is well known from the theory of Mathieu equations, instability regions are centered
around the 6, , values 1, 4, 9, etc. In this connection we are mainly interested in the first, and
most important one (6, ,=1), since we will neglect the formation of higher order ‘‘side bands”
w=w,+mw, (m=2,3,...). When this is the case, and if ;< <1, we can write [Rydbeck,
1954],

AO=1+2 26406 B<<1;00,~1). (1.19)

According to (1.17)

does not differ much from ‘ g\/(m

.
Jﬁi"a

1 See Whittaker & Watson: Modern Analysis, p. 416,
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When 6,=0, i.e., for an unpumped medium, we have
w=*jV0,  (6:=0). (1.20)

Since y, must reduce to exp { j(w,t—/k,) | in this case (no waves are assumed to come from
z=-+ o), we must according to (1.13) use the upper sign in (1.20). For the moderately
pumped medium we therefore write

, pe=i(\bo b)), (b0, if 6,—0) (1.21)
and obtain
n=+w
l// __ej(w,ll —k, T)+Jb uﬂ Z a, e] nu. (122)
n=-—owo

If we introduce (1.21) in (1.17), we obtain

sm< >ﬁsm @y /A(0) cos a,—+/1—A(0) sin? @l (1.23)
where
P
07:§ V0o, . (1.23a)
With the notation
A(0)=1+2¢, (1.24)

where £2< <1, we obtain the following approximate “bridging’” solution of (1.23),
baz*—“{ﬁoq 1~\/(50 ,1—1)2——— ) (B (1.25)

where it is to be noted that, by (1.19),

32, 3228

= 5o Bi=1.016 01

The instability zones thus are determined by the relations

6 _ 8 ( ]
—5 V0 —1<45 (Vo =1) |

o B r (1.26)
1< V0o, q+1\+f (\"/Oo'qz—l).J

) N . . .
When 6, ,=1,b,=+j 5, (8<<1). In the center of the instability regions the waves thus vary
in amplitudes as
yo 1 7
j:2 1__,11) (wp ]‘p'))
or,if 1—n?=w}/w;, like exp {:tvj (w,,t——-lz,,;)}- It is interesting to note that this growth or

decay is independent of w, (and £,). As “viewed”” by the traveling pump wave, the amplitudes
of all other waves in the system do not appear to change. It depends upon the boundary
condition whether one gets growing or evanescent waves (with time), or both. In our particular
case, where no waves are assumed to come from z=+ o, the unstable waves grow with time and
decay with T, In directions transverse to J,, the amphtudes change with time only.

By (1.18) the amplitude coefficient relations can be given the following practical forms

T 0
(n+bq/2>(\ 00,1/_’_'11—1_1)0/2)6((1,IZZMZ1 (aq, 11—1+aq,7L+1) (n:- . ey _'2, —1, 0, +], +2, .. .). (1.27)’
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It we neglect the «,, ., terms, a, ,;, and «,, _; become

b e ‘ (1.28)
4 (0o, ,+145,/2)(1+5,/2)

oy, +152

_o S 4.0 . (1.29)
4 (\JQO, q—1+bq/2>(1 —bq/z)

If we make use of (1.25) these relations can be eiven the following final forms
L =) >

g, 1=

0 Q .
PR €0 S (1.28a)

‘; i - *7,.7;;;; o
% (oo, H 14V (Voo 17— (—6,/2)?)

aq._l’;’—i} p— aq;o_‘.__Ah, :\’ (1.2934\)
2 { VB — 14+ (B0 g+ 1)°—63/4}

from which it appears that |a, ;| and |«,, ;| are equal to a, , at the boundaries of the instability
zones. At the center of these zones «, ;= +ja, o, where the upper sign corresponds to growing
waves (with time), and «, ;= +ja, .

From (1.18) it follows that higher order coefficients experience resonances (and the associ-

ated mixed frequency field instabilities), when 6, ,— +2, +3, etc.
Next let us introduce the following notations, viz,

7=0: wy—w;
=-+1:wy—wsto, pif 6—0. (1.30)

g=——1:0_1>w;—w,

The corresponding ¢ functions become:
Yo = el (wotboup/2) t’@0+”oﬁp/'-’);’ﬁo{ a0+, +le+1(w,z—5pr') +ay, _le—j(wp/—ﬂp'n
+ag, poeT2@pt=kpn) fgpy _pei20wpt=kpn 4} (1.31)
Y= et @ntbuapDi=Futbubp®T 8, Loty eH@p =T da,, e=iep=F 4}, (1.32)

Y= et @rtbowpt—(tb-ip2Tig (o o day et ept—Tph 4o e=ilept=FpD 4} (1.33)

Similar expressions can be written down for ¢=+2(ws—w,+2w,; ,—0), = —2(0_s—>w,—2w,;
6,—0), etec. The total field is
l//tot:Z‘lbq ((l: 0 0 ')_27_1) 0)+1)+2’ o a ) (1::4)
q

The frequencies w, and the amplitude coeflicients g, are determined by the boundary
conditions, and so are k,,. Thus,if the incident signal wave has an angular frequency w,,
and an angle of incidence ¢, ;, one obtains

wo+bow,/2=w, (1.35)
ko, 2+ bokp,r/szs,I:% sin ¢ s=ko, s Sin ¢y 5, (1.36)
0

relations that can be satisfied only when Im (b)) =0, i.e., outside the instability zones.
Thus, according to (1.31), there are waves of frequencies w,, w,+w,, w,4+2w,, etc., present
in the system. Therefore (1.33) and (1.34) yield

wil+bilw0/2:wsi Wy, (137)
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k:i:l‘x"*_bd:lkl).r/Q:ks.xikﬂ,z; (138)

which can only be satisfied when Im (b.,)=0.
In the following we will neglect the instability zones, which will be discussed in more detail
in sec. 1.3 in connection with a study of the self oscillation properties of the pumped medium.
If we neglect the instability zones, we also neglect b,, which is very small outside the same
(if << 1). Relations (1.35) et seq. now reduce to

W= Ws; Wi = W Wy} ko.z:ks,z; kil,z:ks,zj:kp,x (quo) (1-39)

These relations yield the reflection laws for the sum and difference frequency waves

: 1 : "
SIN @7 41— (ws sIn @7 s w, Sin ¢ ,). (1.40)
Y4

ws+ w

If we include also the higher order waves this relation assumes the general form [Rydbeck 1962]

Sin ¢; ,= (ws singy, s+nw, sin ¢; ,) (n= ..., —2, —1,0, +1, +2,...). (1.40a)

1
W inwl)

If ¢, ,=¢;,, we notice that ¢; ,=¢;,. Furthermore, if ¢; ,=0, and w,=2w, (degenerate
D ' $ B D ) ' P 5 V4 (=)
parametric pumping) we obtain the peculiar result

o1, -1=—er,s (01,,=0; wp=20w,)" (1.40b)

Thus, we obtain areflected wave, of effective frequency w;, in the signal wave incidence direction.
In order to demonstrate the general nature of (1.40a) we have in ficure 2 sketched the first
order wave spectrum for ¢; ,=0, and «,< w,.

If we make use of (1.11), and (1.15) relations (1.28), and (1.29) can be written as follows,
if b, is neglected,

2 1
aq_i1:iaq,o:y‘ =
2 w,w, o

) (by=0) (1.41)

“q ©r

7 (1 —nf;) _annq COSs (GDII, p#11, s)
q

which shows that the resonance (|a, .1|— ) also depends upon the angle, ¢; ,— e, 5, between
the wave normals of the pump and signal waves. As a matter of fact, one readily verifies
from (1.41) that, independently of the form of n, (i.e., of the dispersion law assumed for the
pump wave), o, ; can be written in the following practical fashion

Y Wl 1

00 2= o == =2 bq:() 1.
TS 6 R R e

Z
4( MEDIUM IT
4
/// g
z//’
.\
X . g .
¢ 070 Ficure 2.  Demonstrating first order wave spectrum
' | obtained from the pumped, ionized medium.
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which demonstrates that the system resonances are of (parametric) traveling wave type.
Moreover, it is interesting to notice that the higher order coefficients (according to (1.18))
similarly can be written

Y wr 1
n— n— = — (,=0 1.43
Qg =0y, 15 2 co lkq+"l2—lkq+’ﬂkpl2 ( q ) ( )
and
Qg —n—0xqg —n+1 o 'V we ! (bq:O) (144)

2 CO [lcq,"|2—|Eq—nEp|2’

if a, »+1 18 neglected with respect to o, ,—1, and e, —,_; with respect to a, 1.
According to (1.42) the first order resonances appear when

Forr|= £ k4R,
and g1 ke, +k,y| (1.45)

lztz—1|:i[zq_ic-p’~

As will shortly be shown, it depends upon the boundary conditions which ones of these reso-
nances that are physically possible.

If we next introduce the boundary reflection and transmission coefficients of the unperturbed
signal wave, viz,
ko s.:—ks.:. 5 2ko.s. -

]LYO- m %0 k012+lb.sz

(1.46)

where k, ;=w,/c,, and neglect a-terms proportional to 6 (which is not permissible in or
near the instability regions), the boundary conditions (%,, and , continuous for each fre-
quency component) by (1.5) yield the following first order fields, if «, s put equal to one.

Meprom I (2<0)
EII: Eg [37(%5—"0,3,1—’“"0, s, 29 —|—I{S Og+j(ws’"k0,s.r’+k0.s, 22)

+ 715,00, 110x, +1 (’+J(“’+lt ko, +1,2%+k0, +1, 2%

w_
A Ts,oRo, —1Q0, —1

s

1e+J'(W—1’—ko,—1‘zl+"o,—1,22):|y (1,47)

where £ is the amplitude of the unperturbed signal wave, and kq, , , = k, », ko, +1,2=Fk1,», which
are related to each other by (1.39). The sum and difference frequency “reflection’ coeflicients
become

Ky e—HRe :—Fy

Ry 1= Ko +1 0+ kir £ (ko, 41, :=ko, 41 €OS o1, 41, ete.) (1.48)
k— H 8,2 k z
R, _,= k;jz——f—]j__—p (ko, =1, =k, —1 cOs or1, _1, €tC.) (1.49)

Mgepium II (2>0)

E=ET,, [6+J’(wst—ks,rt—ks’ 22

+010 +1

{ e~ Is, stk D2 Ty o=, Zz}

w_ ; i(k 3 — ik z
+ap, _1171 e+](w_1t—k_1‘11){e—](k3’ ehp, 2T, _je J’\_lvz-}], (1.50)

S
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where the sum and difference frequency ‘‘transmission” coefficients are

T :k0,+1‘2+ks.z+kp, z’
o ko, +1,: k41, -

kO, —1372+ks. :_kp. 2,
k(]. =% z+k-—1, 2

(1.51)

To,—1:

It is interesting to notice that, for £,=0 (nontraveling pump wave) these reflection and trans-
mission coefficients, 12, i, T .1, reduce to the regular ones for a frequency shifting network.
According to (1.42)

2 1 1
R =15 ) =1 1.53
RSty 2 c(z) kO,—H.z+k+1,zk+l,z_+'ks,z+kp,z (ao,o ) ( ’ )
; 2 1 1
Ry o, =1 2% =
¥0, =130, ~1 2 C(z) kO,—l,z—Jf_k—],zk—l‘z+ks,z_kp, 27 (O‘O,O 1) (1 04)
since ag 1 by (1.39) can be written
o 7')’&3 1 5 ( *1) (1 :"')
RE I R (R L

Relation (1.55) is quite general in nature. As will be shown in section 3, for example, similar
traveling wave resonance coefficients are obtained also for the much more complicated magneto-
ionic medium.

According to (1.53), and (1.54) only two parametric resonances are left in the system, viz,

k»i-l, g (ks. z+kp,z)
(1.56)
/C—l, z2— —"(k\ z""k,n, z) *

The other two resonances cancel out due to the boundary reflection effects. According to (1.50)
there are two sum and two difference frequency waves generated in medium II. The terms
exp {—j (k,.+k,.) } represent associated waves or ‘‘side bands’ of the signal wave caused
by pump modulation of the same. These waves do not in themselves satisfy the wave equation.
The remaining waves, represented by the terms 7, o, exp {—j k=, .z} can be considered as
natural waves (b, assumed to be zero) and are, to first order, independent solutions of Maxwell’s
equations. Since the energy balance at the boundary (z=0) of these waves, and of the sum
and difference frequency waves in medium I, requires that the sign of k4, , be equal to the sign
of — (ks .+k,.), the resonance (1.56) is possible, if only the condition |ki, .| = |k, .£k, .|
can be satisfied (a situation more easily attainable in the magneto-ionic medium).

If the pump and signal waves travel in positive z-direction, i.e., if k, , and k, . are positive
(which we have assumed from the beginning), the natural sum frequency wave in medium 11
always travels in negative z-direction, i.e., towards the boundary. As far as the difference
frequency wave is concerned, we have to distinquish between the two cases w,Zw, If
w, >w, the natural difference frequency wave travels in positive z-direction if k, .<k, .,
and in negative direction if &, . >k, .. When »,< w,, the situation is reversed.

At degenerate parametric resonance |k_;|=|k,|. This resonance therefore is possible only
if 2|k >k, ie., if n (w,) >n,. Ifk,isdetermined by the properties of the isotropicionized layer
only (for an unguided electromagnetic pump wave), this resonance is not possible for traveling
waves.

If we assume that £,=0 (for example if w,>=w?), the degenerate parametric resonance
requires that

N, 2= —j~/4_]_sjnZ Gr0— —N1,:
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which yields one exponentially decreasing wave (with z) in medium II, and one exponentially
increasing; the energy flow associated with this pair is negative (at the frequency w,=w,/2).
This generates the “‘amplified” signal returning at the peculiar angle — ¢ ; from the boundary.
The pumped ionized medium now acts as an “‘amplifying”” wall, or resonant reflection amplifier,
the necessary power being supplied by the pump wave. Obviously one could consider para-
metric plasma amplifiers operating on this principle.

1.2. Flectron Velocity Oscillations Also Considered

This case leads to a more involved wave equation than (1.4), since the equation of motion
| s 1
of the electrons now becomes

a Yy a’r/ a S v
l + pzaz +v D, z 4 T Ey+l-"0 (Up IH —Up, 2H1)~ (157)

If this relation is introduced into Maxwell’s equations one obtains the following wave equation
[Rydbeck, 1963],

oNf_ 1 4, 0 o* ,
stittns oyt ){1+7 cos (wpt—Tor) L ‘&} ot (ot om 22 ¥=0
(1.58)

where
o2 0o 1 0
)" . .
I br-+ 22 2 ot?

(1.58a)

Since this equation unfortunately can not be reduced to a Mathieu equation when »,7#0, we
solve it to first order by series expansion of the following type (quite analogous to the Mathieu
series when b,=0), viz,

Vo= et FD B (g otag 116 Fag 10”4 ..} (Qu=wpt—Ter). (1.59)

Next, we put

0y =Y COS @i, cos 2u; v, ,—1% sin ¢i{"), cos 2u, (1.60)

(v)

where ¢;{”, is the angle that the electron velocity of the pump wave makes with the z-axis.
We have used 2u as the general pump wave propagation factor, although this is not correct
if both linear and nonlinear pump wave quantities are considered. The AN and the longi-
tudinal velocity oscillations (1), which constitute the nonlinear components of the higch power
pump wave, have a u-value different from that of the transverse, and linear pump wave
velocity. However, for the sake of simplicity, and since it is natural to treat the effects upon
the signal wave of the latter velocity separately, we use the same w throughout and later
adjust the velocity angle, ¢,{”, and u to the relevant case under study.

If we insert (1.59) and (1.60) in (1.58), and retain only the lineary and », terms, we obtain
after some rearrangement of terms, remembering that P7 [exp | {j(wet—hqr) }]
—(2/ed) exp {j(wd—k,r),

@y, +1=0, 1 {1:!:‘ N\w,, CcOs (Sﬂu p ¢, s) }’ (if (10'0:1) (1 -61}
j:l
where
Vs v,

) (1.62)

e =
Co (vphase) w=

which is a measure of the velocity modulation. It is important to notice from (1.61) that the
system resonances, as one might expect, remain unchanged, even if the effects of the pump
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wave velocities are considered. Furthermore one notices, as is physically evident, that the
electron velocities generated by the pump wave do not affect the propagation of the signal
when | o ,— o o|=7/2, i.e., if the pump velocities are transverse to the signal wave normal.

(1) Considering only the nonlinear plasma wave component of the pump wave. The
pump wave in medium I now has the angular frequency w,/2. One finds [Rydbeck, 1961], that

122 ,, n? 14%,,nm,,
p/21%/2. p/2 "ts'0p/2. ) ¥
W= EE S = =2 2=5 and o ,=011. , (1.63)
4 ¢c5 n; 4 ¢5 n,

where n,,=n(v [2), and v, is the amplitide of the linear, i.e., the transverse pump wave
velocity (of angular frequency w,/2).

From these relations it is evident that it is not permissible to neglect the nonlinear,
longitudinal electron velocity generated by the pump wave. The effects of AN, and », are of
the same magnitude, even though the system resonance is not displaced.

(2) Considering the transverse, linear pump wave velocity only. The pump wave in
medium I now has the angular frequency w,. By (1.61) we obtain

wh 1 VN Wyw, .
T i 20 o, S (ems—ems) (1.64)
Co ‘killz—lkoikplz 2¢0 iy 11, 7 11, 5) 5

(@o,0=1)

@y, 11—+

since ¢ff ,= ¢, ,(+)7/2, in this case. Here we note that, for transverse pumping, i.e., the
pump and signal wave crossing each other perpendicularly, the interaction will be approxi-
mately at a maximum, and much more efficient than in case 1, where a,, +; is proportional to

(vp/ 00)2'
1.3. Notes Concerning the Instabilities of the Pumped, Ionized Medium

The instability regions, and their effects upon the wave propagation have been neglected
in our previous investigations. Let us therefore, for the sake of completeness, prove that
self oscillations are impossible in the infinitely extended (from z=0 to + «), ionized medium.

We now have to evaluate b, (1.25) for the unstable waves. It can be verified, for example
from (1.43) and (1.44), that

p— T > =
\‘00,41:{:'"':_% { \kqinp—‘kq:tnkﬂ[”’ (1.65)

which yields the important relations
\“’(m:tn:w/ﬁoviﬁin. (1.65a)

Let us, as a typical example, study the unstable sum frequency wave. It appears from (1.28a),

and (1.29a) that we get unstable w,, and wy+w, waves, if v6,,+1-0, and if v, .,—1—0.
We thus infer from (1.65) that these resonances are identical. Since by, and b.,; by (1.25)
now assume the forms,

bo 2B, 01—y (V05,04 12— (—8,/2)%; (v, 0 —1)

b1 —{ Vo 11— 1—V (Voo 11 —1)"— /4 }; (VO 11~ +1), (1.66)
we notice that within the instability range in question
Im (bo)=Tm (b11), (V8,02 —1; 60, 1= +1) (1.67)
which, for waves growing with time, at resonance yields

bo=br1=—36,/2.  (VOo0=—1;v85, ;1=+1) (1.67a)
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I't is now necessary to retain the a,;,_; term in (1.32). The growing wave, of complex
frequency w,+bow,/2, by our previous relations, assuming b.,=b,, now can be written

YO = gHieotlgwp/ Dt { o= togky 2Tg (f o= IRyt DT=g ) (medium 1T) (1.68)
and the corresponding sum frequency wave
YO = gtitentapttoey/2p [ o= IR tEytinky 270 4 o=IF L1+, 270 3 (medium IT) (1.69)
where it has to be noted that we, as before, must require that
ki1, z=ko z+kp o (1.70)

Since we are investigating the conditions for possible self oscillations, eventual waves present
in medium I must leave the interface. They therefore assume the forms

£ O =¢tilagtbgup/Dttiky, o7y (medium I) (1.71)
£V = gilaghepitboep @M tard  (medium I') (1.72)
where
wotbow,/2 wy+ wptbow,/2 .
ko,o;—(ﬁ_ oty ;and ]L"o,+1:_—k0 ptbow/ : (1.73)
Cy Cy
If

ko,0,z="kq,0 SI0 o1, and kg 4y =Ko, 41 SIN @ 44,
we require that
bok , /2= (bow,/2¢0) Sin ¢y o= (bow,/2¢o) SIn ¢r 44,

1.e., or o= ¢r 1. Moreover,

wy .
’c_‘ sin ¢I,0:k0.2;

0
and, by (1.70),
oty sin ¢r o=ko sk, z,
Co
L.e.,
wp_Ks.z, (1.74)
wo ko.z

which puts an additional restriction on w, (note: w, unknown).
The boundary conditions (/,, and H, continuous for each frequency component) next
yield the following two relations,

a+1,—1:_ k0.0.2+k0,z+b0kp, 2/2 . (1 75)
Qp, 0 k0,0,2+k+1,2_kp.z+bokp, 2/2 '
0‘+1.0:_k‘0. +1.. ko, ot ky, o+ boky, 2/2, (1.76)
A, +1 k0,+1.z+k+1,z+b0kﬂ, 2/2
By (1.28a), and (1.29a) we next obtain

« 2 - ez g, — -

ot By 14 (B i P4} S (L.77)

ago 0 1 %+Lo, (1.78)

200 2 [Vhgot 1+ (oot 1= (—8,/2)"] % 1
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where it is to be noted that by (1.65), (1.65a), and (1.70)

Voo ot 1=+80, 11— 1=k [2— ko + T, | 2= 1% 1. . — (o, .y, )2 (1.79)

Since growing, self oscillations can only be sustained, if (1.77) and (1.78) yield identical
amplitude coefficient ratios (a; of/aq ), 1t 1s necessary that
1. VB 0+1=0=+/6, 11—1, i.e., that k., ,= =+ (ko .+k,,.), (1.80)
and that
9. O, =i CHHL6,

L o ®,0 Qo +1
which is possible if

ki1 .=ko 4k, ,, that yields ZHi=t—1=2419, (1.81)
@, 0 &, +1

of 1if
ko, +1,:=ko,0,:—kp, - (1.82)

Condition (1.81), which is one of the resonance conditions (1.80), yields ¢y°=0, ¢"'=0, and
therefore also dy=0=d,.

Condition (1.82), which yields nonvanishing fields for the resonance condition k., .=
— (ko .+k,, .) only, by (1.73) implies that

w, COS ¢y, ()/C(]: —kp' 2y

which is impossible for a pump wave running in positive z-direction (&, .>>0), as has been as-
sumed originally (pump source outside the medium).

We have thus shown that growing self oscillations are not possible for the infinitely ex-
tended (from z=0, to 4 =) ionized medium, which in this respect is analogous to the parametric
traveling wave amplifier. This is not necessarily so for a bounded medium. A discussion of
this interesting case is outside the scope of the present communication, however. And so is
the case of wave reflection within the instability regions (which are very narrow for weak
pumping.)

2. Generation of Natural Sum and Difference Frequency Waves in a Slowly
Inhomogeneous Medium

We have seen in the preceding paragraph how the boundary conditions at z=z, determine
the possible parametric traveling wave resonances and the amplitudes of the sum and differ-
ence frequency waves. Naturally one would like to know what happens in an inhomogeneous
medium, if resonances occur at some specified level z=z,.

Let us therefore consider an inhomogeneous medium, but a slowly varying one, so that
partial reflections of the signal and pump waves can be neglected. Furthermore we limit our-
selves, for the sake of simplicity, to an analysis of the difference frequency wave. Since the
medium is slowly varying in (the z-direction) the signal wave assumes the form exp {j(w,t
—kgx— Sk, .dz)}, and similarly the pump wave can be written cos (w,t—k, x— Sk, .dz).
The natural, uncoupled difference frequency waves are written

@ (w1t —k_q paF | Ky ,dz
H‘“:/( 1t 1,3 JFf ik ) (w‘lij_wp). (2'1)
Since k_y =k, ,—k, ., (1.4) now yields the following difference frequency field,

S :a{ H(?’J‘EH“)M;—H‘”J‘ II®¢dz } , (2.2)
21 23
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where

e]'( w_ll*fz/;, _Jl:—lffslr”vz{l:) (23)

e
SISIES]

and
H(l) z (/~
u/ (Il(”) D

2 w—11
a:g]2°' 1

(2.4)

1
For a slowly varying medium a~ = and therefore by (1.5)
B s Foeitomtt—ko Gy @212 Y @5 PRl e zdzf S ERC L 2
wo u]kﬂ 22 ¢}

) RN ] PR OWE N
—e J f e J dz . (25
43

¢

One notices that the two coupling integrals may “generate’” natural difference frequency
raves at or near their respective traveling wave resonance levels (compare (1.55))

k—l,z:—(l{ls,z_kp, z) (2(3)
and

k—l,z:—i_(ﬁfs,:_l‘np,z)- (27)

If, for example, k, .<k, ., and »,<w, these resonances actually yield forward, natural differ-
ence frequency waves, and backward (i.e., “reflected” from the resonance region) if k, . >k, ..

If we assume that (2.6) holds at some specified level z—z,, we can write as follows for the
slowly varying medium

f]mj—k%AJLLgdxz3{@—ﬁmwz:uv, 2.8)
J 0
where

3\
dH= { i_,(h, e—ky, Ah_1,2) P (2.9)
([.; J =%

Since we only need to know the electric field of the emerging natural, difference frequency
wave (1.e., the \V:l\'e radiated from the interaction region), we can limit ourselves to such
z-regions, or |z—z| distances, for which W?>">1. If we make use of the asymptotic form of
the Fresnel integral, and assume that the ('()ndil‘itm for forward radiation is satisfied, relation
(2.5) yields the following difference frequency fields, viz,
2z, W2 >>0

_ gl
¢ {‘” o, 610 [ G by, D Te= o il (2.10)

s

=ibl_— 22U
BV =E,

2>20, W2>2>0

5 l —k S I S ,],
e/ l“’—l“ k_1, z(t—2,) 2 (ks, ;=kp, & d“[ w_1
Ws

1y o / (f ““)}

(=i — 77l
El/ _Ey

&p, —1

“2k_,.2a¢ V2 (@,0=1). (2.11)

J
Relation (2.10) is analogous to the forced difference frequency part of (1.50). This wave,
(2.10), which alone does not satisfy the wave equation, is associated with the signal wave and
can be considered as a “modulation’ or sideband of the same. Its resonance is independent of
the sign of k,.—k, ., as it should be.

123



It appears from (2.11) that \/ —;1[ is a measure of the difference frequency radiation efficiency

of the interaction region. If #( is small, i.e., if the medium parameters vary very slowly, the
radiation is large, provided the region is so extended that W?is large at its outer edges.

If we next consider the second resonance (2.7), which takes place at the same frequencies
as the former one, (2.6), one finds that (2.5) yields same result as (2.10) and (2.11). The dif-
ference between the two resonances is purely formal.

It k, .=k, . and w,Zw,, we obtain a “reflected” natural difference frequency wave, i.e.,
when the associated difference frequency wave (nonlinear driving force) travels in negative
z-direction. When the opposite conditions hold, we get a forward difference frequency wave.
Since the natural sum frequency wave radiates in the running direction of the associated sum
frequency wave, a ‘“‘reflected” sum frequency wave can be obtained only if the pump wave runs
in negative direction and with —k, .>%, .. This is in contrast to the case of the disboundary,
which always yields also “reflected” sum and difference frequency waves.

The amplitude of the difference frequency reflection coeflicient now can be written

vel 1 27
lRO,—ll 2C0 2““—1 2' ‘gﬂ (212)
which corresponds to
Ts, 01{0’ —jl(@%) =7l ww_l f (14:7)
The frequency dependent phase of the frequency shifted “echo” is
b0, 17— L-U (ks z_kp,z_k~l, z)dz (w[1>ws)- (213)

=~ 2<ka z*kp, z)

Since z, depends upon w; (as well as w,), the echo delay, =, counted at the level z, for a pulsed
signal wave (¢r s and ¢ , assumed to be zero) becomes

_a¢0,—1~ Qk—l 2
T%:{‘ 4a+< )}(D (2.14)

where v, ; and v, _; are the group velocities of the signal wave and the natural difference fre-
quency wave. For a forward wave emerging at z=z,(>>z,), we similarly obtain

1 2k _, . 1 1
T2 (20— )*‘I'(ab )17 ~1+< g{l > e . ° (2.14a)

We thus get a change in effective reflection height of (k, ./F()., which may be a large
quantity. Tt is a measure of the “frequency shift reflection thickness” of the interaction
region. As the dispersion is very large, it is not sufficient to make use of the first phase-
frequency derivative only to determine the time of arrival of the frequency shifted wave.
Such a discussion lies outside the scope of the present communication.

Since

(k—l z)zu ( S, 2 kﬁ, z)so;
and
k—l,x:ks.z—kp,z;

one can sketch the frequency shifted wave normal paths about as shown in figure 3.
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Fiaure 3. Demonstrating wave normal path of the
frequency shifted downcoming wave.
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3. Electromagnetic Wave Reflection From the Oscillating Magneto-Ionic
Medium

Let us assume that the static magnetic field lies in the z-z plane, and that its electronic
angular gyrofrequency is w,, with components w,=wy cos 0, wy=wy sin 0, along the z and
axes, respectively.

If we introduce the following operators, viz,

2
. S

o€y OZ°

2
2 2 2 9 .
e P =P Lol and Po— z“-’+w"7 (3.1)
and limit ourselves to the case ¢r ;—0=¢;,, (i.e., vertical incidence) we obtain the following
nonlinear wave equations for the (second order) electron velocities, »? 02, »®, [from the
nonlinear magneto-ionic theory, Rydbeck, 1962].

])U(i):[)i( 1)~¢I I me aax[;”) '_wTI)f‘mple/Z:Hw (32)

DUf) :I)i(le)f fZ)tl/z"}"l)imSigz) ?g/il_/) - wTPng)i‘ng)‘lb::Hm (33)
9@‘27 22 a?‘pl’ 2 o' w" D4 4 .

D ai —wr (0)]14, at Zem at;)—}_(l em atz‘l_wLI )Kb ng, (34)

a

where 11, II,, II, are nonlinear driving terms to be specified later. It is worth noting that a
annihilates longitudinal magneto-ionic modes.
Furthermore

D PillL(P:InP2+wTP> +wLP2P4 (35)

Otl
By (3.5) relation (3.4) can be given the alternate form

av(2) 620(2) .
Py St —ap ) o)

The second order polarizations, S{? and S§?, are related to each other as follows

2 D2 2 2
s — Lot SO0 s bt s0=52 (1= ) (3.7)
L pL e em - e

Relation (3.3) can now be transformed to

)@ Q@) (@) 23 Q@ s ¥r )
R TRl Gy G
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Thus S =S8, when D=0, i.e., when one has system (traveling wave) resonance. When
this is the case v, =80 .
D can be written

S G e

. J

2 D2 2 2 az 2 .
XP; {[ (B )+t | o+t \/(‘”[ﬁﬁ 2 w,,}~ (3.9)

—,

DI

D, annihilates the natural ordinary magneto-ionic mode and the plasma oscillation (for which
P2=0), whereas [), annihilates the natural extraordinary mode only. D can be used to study
the transient behavior of the magneto-ionic medium.

By (3.9) one can also write

D:\{ (0’ —0}) (0 —wi) — }(‘o >3 2+kz(w)} { A ) )} (3.10)
b

where
Feo(@) == mo(w) ; and k,(w) == n,(w), (3.11)
Co Co

and n, and n, denote ordinary and extraordinary refractive indices respectively. One notices
that b=0 at the fourth reflection level (referred to the angular frequency) at which |n,*= .
In the neighborhood of this level D is conveniently written

- 1 1 1 i S .
D——PPX (e (o) Eemetfd),  @12)

where 7, is the effective refractive index of the wave, of angular frequency «,, upon which D
operates.
Next, let us introduce the driving force polarization ratio

Lo 1—n

Si= Q= w0y 1—X,—12 (3.13)
Relation (3.2) now yields
1/7"0 (l_‘Y )(1— _n’?i){Qd‘p:+j¢y+irT,ﬂ(l—"lfl)¢z} (YT,d:wT/wd). (314)
It the pump (hizh power) wave has the », velocity
Vp,y=0p €0s (wpt—k,z), (k= wymy/co) (3.15)

where, quite arbitrarily, k, could refer to an ordinary or extraordinary pump wave, the other
pump wave velocities become

v

. 3 .
Vps=—Q0, sin (w,t—k,2); v, , =2, ]_T'X‘i sin (w,t—Fk,z2), (X,=wi/w?) (3.16)
“Xp

with
~ 1—n3
Q,=1 LI X, (Y i, p=wr/wp). (3.17)

126



The differential space charge density becomes

ny Y 8, pOZ_CNe ‘ >
= > ) ) < )" : 1
=, 1—X, v, sin (wpt—k,2) {Yr, = e (3.18)
The signal wave, of angular frequency w,, is written
e Vs Yoo v
Vg, y=0;e7 @5t EsD s = —Q, = g @stED; g - ,]_TX 7 M=
N )T S 7‘.\' (wel— 1 ) 4 21 2 4
px:po ¢ 17 \7 ()j @s (ks:wx/n’x/()l’); ‘\ \:w,’/wj, ) ’1‘,8:""7'/‘*’5)
0 =
(3.19)
where
. 1—n? . . o«
(‘)s:) Lsy v .2 () L,s:wl/ws; ) 7',.\':“)7‘/‘*"\')- (';‘20)
1—X;—n}
Ve, ¥y, ¥. can be written [Rydbeck, 1962]
, O, , bll 0? , OW,
=PiP,— =PiP,—uf =" — P.— ol = 3.21
¢ I ] wL O{ 7¢y ]el v t, "l/ (){'[ 2 wlr at ( )
[f we limit ourselves to a study of the sum and difference frequency terms only, we find
that
on o X >
_p ., s —0, 2 (1— ), 3.22
PPy ==y, 3o (1 )—0us 2 (1-1 22 (3.22)
Qv X or X
>y, (g —p,, L (122 ), 3.23
PrmPog= =005, (i )70 o Ui S
fo) XS g, Ol\ z
I)Zi]):“” _E (I‘x,zrlh :)_71 ad{ Up, 7/+ Up, T>
A\’,, /a?‘,, U p T )
: e 0, 3.24
l—n,, 0z "+ 7 )
and
W = ; (P,\»U,;‘*‘pp/“\)- (325)
0

We evaluate next P,, P, I’., and W from these relations and obtain for the sum and
difference terms (index + and —, respectively)

V= :Fjv‘f;p (5 [(] =) {axkal) (1

st

X, 2 (asnst‘l‘ap"st):l HestEan 2 (3.26)
0

vi— [a—n {as (-2 >:tapk< X, )1+X 8 ) [efonites,
(3.27)

X

vsv,,

Ve [iaga,, et X & ()} —

) (1FQ, Q,,)] eioxt=hed (3.28)

where

kis=k, ikm /\’:t*wp/wtyas YT \/(1 X) and ap= Y’l‘.z)/(l_Xp)- (3-29)

2 Note: In what follows w + denotes w1, ete.
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We now write (3.14) as follows:

My=wi(1—Xi)(1—X.:—ni) Qix// FE+Yr (1—n2)y b (3.30)
v J
where
Qi=Qu(wi=ws); Y7 s1=wrjwy, (3.31)

and by (3.26), (3.27), and (3.28) obtain

er=at [0 { b (1=722) 120200
tagk, (1-725%) (1£Qu@)+7 7 [iasap{kﬂt‘\; o <rz,x+)z,,>}

Xk, .
_<m§ ﬂp) (] :F(l) Qp ]}—’_Xi - {asn OiQiQp)
J(w, t—k, 2)
ia,m,,<1+(ei(e,,>}] ECETE 3a2)

First we notice that £&=0, if w,=0. This is due to the fact that the differential space
charges and the longitudinal velocities (which form longitudinal plasma wave pairs coupled to
the transverse wave by w;) are zero in this case. Had we considered second order terms in the
pump wave field (which could easily have been done) this would not have beenso. The trans-
verse magnetic field thus is a very important factor in the nonlinear interaction theory.

When X,—1, or X,—~1, we have longitudinal driving force plasma resonance and [§¥|— o
(in the collisionless case). In this connection it is worth noting that

X Y% Y3
1—n2 1 X+1_T (=2
o if X—1 Y7>>12(0—X)Y,)).

72
14y (1-X),

1—ng

If these driving force resonances occur in the traveling wave resonance region, the generation
of sum and difference frequency wave may be greatly enhanced. KEven if there is no resonance
of the latter kind, sudden driving force resonances may cause appreciable sum and difference
frequency radiation.

Another level of considerable interest is the fourth reflection one, where |n,| or [n,|— .
At this level, determined by 6=0 (which indicates that it is a gyroplasma oscillation resonance
coupling), all electron velocities (and the differential space charge density) become very large.
This is in contrast to the plasma resonance level, where only the longitudinal velocity becomes
large (and p,,, if n,,=n,).

In ionospheric applications this important resonance level is difficult to reach, except from
a topside sounder. Moreover, traveling wave resonances, which are necessary, since /) other-
wise would grow to large values [see (3.10)], might be critical to obtain at this level in practice
(b would have to be zero both for w, and for w, or w,).

Before we continue the discussion, let us express the driving force velocities in the corre-
sponding £, fields. We have
1—n] =z 2 =

— K7, and v,= E3. v (3.33)

Xs maws X, muw,
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and find that

Ex=—j ’”;"f Ti L { —;Y 21 (Ns0ts £ p05) clo e wst=hid) | p@ } (3.34)
=1
Ef::_.] 7n;t ]f:z + Uﬂ;p (nsas(JP+'7lpast) El(; ej(wit_kiz)+véz) } (335)
S
We now obtain the final formulae,
e {w-;u—xi)u— X, ) D T iyt } (3.36)
sip 0
and
0 0
R i §Quet (1—X2) (1 — X o—n2)£5/D
& TsTp
g ( ) ,( T o ¢
+ }I{ sQlg \)n’j‘ﬂ;a; 1)1) eiloypt—ky 2 }+T:t \:7 ,27), (';'37)
where

X, mo,
—
A

s ete.
In order to study the stationary solutions, we present ) (3.10) in an alternate form, viz,

o - ok =an i)(“i——“‘j L) 5y G
¢ — "= 3.38
v Va(1=X0)™ (1*”0 x)( —1tg, +) (3:38)

where
Ne=ky/wi;ny +=n(ws); and n, +=n,(w). (3.39)

Since we want to study what happens at or near the traveling wave resonances (D*=0),
especially to obtain the amplitudes of the natural sum and difference frequency waves, we
neglect the (in this particular case) insignificant last terms in (3.36) and (3.37). By (3.38) we
can write

X 2K 2 2 2 2
EYJES e wyw (1—nd)(1—n?) V. 2 A—nd )(A—n2 L)
T 9 o g "7(1_‘ :t_’['i)" 2 2 2 2
(”’i_“'u,;t)(ni_’f'z,i

Er=— ) SEE(3.40)

2 Mw, wp 1—n%

I1BE=F> 18, (3.40a)

Next, let us, in analogy with paragraph 1, determine the natural waves, that leave, or
approach, the boundary z=0 between the 10111/ed medium (medium IT) and vacuum (medium I).
We have the following sum and difference frequency waves to consider:

Meprum IT

B,= B+ T 6% 0wt 0,09+ T2, 0t .29
(3.41)

Ev:Ef_{“

TO, g3 wst—Fo, =2 |

1 1
JQo, " L
where 7@ . and j@, . are sum and difference frequency polarization ratios of the natural
sum and difference frequency waves.

T2, enst b0

Mzeprum I
waptHp2co)
E, =R, =% 42)
3.42
Eu:Ré?)ile](wif+wi2/CU)

129



If we break up the associated wave, /5, in two components, a. and B, with the (natural)
polarization ratios @ . and @, ., we obtain

0 (3.43)
)2 Q:L—/ 0,:&:_1
6:!: Qo,d: Q(Zl,ﬂ:—l_l
The boundary conditions now yield
0 __ c I + o) : 1—n. .
TP =—0.j@o « ) 3 To00=—B1 Qs+ 2 (3.44)
1—mng, + 1—mn,
o T 1z n n.
R§’= s jQo, « '1i & t—l_B:i:JQI i—z—i
(3.45)
b o Me—ly Ty —Np o
IL(),:{:I &4 1—7o 4 +B. 1—ng +

The “reflected’ field, i.e., the wave leaving the boundary (z=0) in medium I, thus is com-
posed of two parts, with polarizations @ .. and @,, ., respectively. Since the energy flow in the
z-direction is

PP =ny(Qi+V|E3[*/Z,

the energy balance at the boundary requires that

Sign (7, i)—

, ?—— Sign @il £ @, (3.46)
Sign (1, )= | wst o,

For sum frequency waves ng, .. and n, .. are thus always negative (if we assume £, to be positive,
i.e., a pump wave incident upon the boundary in medium I). The natural sum frequency modes
travel always toward the boundary in medium II. When w,< w,, the natural difference frequency
modes travel towards the boundary, if k,< k,, and away from it, when &, >k,, When w, >
w, the situation 1s reversed.

If we make use of the fact that

Q_i___ X ni n, *,

(o, = = 1—Xi—ni 1—n . (3.47)
and

W e l_l—A)(i—nzi 1—n2, . ’ (3.48)

the “reflected,” frequency shifted field in medium I can finally be written

g BB, e w,,w,\.(l—nr,%)(l—n,f){ 1 1+n0‘i+ 1 14n,. isiefwiz/c()
! 2 Mo wews =i, Q8 2+ 1n+4no Qaz:.i_[—lnd:+n0,i: ’

(3.49)

E:Eso.uE(z)l.V € Wy (1"‘7"1%)(1_ n:) /jo + 14ny . jQZ.:i: 1»‘]“”:,:1: Eiejwizlco
? 2 Mo Wyws 1—ni Qo s t1lnetng . QFit1lni+n, . ’

(3.50)
where it is to be remembered, that @y .Q, .= —1.
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We notice from (3.49) and (3.50) that only two resonances remain (compare the similar
situation in section 1), viz,

No, +=—"Ny and Ny, . =—n,
or

— (ws == wp) My, 1= WMy == Wy, \|

: (3.51)
— (ws &= wp) Ny, +=w N+ Wy, J
It is also important to note that these resonances by (3.46) correspond to the correct signs
for ng, » and n,, ., and are thus physically possible, if |n,, . |= (w4 w,n,)/(ws+w,) |, or if [ng, .|
- ](“’snsi wpp) [(ws+ wp) ‘

The possibilities to obtain these resonances are considerable since ny ., n, ., n, and n,
may vary within wide limits in the magneto-ionic medium. The degenerate case w, —2w,
which is of particular interest if one wishes to study the possibilities of obtaining second
harmonic radiation or second harmonic echoes (£ ,= /7 ,—amplitude of higher power pri-
mary wave, w,—w, etc.; £ assumes a simpler form) has been investigated in detail by the
author [Rydbeck, 1962].

The second degenerate case, w_= —w; (which leads to the same resonance conditions, al-
though & is different from & of the previous case) is of particular interest, if one wishes to study
the possibilities of degenerate parametric amplification in the magneto-ionic medium.

Finally, let us return to the influence of the resonances of the driving forces, a situation
that is somewhat different when we discuss the magnitude of £, instead of »®.

Fourth reflection resonance.
Assume that |n,|-—>o. We then find from (3.32) that

£ oc(1—ni)n,,

oc"113 »_17—7|-?7,0 + ] —Jrﬁ’fi
(medium 1) I » N’-‘t‘f iy ”,j: {ﬁ Ny, +

which demonstrates that the influence of the driving force resonance is extremely strong. This
appears to be the most interesting nonlinear resonance in the magneto-ionic medium.

ie.,

E,

2. Plasma resonance.
X,—1; ng, ,—0, 1y, ,—>1.

a. n,=n;,. One finds that

" 1—n? 1+ng, & [ 1+mn, o

. ! =

e s f— 11,i NedMNo o @ Nodng o

In contrast to what might be expected, this driving force resonance produces no enhanced

effects.
b. N,=mng,. One now finds that

1—n2 1 14ng . . 140, . },

|E,| o«
“y| (medium IT) p
‘ 1—ni 1—X, \ne+mg, o notn, o

E

v

i.e., the effect of the driving force resonance is very profound. A more detailed study of sum
and difference frequency generation caused by this resonance will appear in the final section 5
of this communication.

A further analysis of the traveling wave resonances, (3.51), interesting as it may be, is
outside the scope and aim of the present communication. That interesting phenomena,
applicable to topside sounder ionogram interpretations, can be found is likely.
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4. Generation of Natural Sum and Difference Frequency Waves in a Slowly
Inhomogeneous Magneto-Ionic Medium

In order to analyze the resonance radiation of sum and difference frequency magneto-ionic
modes, we make use of (3.36), which by (3.10) for our present purposes can be written

?

R S

2 T

>+/£0 i> e ;+k

X(1—X . —n2)E* -y fza(l;xil.',,){[:i (4.1)

For the slowly inhomogeneous medium the solution to (4.1) now can be written

t,ﬂw t
P )} A‘ﬁ eHiox {/L < +,f iu’J o1 (etbtte )z gy i ;i(L[ ()—/f (keckkphe, 11([>
4 z, == 2

F4 2 z z z
— (1+/f ko dz [ e[ (I.,:i;I.',,+/:,J_t)t[z(/:_(,~/'f:al\'ui11: f (,,—jfza(l;.\ilc,,—l:a,x)(l;"l:)}. (4.1a)
A() + 23 J 2y J
If we assume that resonance takes place at some specified level z;,, where, for example
by, o =—(k, k),

and conditions are such (see section 2) that a forward extraordinary magneto-ionic mode is
generated, we obtain

2z (W*>>1)

¢i . ](“’il"f.: (kg%ky)dz)

2 4.2
{/‘();}:_(]L :t]»,,)} (/x\i/\,,) } (4.2)
>20 (W¥>2>1)
o j<wil—f§3(kstkl))cls) (,_jf::u(k"'ikl’)d: H(f[ 2, wdztr/ ;) / —
o (K, o~ (st k) H RS o~ (b2 hy)®} <m o2k Vg
(4.3)

[For definition of F{( see (2.9).]

Although the amplitude coeflicients are much more complicated than in the isotropic
case, dealt with in section 2, the radiation feature is essentially the same. Furthermore it should
be pointed out, see (3.32), that the pump wave, for example, does not have to be of extraor-
dinary kind in order to generate an extraordinary natural mode. This is a typical feature of
the nonlinear propagation theory.

In conclusion a few words should be said about the ray paths. Since we are dealing with
an anisotropic medium these will deviate from the phase paths. In order to make the dis-
cussion more general, we assume arbitrary incidence, and noting the direct similarity between
the coupling integrals of (2.5) and (4.2), write the phase of the downcoming difference frequency
wave as follows,

‘0 1 g c
by, 1= f (s, o=y e~k -y, )zt~ (@, sin gs0—w, 81N ¢y,0) (22—11), (+.4)
Jzg 0
where x; and z, are the ray positions corresponding to z,, i.e., z, for the downcoming difference

frequency wave [note: ¢, o= (¢,)n, =0, etc.].
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If the signal wave carries the information, for example in pulses, the position of the down-
coming difference frequency wave is determined by the condition that

a¢() -1

. 0 4.5

a@v,n ’ ( ))
and by

a¢() | ~

——=( 4.5a

a‘ﬂp,n ’ ( ' )

if the pump wave carries the information. The ray direction of the associated wave,

exp [1 {wff—(k\-,fikp,f)f— f "k, ks Me}}

thus has the ray direction of the signal wave or the pump wave, if the former or the latter
carries the information. This is another characteristic feature of the nonlinear propagation
theory.

Since

N, 7=+ N3—sIN? @ o,
ete., and

. 1 : .
Sin ¢_3 0=— (w, sin ¢ y—w,, Sin ¢,0),
w

we obtain

Oy, — s
Bo.—1_ @ cOS ¢ ¢

¢, ¢ Cy
) 1 1 dn, 1 dn_ A
“ {“”‘ et oo o ( ae) Fan ‘ﬂ-l*(&;ﬁ <,, a0 )
L

J

— r,>+< g() u—:l- (4.6)

For a very slowly varying medium x,—a, thus approximately becomes [compare (2.14)]

2 —flii 2 (3‘3(1 >} o (4.7)

Due to the “height dispersion” the ray path of the downcoming difference frequency wave is

o
deformed, as if the frequency shift reflection took place at the level ~(,—1—< 2k, ) » nstead of

H

at z,. For this change the wave normal paths in figure 3 have not been corrected.
Returning to our present case of magneto-ionic vertical incidence (¢, (—=0=¢ ; ), we obtain

o . 2N 1 dn, dn_ \L_ -
‘rl{'c :a+< > }{( ’/0> ("' ’[07> J 90.\-,0:07:‘;0/;,0 (4'1&)

The difference frequency wave therefore does not come down where the signal wave enters, if

1 dn, . 1 dn_
w6 Yoo o =

1 dn, P ’
& “To‘)(‘;)‘ﬂ“) (1 “)) )",’\!4<1~X>2> . &0)
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0 would have to be equal to 0° or 90° for u_ safely to be equal to zero. Since the nonlinear
driving terms disappear if §=0° (unless we consider second order quantities in the high power
pump field), we have to select §==90°, i.e., transverse magneto-ionic propagation, in order to
obtain reliable traveling wave resonance effects recorded at the same transmitting and re-
ceiving site (for example in a topside sounder).

5. Sum and Difference Frequency Generation When the Nonlinear Driving
Forces Have a Resonance

For the sake of simplicity we limit ourselves to one resonance only and assume that the
signal wave experiences longitudinal plasma resonance at some specified level z=z,. If H is
the scale height of the electron density, we write accordingly

_1+/_‘° {< ><<1} (5.1)

We now have to include (a modest) collision frequency v, and replace

Q= Yvas/(1 _Xs) by Ay V= YTA S/(l #‘Y.s;jaa');
where
5s:Vs/ws-

If the signal wave is of ordinary type, n,=mn, , (see 2b of sec. 3), & near and at the resonance
level can be written

)Y, w X Y
+ oy, 2 - 77“97__ n _ﬁ_L D
Frei(l n’:t)l X,— v, (,U{ (1+Q+Q,) £ —X,

j{w;tf—fg(ksikp)rlz; },
K (me+n,X e % J (X,#1) (5.2)

where k,~0. We have (naturally) neglected triple split coupling of the signal wave and like-
wise have assumed it to be of practically constant amplitude through the important part of
the resonance region, a helpful but somewhat crude approximation.

Noticing that b, can be written

1

4 o 72 , =
b=t (1—X X2 (Y (5.3)
relation (4.1) yields
. s . )
i> <Tz‘ >P531—X — 75, e e (5.4)
where
0 9
y==—FE ”—2—* (1—n2) A —n2) (1 —n2, +)(1—n2, ») X] ‘””‘gg“’—*f (1—X.—n2)
{( L) (14Q.0) £ (ni+ani)}, (5.5)
Y4
and

Z"(';l,y,:t:Erl)).y()/ﬁnwi; (56)

e., the a-c electron velocity that the pump wave would generate, in an isotropic medium.
Since the evaluation of ordinary and extraordinary natural sum and difference frequency
waves follows the same procedure, we take the ordinary sum and difference frequency waves
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as characteristic examples. By (4.1) we obtain approximately
a Arvad) t z s N2 .
E+ :_*_l i‘l/_()_j‘:f_ ) 1 €+jf2,. ko,+dz p‘Jfgu(’\'.\-+"‘p+"'(),+“’z o ,,,(l“”‘_, (5 7)
Yo 2 k3 +—k5, 4 ko + Jie 1—X,—J8,
— J

=1 % otk tEy )dz
H . e ffza< stkptko,4)

LX<

where it has to be remembered that &, , must be positive for a downcoming wave. The coupling
integral, ., now becomes (since k;~0)

J - g* B v et J -
$= (y,04)= Y=o W (5.8)
where

o=08,(k,+ko +) and y=(z0—2) (k,+ko +). (5.9)

One finds that )
J2me=°,, 0 4+ >0

F*(+,04)=1 jr, 01=0
0, o.<0. (5.10)

Assuming k, to be positive (pump wave running in positive z-direction), we thus find that a
sum frequency “echo” is obtained only if the electron density gradient is positive. This is in
accordance with the physical situation, since the signal wave runs in direction of increasing .X.

In order to demonstrate how the “reflected” difference frequency wave is being built up
in the driving force resonance region, we have in figure 4 presented the amplitude of the coupling
integral as a function of . One notes the (infinite) plasma resonance for ¢ =0, and the moder-
ate field perturbation in the resonance region, when /< 0.

If we assume that the pump frequency is larger than 2w, so that a difference frequency wave
in principle could propagate away from the resonance region, the coupling integral becomes

—gwm e [N =
I-=F W, o) f_w ey dy, (5.11)
where
o= (k,+ko ), and y=(20—2) (kp+ko ). (5.12)

It appears from (5.10) that
—gme™_, a_>0
S+, 0)= — jm, =0
0, o_<0. (5.13)

1(y,o)l

Ficure 4. Depicting buildup of downcoming sum
frequency wave.
Jly,0)
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Thus, also in the difference frequency case (w, >2w,) a positive electron density gradient is
required for a downcoming wave to be generated.
For the ordinary forward sum frequency wave the coupling integral becomes

[ o=8,H(ky—Fo, ) ]
F+= (y,0), where < (kep>o, +)
Y= (z—20) (kp—Fo, +)

P (5.14)
(0=0,H (ko —F,)

F +=—F*, o), where < ey, +)
| y=(e—20) (ko +—)

7

Thus, even the generation of a forward wave requires a positive electron density gradient.
The downcoming sum frequency wave, at the level z=z,, finally can be written

E} o =2RPWEY , (5.15)
where
(0) :____1_&-1 —8 Hlk +k | : M?0 a0 40 .
R, ko, + He =" ptho, + ollo,t fza(n.+A,,+A(,,+,<L
2 Cy z=2
p
2 2 2 2
WpWs (1—”,,)(1—71,0_4_)(1—7)/1‘_‘_) - 2
S
XY = 26 (1—Q+Q,) — ) (ny+Xin,) - (5.16)
A 1-n X, e imzg
Since
e ko N7 B S .
p-pmava.‘ e Ikp+k0,+1} for H— v, lkp+kn'+| (017)

an optimum that should be attainable at some levels in the ionosphere, the order of magnitude
of |[RQ 1| is 19, ,w./covs, if w,is moderately larger than 2w,.

If we assume the pump wave (the higch power wave) to be pulsed, and the signal wave to
be continuous, the sum frequency ‘“‘echo’ delay becomes

rg}):% fz°(ks_|_k,,+ko,+)(lzg%0 {zo—za—l—ll (2&)‘0”+1>}r (5.18)

if w, is so large that (n,),,~1. For the difference frequency ‘“echo” delay we similarly obtain

r0 {zo—za+H (2&_0}, (5.19)
Co Ws

provided that w,—w, is so great, that (n )., ~1. These relations yield

H-2 (:9—1®), (5.20)
and
20:2a+% { FO 4O (O 0) 2:} (5.20a)

By sum and different frequency pulse ‘“echo’” measurement of this kind it is thus in
principle possible (if w,—w; is large enough) to obtain not only the true ordinary reflection
height, z,(X;=1), but also the electron density gradient, N,/H, at the same. Since the pulse
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measurements have to be done at relatively high frequencies, for example f,=30 Mc/s, 7
and 7 can be determined with much greater accuracy than at the unshifted signal frequency
ws.  Another advantage is the fact that w,, if it is large enough, can remain unchanged, while
ws 1s swept through the probing frequency range of interest.

The immediate question one asks oneself is the following: Is it practically possible to
perform sum and difference frequency pulse echo measurements of the type just discussed,
using ground based equipment? If w?>">w;, the amplitude of £, by (5.16) approximately
becomes

109, wsm wo
> o ey D 5.
|]l0,+l| 4 ¢, v, 6%1;((0,,-{-603) waT $) () 21)
"
where
u:f H|ley ko, 4. (5.22)

If we assume u to lie in the range 0.08 to 4, i.e., within a u-ratio of 50, u>0.20 (gmx=1),
and w,/27=30 Mec/s, w,/2r=5 Mc/s, we obtain
21,,, - f

[ ia = Z22221074Y

which, with »,=103%, yields |R,, +1|~ Yy o If the ground based pump transmitter has an

effective radiation aperture A, and the ionospheric absorption is neglected at the pump fre-

quency, v , becomes B
00~ 1 AZyPo, Hmm IR
PV m wegr 2 &

where P, is the transmitter power and » the distance from the ground to the z,— level. Con-
sidering the fact that the returning sum (or difference) frequency travels practically without
absorption and that the atmospheric noise level at the sum (or difference) frequency is very
low, compared to at f;=5 Me/s, we may assume that a o) ,/c,-ratio of 107> would yield
a detectable echo at the ground (provided the regular ionosonde at 5 Me¢/s is powerful enough).
With an effective antenna area of 10* m?, and 7,=300 km, P, becomes 5 MW. It thus seems
to lie within the possibilities of present dny techniques to perform ionospheric sum and differ-
ence frequency measurements as outlined. Beyond doubt practical experiments of this type
would be very interesting and probably also rewarding.

The research reported in this communication was partly done at the Ionosphere Research
Laboratory (IRL), Pennsylvania State University, and partly at the Research Laboratory of
Electronics, Gothenburg, Sweden. The author is much indebted to the IRL for its hos-
pitality. The Air Force Cambridge Research Laboratories, Bedford, supported two thirds of
the research under contract AF61(052)—451 with the Research Laboratory of Electronics,
through the European Office of Aero Space Research.
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