The small crater Heinsius A which exhibited the
radar enhancement is the bright spot indicated by
the arrow.

Also, it is known that during a lunar eclipse the
rayed craters exhibit a different cooling rate than the
rest of the lunar surface. The most recent measure-
ments of a lunar eclipse in December 1964, show that
many other craters also show this anamolous cooling
behavior. One of the newly discovered “thermal-
anamolous” craters has been tentatively identified
as Heinsius A, the crater which was bright under full
moon and showed a radar enhancement. The optical,
thermal, and radar results can be explained by lo-
calized areas of bare, exposed, and compact rock.

In conclusion, lunar radar echoes were examined
in delay and frequency in a manner such that returns
were reflected from localized areas on the lunar
surface. The mapping of these returns showed that
young and rayed craters have enhanced radar scatter-
ing. The craters which show these radar enhance-
ments always appear bright on the full moon and from
the latest infrared results, appear to be anamolous
in that regime also. The results at all wavelengths
can be explained if these are localized areas of bare,
exposed, and compacted rocks.

Although this paper concerned the radar behavior
of young and rayed craters it should be noted that the
mountainous regions were shown to reflect more power

than the maria regions. The enhancements were
much less modest than those for the craters. For

example, mountainous regions reflected 1Y2 to 2 times
as much power as the maria region, while scattering
enhancements of craters show they reflected up to 10
or 20 times as much power as other areas on the
moon.

Discussion Following Thompson’s Paper

T. Hagfors: What reflection law did you use?

T. W. Thompson: An empirical law based on obser-
vation from Millstone Hill at 440 Mc/s, using a 100-
usec pulse length.

C. Sagan: Have you looked to see whether there is
any systematic difference between the scattering be-
havior of craters without central peaks?

T. W. Thompson: 1 have not looked specifically for
this effect.

C. Sagan: Such a correlation might be expected.

(Paper 69D12-620)

Interpretation of the Angular Dependence of
Backscattering From the Moon and Venus

Petr Beckmann

Electrical Engineering Department, University of Colorado, Boulder, Colo.

and

W. K. Klemperer

Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo.

A previously derived formula, expressing the variation of the mean power backscattered from
the rough surface of a planet with the delay time or angle of incidence by taking into account both the
composite roughness of the surface and shadowing effects, is checked against new data from the Moon

and Venus at five different wavelengths.

The agreement with the lunar data is very good and leads to
certain conclusions on the nature of the lunar surface.

The data on Venus are also in good agreement

and indicate that its surface is smoother than that of the Moon, but with an abundance of small structure.

1. Introduction

The problem of extracting information on the lunar
and planetary surfaces from the measurements of
radar backscatter from these surfaces has been the
subject of many studies in recent years [cf. bibliography
given by Evans, 1965a]. Until recently, no theory
free of arbitrary and unnatural assumptions could
provide a fit to the measured curves of backscattered
power versus delay time (i.e., angle of incidence) and
in the absence of this basic agreement the conclusions
drawn from the measured curves must necessarily be

doubtful.

In the present paper we hope to show that very good
agreement with the measured curves may be obtained
over the entire range of delay time by applying basic
Kirchhoff theory and refining it to include two impor-
tant effects: composite roughness and shadowing.

For radar backscatter from the Moon or a planet
the pertinent geometry may be seen from figure 1.
A radio pulse of duration Tp traveling with velocity ¢
illuminates an annular ring of area 4 on the surface
of the planet. This area is easily shown independent
of position and equal to 4= 2macT, with a the radius
of the planet. The angle of incidence 0 changes from
0° to 90° as the pulse travels from the subterrestrial
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FIGURE 1. Geometry of radar backscatter from a planet.

point D to the limbs of the planet; for sufficiently short
pulse durations T} (or equivalent techniques of attain-
ing high resolution), 6 remains essentially constant
over the illuminated area. The radar will measure
the mean backscattered power P* as a function of the
delay time t; we set t=0 when the pulse first reaches
the point D. It will be seen from figure 1 that 6 is a
simple function of the delay time ¢:

0=arccos (1 —ct/2a). (1)

Using (1), the measured curve P*(t) is easily plotted
as a function of 6 and, to permit comparison under
varying conditions of equipment, etc., is normalized
to the ‘“angular spectrum” by dividing by P* for
0=0, i.e.,

It is against this experimentally measured function
that a theoretically derived function P(6) must be
checked before any conclusions on the nature of the
planetary surface can be drawn.

2. Theory

There is at present no general theory leading to
explicit results for electromagnetic scattering by any
kind of a rough surface &(x, y) where ¢ is the deviation
from a (mean) xy plane, the surface being the interface
between two regions of arbitrary electrical constants.
However, the solution is available [Beckmann and
Spizzichino, 1963] for a large class of surfaces, includ-
ing those generated by a stationary random process
&(x, v); this class is limited by the following assump-
tions: (a) the surface bounds a perfectly conducting
region, (b) the radii of curvature of the surface are
large compared to the wavelength, i.e., the surface
does not have an abundance of sharp points or edges,
and (c) multiple scattering may be neglected.

Assumption (a) seems at first sight unrealistic for
lunar or planetary surfaces, and so it doubtless is if
only the conductivity per se is considered. However,

all experimental and theoretical evidence indicates
that for the scattering characteristics of a surface,
the roughness is much more significant than the con-
ductivity: a change in conductivity may change the
scale of the scattering diagram, but will not—like a
change in roughness or slopes —significantly change its
shape and general character. On the other hand, the
above statements concern only the amplitude and
power scattering characteristics (mean or random);
they certainly do not apply to problems of depolariza-
tion, which can be shown to be very strongly dependent
on conductivity, and permittivity. In fact, the theory
to be outlined below is not suited for direct application
to problems of depolarization and we shall not attempt
to solve them in this paper.

Under the above assumptions one may derive the
field scattered into an arbitrary direction (e.g., the
backscatter direction) when the surface is illuminated
by a plane wave at an angle of incidence 6. In the
case of interest here, namely when &(x, y) is generated
by an isotropic stationary process with probability
density p(z) and correlation function

B(r)= < &(x1, y1)é(x2, 32) >, 3)

with 7 the distance between the points (x1, y1) and
(x2, y2) on the mean (smooth) surface, the solution
is derived in chapter 5 of Beckmann and Spizzichino
[1963].

When the above procedure is applied to the case
of backscatter for the geometry of figure 1, the agree-
ment with the measured curves (2) is closest if p(z) is
normal (mean 0, variance ¢?) and the correlation func-
tion (3) is exponential:

B(7)= a2~ 11Ty, @)

where the constant T; is the correlation distance,
i.e., the value of 7 for which B(r)=e~1. For the above
functions p(z) and B(7) one obtains [Beckmann, 1965a]

}\2T2 . -3/2
Py0)= (cos4 0+ Wo{_}‘ sin? 0) , (5)

with A\ the wavelength of the incident radiation.

However, the agreement of (5) with the measured
dependence P(6) is not satisfactory for two reasons:
(a) The value of T%/0% for which the best agreement is
obtained is unrealistically high, i.e., far off the values
to be expected from optical observations of the lunar
surface, (b) agreement is obtained only over the range
of 6 from 0° to about 60°, but not near the limbs, where
the measured, “tail” of the echo falls off rapidly as
0 approaches 90°, whereas (5) approaches a constant
value.

The theory was therefore refined in two respects.
The first [Beckmann, 1965a] concerns an analysis of
a rough surface generated by a superposition of sev-
eral random processes:

Sy = adn, yi-ESke, Wk O+ Eulx, V)0 8]
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each with its own distribution and correlation function.
Let the distributions of the &; be normal with mean
zero and variances o?, so that the scale roughness of
the jth component fj(]x, y) is

gj

=30 (7)
and let the correlation function of this component be
Bj(T) = 0'].26_ I/} ®)

so that its “equivalent™ root-mean-square slope is !

5= Viim B0 =7 ©
T ]

It can then be shown [Beckmann, 1965a] that in-
stead of (5) we obtain the more general expression

WPo(0) =(cos* O+ R sin® 9)~3/2, (10)
where
1
R = n 2 (1 1)
<4-7r D rjsj>
j=i

! A random process with correlation function (8) does not have an rms slope: the quan-
tity s; is defined by (9) and is named “equivalent” rms slope for reasons evident from its
derivation [Beckmann, 1965a). This is done here to avoid certain mathematical issues of
secondary importance.

& T T T T
-10 - _
m
G2
>
= R=20
[al,;
-20 |— -]
40
60
200—
180— 80
160—N\ 100
140N
20
30 | | x |
0 10° 20°  30°  40° 50°  60°  70°  80°  90°
6 —
FIGURE 2.

For a given wavelength, R is a constant and thus (10)
has the same form as (5); however, owing to Cauchy’s
inequality,

(12)

(Sm)<Sasg=re
J J

J

the numerical value of R, now a result of summing
many components, is reasonable when interpreted in
terms of scale roughness and rms slope of the surface.
It should be noted from (11) that (10) will be strongly
affected not only by the roughness r; of the individual
components, but also by their slopes s;, which stresses
the importance of small-scale components.?

Curves of (10) for various values of R are shown in
figure 2.

The second refinement of the theory, which corrects
the disagreement of (10) with the measured depend-
ence near the limbs, concerns partial shadowing of
the rough surfaces. It is usually assumed in calcu-
lations of rough-surface scatter that all parts of the
surfaces are illuminated. In reality this is only true
for normal incidence (#=0°; for other values of 6
the hills will cast shadows on other parts of the sur-
face (fig. 3). These parts of the surface will not be
effective in scattering. The power backscattered by
a partially shaded surface may be calculated by deter-
mining the statistical characteristics of the surface
consisting of the illuminated parts of the original
surface only. This has been done elsewhere [Beck-

2 Relations (10) and (11) hold if the components in (6) are independent. If this is not so,
cross-correlation functions must be considered, which leads to more involved mathematics,
but not to changes in principle [cf. Hayre, 1965].

P(g) dB

12 \I0

\b" 20° 30° 40° 50° 60° 70° 80° 90°

e ——

Mean relative backscattered power as given by (10) for

various values of R.
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FIGURE 3. Shadowing of a rough surface, (a) general, (b) effect of
small structure.

mann, 1965b] and leads to a shadowing function S(6)
which yields the mean backscattered power for a
partially shaded surface through
P(6) = S(6)P(6), (13)
where Py(0) is the backscattered power calculated
without regard to shadowing, e.g., (10).
In the special case of a normally distributed surface,
the shadowing function reduces to [Beckmann, 1965b]

S(0)=exp [—itan 0 erfc (K cot 0)], (14)
where
erfc x=l—erfx=2—fme‘t2dt (15)

and the constant K is given by

o 16
2[B"(0)] (10

or in the case of (6) and (8) by

17

(V)
M=
&£

Jj=1

with s; given by (9) and hence s the overall “‘equivalent”
rms slope of the surface (see footnote 1).

It should again be noted that it is the slopes of the
surface that determine the extent of shadowing, since
|B"(0)| equals the mean square slope of the surface;
thus it may again be the small-scale components (small
roughness rj) that are decisive if their slopes are suf-
ficiently large. The physical reason for this is evident
from figure 3b, where the small-scale variations par-
tially shade the ‘“‘south” slope of the large-scale
roughness without adding light to the ‘“‘north” side.

Curves of (14) with K as parameter are shown in
figure 4. The shadowing functions S(¢) are plotted
in decibels so as to facilitiate multiplication by the
curves of Py(6) in figure 2.

—4

s (§ dB —»

-10

40° 90°

FIGURE 4. Shadowing function S(0) given by (14) for various values

of

From (10), (13), and (14) we obtain our final formula
for the mean relative power backscattered from the
lunar or Venusian surface as a function of the angle
of incidence,

Po)=
(cos* 8+ R sin? )32 exp [—i tan 0 erfc (K cot 0)], (18)

where K and R are meaningful physical constants
given by statistical characteristics of the surface
through (11) and (17). Note from figures 2 and 4 that
R determines the curve for the lower range of 6, while
K determines it near the limbs; thus in fitting (18) to
the experimental data, there is no possibility of arbi-
trary adjustment of R at the expense of K or vice versa.

In the rest of this paper we hope to show that (18)
does indeed give a very good fit to the data available
to us. However, before we go on to the experimental
curves, it is well to realize that R and K are constants
only with respect to 60; in general they are functions of
the wavelength. This may be seen immediately from
(11) and (7), from which it follows that R is propor-
tional to A2 This principal wavelength dependence
is in fact borne out by the experimental measurements
made at different frequencies: the longer the wave-
length, the more peaked the response near 6=0° (cf.
figs. 5 and 6).

However, apart from this principal and explicit
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wavelength dependence, there are other frequency-
dependent factors which are not as easily determined
quantitatively. Of these, two appear most important.
First, let us write (6) in decreasing orders of oj; the
components with o; < < A\ will obviously have no effect
(or the same effect as ¢ =0) on the backscattered
power, e.g., local facets of the surface that reflect
radio frequencies specularly may be rough on an optical
scale. Thus n in (6) is, in effect, frequency-dependent
and hence by (11) and (17) R and K must also be
frequency-dependent. Secondly, the shadowing func-
tion (14) was derived from purely geometrical consid-

0

erations; the penumbral regions caused by diffraction
were neglected. Since diffraction is a frequency-
dependent phenomenon, this is a further reason why
K must be frequency-dependent. The error in neglect-
ing diffraction will appear as a distorted numerical
value of K as determined through (17); this part of
the error will vanish as A— 0.

These secondary, implicit frequency-dependencies
are in fact borne out in the numerical values of R and
K even when the explicit dependence of R on A? has

been accounted for, as we shall see in the following
sections.
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FIGURE 5.

Comparison of (18) with lunar radar data measured at five different wavelengths.

The optical data follow from the uniform brightness of the lunar disk.
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3. The Moon

For a convincing check of (18) against the experi-
mental lunar data, the measured curve P(6) should
be known over a sufficiently wide range of ; other-
wise the fit is obtained too easily to provide a re-
liable verification of the theory. The high-resolution
lunar backscatter measurements over a sufficiently
wide range of 6 that are available to us are those made
at wavelengths of 8.6 mm, 3.6 cm, 68 cm and 6 m as
reported below.

Lynn, Sohigian, and Crocker [1964], using a radar
located at Lexington, Mass., at 34,990 Mc/s (8.6 mm)
with a power of 12 W and a beamwidth of 4.3 min of
arc, measured values of P(f) shown in figure 5 together
with the curve computed from (18). A close fit is
obtained for R=3 and K in the neighborhood of 4;
their measurements do not go far enough out to the
limbs to determine K more accurately.

A better check on (18) is provided by the data re-
ported by Evans and Pettengill [1963] for A=3.6 cm
and 68 cm. The measurements at 3.6 cm were made
with a radar located at Pleasanton, Calif., with 12 kW
peak power with a resolution of 30 usec. The result-
ing data are again shown in figure 5, together with the
curve computed from (18) for R=21, K=3.6. It will
be seen that the curve fits the measured dependence
to within 1 dB.

The next set of data in figure 5 is the one measured
by Evans and Pettengill [1963] with a 440-Mc/s (68-cm)
radar located at Westford, Mass. Using a power of
2 MW, a resolution of 12 usec was attained. Because
of the high resolution of these measurements and the
range in 0 (almost to 90°), this set of data is of the
highest quality and ampleness presently available.
As may be seen from the figure, (18) again provides
an extremely close fit for R=85 and K=0.95.

The squares in figure 5 show the data obtained by
Davis and Rohlfs [1964] at a wavelength of 11.3 m
using 250-usec pulses; a fit to these data is obtained
for R=200. The measurements do not go out far
enough to the limbs to determine a value for K; also,
the relatively large scatter and error bars make ac-
curate comparison difficult.

Finally, figure 5 shows the data on P(6) obtained at
A=06 m (49.92 Mc/s) by Klemperer [1965] using the
radar at Jicamarca, Peru, with a power of 2 MW and
resolution of 100 usec. The solid line computed
from (18) for R=165 and K=0.03 once more yields
a very good fit to the measured data.

Also indicated in figure 5 (top curve) is the Moon’s
uniform brightness at optical sequence as given by
Lommel-Seeliger law [Evans, 1965a, p. 35]. Formula
(18) matches this curve for R ~2, K ~ 5.

As expected, R and K turn out to be frequency-
dependent. Figure 6 shows an attempt to plot the
functions K(\) and R(N). Although we certainly do
not claim these curves—given by only four points
each—to be the exact dependencies, the figure leaves
little doubt that the values of K and R, originally
picked to give the closest fits in figure 5, are not
accidental, but follow a monotonic pattern consistent
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FIGURE 6. Dependence of R and K on wavelength for the lunar
surface.

with the discussion at the end of the preceding sec-
tion: on the longer wavelengths, diffraction will be
more effective and will thus reduce the shadowing
effect (compare the dependence on K in fig. 4). Sim-
ilarly, the values of R(A) appear to lie on a smooth,
monotonic curve; for the reasons given in the pre-
ceding section, R is an increasing function of the
wavelength.

Relation (17) was derived by geometrical optics
and will therefore be strictly valid only as A—0.
For the shortest wavelengths available, 8.6 mm [Lynn,
Sohigian, and Crocker, 1964] and 3.6 cm [Evans and
Pettengill, 1963], K will be seen from figure 6 to lie
in the neighborhood of 4, which by (7) corresponds
to an effective rms slope of the lunar surface of 10°.
However, for the reasons given above, this value
should be used with caution.

4. Venus

The experimental data that are available in suffi-
cient detail to permit a check of (18) are those by Dyce,
Pettengill, and Sanchez [1965], Kotelnikov [1965],
and Evans [1965b]. In addition, the angular charac-
teristic may be inferred from the frequency spectrum
reported by Carpenter [1964] and Muhleman [1965] or
from the power-delay time curve obtained with a long
pulse [Klemperer, Ochs, and Bowles, 1964].

Figure 7 shows the data measured by Dyce, Petten-
gill, and Sanchez [1965] at the Arecibo Ionospheric
Observatory at 430 Mc/s (70 cm). The full curve is
a plot of (18) for R=120, K=1.0. The theoretical
curve is seen to be generally in good agreement with
the measured data, although an irregularity appears
in the range from about 20° to 50°% a similar irregu-
larity appears in figure 9 in a different position, and
might therefore be attributed to a large inhomogeneity
of the surface (e.g., continents) presenting different
aspects to the terrestrial radar at different times owing
to Venus’s rotation [Carpenter, 1965].

Figure 8 shows the data measured in the USSR in
1962 (upper curve) and 1964 (lower curve) at a wave-
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length of 43 cm as reported by Kotelnikov [1965].  The
full curves plot (18) for R=235 and 120 respectively.
Kotelnikov [1965] attributes the difference in the two
sets of measurements to a smoother side of Venus
being turned to the Earth during the 1964 measure-
ments; however, no such difference is apparent in

the JPL data [Carpenter, 1964; Muhleman, 1965],
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FIGURE 9. Comparison of (18) with data measured at 23 cm for

Venus [Evans, 1965b).

which were also taken in 1962 and 1964 at a different
wavelength (12.5 em).  Also, the value R=235. which
provides a fit to the 1962 data, is far lower than any
corresponding to any other set of measurements, and
we are therefore inclined to give more weight to the
1964 USSR data, which are consistent with all the
rest of the data which we have investigated.

Figure 9 shows the data obtained by Evans [1965b]
at a wavelength of 23 em. A very good fit is obtained

from (18) for R =200, K=0.1.

Additional values for the parameter R and some
estimates for K can be obtained from the data available
at A\=12.5 cm and A=6 m. A curve of P(0) versus 6
was obtained by Carpenter [1964] from a CW radar
spectrum of Venus taken on December 5, 1962, by
inverting an integral equation. The radar was op-
erated at 8350 Mc/s with a power of 12 kW. Values
of R~ 140 and K ~ 0.4 are appropriate in fitting equa-
tion (18) to these data, although the scatter in the
points beyond 6=30° is considerable. The same
radar was used again in 1964 (near closest approach
to Venus) but with an increase in CW transmitter
power to 100 kW. A very fine spectrum was obtained
on June 17 [D. O. Muhleman, private communica-
tion], from which a value of R =120 can be inferred
for the backscatter function. The data at A=6 m
[Klemperer, Ochs, and Bowles, 1964| were obtained
with the Jicamarca radar in Peru using 500-usec
pulses. Only an estimate of the true P(6)-versus-
0 curve can be made, as convolution effects are serious.
Independent estimates of the value for R were also
obtained from (a) the spectrum of fading, (b) the com-
parison of echo amplitude on 3-msec and 500-usec
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pulses. The value for the parameter R thus found is
200+50. All the data available from A=6 m to A=

12.5 ¢m are summarized in table 1.

TABLE 1. Values of R and K for Venus.
Srers X R K |Exp date References
50 6 m ~ 200 12/2/62 |Klemperer. Ochs. and Bowles [1964].
430( 70 cm 120 1.0] 5/22/64 |Dyce. Pettengill. and Sanchez [1965].
700] 43 cm =135 1962  |Kotelnikov [1965].
120 1964
1295| 23 ¢m 200 0.1 1964  [Evans [1965b].
8350125 cm | ~ 140} ~ 0.4] 12/5/62 ||Carpenter [1964].
~ 120 6/17/64 |Muhleman (private communication).

It will be seen from figures 7 to 9 that again (18) is
in good agreement with the measured dependencies.
The values of K are now less reliable than in the case

of the Moon, since the measurements taken from
Venus, particularly at the shorter wavelengths, do

not go out to the limbs far enough. The values of R
do not vary with wavelength as strongly as in the case
of the Moon; they range from 120 to 200 for all five
sets of data. This behavior is characteristic of a
smooth surface having an abundance of small struc-
ture. For, if the slopes of the Venusian surface are
steeper than those of the Moon (as indicated by the
lower values of K), then diffraction effects may offset
the basic wavelength dependence more than in the case
of the lunar surface.

Comparison between the lunar and Venusian sur-
face is best made for the mutually closest wave-
lengths available. This is the case for the lunar data
measured at 68 c¢cm [Evans and Pettengill, 1963] and
the Venusian data obtained at 70 ¢m [Dyce, Petten-
gill, and Sanchez, 1965], yielding the values R=285,
K=0.95 (fig. 5) and R=120, K=1.0 (fig. 7) respec-
tively. Comparing the values of R, it follows that the
surface of Venus is smoother than that of the Moon.
This is also confirmed by the data of Klemperer, Ochs,
and Bowles [1964], measured at a wavelength of 6 m,
which yield R=165 for the Moon (fig. 5) and R =200
for Venus. On the other hand, the smaller values of
K at the shorter wavelengths (0.1 at A=23 cm and
0.4 at A=12.5 cm for Venus as against 3.6 at A\ = 3.6 cm
for the Moon) indicate steeper slopes for Venus.
Recalling that ‘“smoother” refers to the standard
deviation of the surface, whereas its slopes are deter-
mined by the correlation function, the above results
indicate that small structure is present to a larger
degree on Venus than on the Moon.

5. Conclusions

The expression (18) for the mean power backscat-
tered from the rough surface of the Moon or a planet
was derived under certain assumptions stated in sec-
tion 2. The formula is in very good agreement with
the measured curves at-five different frequencies in
the case of the Moon; for the data available from Venus
the agreement is also good. Comparison of the two
sets of curves shows that Venus must be smoother
than the Moon, but has more small structure.

The limitations of (18) are primarily given by the
quantitatively unknown part of the wavelength de-
pendence of the parameters R and K, as explained
in more detail in section 2. Although (18) is evidently
the correct functional dependence, the numerical
values of the parameters R and K should therefore
be used with caution when drawing conclusions on
the properties of the surface that determine R and K.

The other limitations appear less important. The
fact that (6) assumes a stationary process (although
the statistical characteristics of the lunar surface
will vary around the illuminated ring) does not appear
detrimental to the good agreement shown in figure 5,
although in the case of Venus a small irregularity
appears that may well be due to this point. Simi-
larly, the assumption of perfect conductivity is, for
the reasons given in section 2, practically immaterial
for the calculation of the relative mean power backscat-
tered at various angles of incidence. The conductivity
will, however, significantly affect the depolarization
of the backscattered radiation; this is an altogether
different problem that we have not investigated here.
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Discussion Following Beckmann and Klemperer’s Paper

T. Hagfors: Doesn’t the theory presented here
grossly overestimate the effects of shadowing, since
the shadowed regions would not be inclined favorably
for reflection anyway?

Answer: No; cf. sec III and IV of Beckmann [1965b].

R. M. Goldstein: It seems as though the returned
power does not go to zero at the limb, in your ex-
pression.

Answer: It goes to zero, cf. (14) for 6 — /2.

(Paper 69D12-621)

A Note on the Radio Reflectivity of the Lunar Surface
A. Giraud

National Center of Telecommunicational Studies, CDS Department, Issy les Moulineaux (Seine)

To the extent that scattering phenomena can put boundary conditions on properties of the surface,
the results obtained by the use of radar have provided less information on the lunar surface than the

passive radio observations.

Where the latter have given information such as on the refractive index

or the thermal resistivity, the interpretation of the lunar radar echoes has dealt principally with the

character of the geometry of the reflected surface.

Once this aspect is established, it is possible to

obtain the reflection coefficient at normal incidence, given by Fresnel’s formula,

1— VK +iK"
1+ VK + ik’ W

where K' and K" are the real and imaginary parts of the complex relative permittivity.

‘In this way one finds K’ = 2.7 at decimeter wavelengths.

The same coefficient of reflectivity

obtained at centimeter wavelengths by Russian radio astronomers, through the surface emissivity

and Kirchhoff’s Law, give us K’ = 1.5.

This difference between the properties of the lunar surface

was attributed to the greater penetration of the longer waves.
In this study we propose to explain such a variation of the coefficient of reflectivity with wavelength,

by using only radar data.

We will quantitatively explain this variation by the use of a model where

the lunar surface does not consist of abrupt discontinuities —where the reflective properties may be
explained by (1) at wavelengths greater than a few meters.

1. The Spectra of the Lunar Reflectivity at
Short Wavelengths

1.1. General

The published results of lunar radar observations
range from wavelengths of about 1 ¢m to more than
10 m. They show a progressive change in the mech-
anism of reflection, being diffused at millimeter wave-
lengths and semitransparent at decameter wavelengths
(fig. 1). At the same time, the fraction of the returned
energy, or the effective scattering cross section o,
seems to increase by a factor of the order of two (fig. 2)
between 10 em and 10 m. We can write

o= Tma’rg, 2)

Where a is the radius, g represents the “gain” due to
the geometric characteristics of the surface, and r is
the mean “albedo” corresponding to the intrinsic
electromagnetic properties of the material responsible
for it.

For the extreme cases of a perfectly smooth sphere
and of one completely diffused (according to Lambert’s
law), the factors r and g are independent. Let us

assume that the constituents have the same dielectric
constant K to a depth much larger than the wave-
lengths in use.

In the first case we have

Usmooth = 77(1'2 ’ R I 2* (3)

where R is Fresnel’s coefficient for normal incident
given by (1). For K= 3, for example, we have

Tsmooth = 0.0727a>. (4)
In the second case,
w8 2| |2
O Lambert _g ma |R| ) (5)

where |R| represents a mean reflection coeflicient
averaged for all incident angles and all polarizations.
It is possible to show numerically that |R|2=0.125;
therefore

O Lampert = 0-33ma?. (6)
As the wavelength becomes longer, the effective

lunar cross section, instead of increasing, decreases
by a factor of 4 or 5 at the same time that the specular
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