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In this paper a study of the minimization of the radar cross section of a thin cylinder by central
loading is presented. The induced current on a center-loaded cylinder illuminated by a plane wave
at an arbitrary angle is determined. The backscattered field is calculated and the optimum loading
to achieve zero broadside backscattering is obtained. An optimum impedance loaded at the center
of a resonant cylinder can reduce its radar cross section more than 30 dB for any aspect angle. For
an antiresonant cylinder an optimum central loading can minimize the radar cross section in the
broadside direction but it cannot modify appreciably the radar cross section in the off-broadside
direction. The effectiveness and the feasibility of the loading technique for the reduction of the radar
cross section of a metallic body is discussed.

1. Introduction

Many investigations have been made of methods of reducing the radar cross section of metallic
bodies, especially with regard to applications to radar camouflage techniques. Two methods
have been widely used: the first utilizes radar-absorbing materials, the second consists of reshap-
ing the body to change the reflection pattern. A third method, known as the method of reactive
loading, is the subject of investigation of this paper.

The first known use of reactive loading to minimize the backscattering cross section was made
by lams [1950] who applied the technique to metallic posts in a parallel-plate pillbox structure.
Shortly after this, Sletten [1962] employed the method to decrease the radar cross section of ob-
jects in space. Several other authors [King, 1956; Hu, 1958; As and Schmitt, 1958] have also
studied the cross section of a cylinder with and without a central load. These investigations in-
dicated that the cross section of a half-wavelength cylinder can be significantly reduced by the use
of a high reactive impedance load at its center.

Chen and Liepa [1964a] reported on the use of reactive loading to reduce the broadside back-
scattering from cylinders illuminated at normal incidence. They showed how an optimum load-
ing could be found for zero broadside backscattering. In the present paper, the study is gener-
alized to the case of arbitrary incidence and considers the case of backscattering in an arbitrary
direction. An article on doubly loaded cylinders is in preparation.

The problem is studied by considering the current induced in a body illuminated by an electro-
magnetic wave. We consider the case of a plane wave which illuminates a perfectly conducting
cylinder whose radius is small and whose length is less than two wavelengths. The plane wave
induces a current on the cylinder; this in turn produces a scattered electromagnetic field. If
an impedance is added at the center of the cylinder, the induced current is modified; hence, so is
the scattered field. An optimum loading of the cylinder will reduce the magnitude of the induced
current and reverse its phase over some part of the cylinder. As the result the scattered field
can be minimized in a direction over an aspect range.

! The research in this paper was supported by Air Force Cambridge Research Laboratories under Contract AF 19(628)-2374.
2 Formerly with the University of Michigan, Ann Arbor, Mich.

1481



For a center-loaded cylinder the induced current is first determined as a function of the
cylinder dimensions, the midpoint impedance, and the incident electric field. Using this solution
we calculate the scattered field and obtain an optimum impedance, i.e., an impedance which gives
a minimum backscattering. In order to verify this solution, the calculated values of the radar
cross sections of loaded cylinders are compared with the experimental results by Chen and Liepa
[1964b]. Excellent agreement is found between theory and experiment.

Throughout the study a resonant cylinder whose total length is equal to 0.43\ (A = wavelength)
and an antiresonant cylinder of total length 0.85\ or 0.9\ are used as typical examples. In the
interest of simplicity, the analysis is limited to the case of a thin cylinder. The length of the
cylinder is assumed to be shorter than two wavelengths. This dimension is in the so-called reso-
nance region and is of special importance in radar detection. MKS rationalized units are used in
the analysis and the time-dependence factor e’ is omitted.

2. Induced Current on a Center-Loaded Cylinder Illuminated by a Plane Wave
at an Arbitrary Angle

When a plane electromagnetic wave is obliquely incident on a center-loaded cylinder the
induced current can be divided into a symmetrical and an antisymmetrical component. The sym-
metrical component is predominant in a resonant cylinder while in an antiresonant cylinder the
antisymmetrical component dominates. A midpoint impedance has a strong effect on_the sym-
metrical component of the induced current but does not affect the antisymmetrical component.
For this reason central loading is very effective in reducing the backscattering in the broadside
direction but cannot modify appreciably that in the off-broadside direction.

As the first step of the analysis, the induced current on a center-loaded cylinder illuminated
by a plane wave at an arbitrary angle is determined as a function of the cylinder dimensions, the
" midpoint impedance, and the incident electric field. The integral equation method is used. It
is worthwhile to note that King [1956] solved a similar problem of a center-loaded receiving antenna
but ignored the antisymmetrical component of the antenna current. His results are also too
complicated for our purpose. We use a somewhat different method to determine the induced
current on a center-loaded cylinder as an explicit function of the midpoint impedance.

2.1. Integral Equation for the Induced Current

The geometry of the problem is as shown in figure 1. A cylinder with a radius a and length
2h is assumed to be perfectly conducting. A plane EM wave is incident to the cylinder at an angle

72 z=h
T z
FIGURE 1. A center-loaded cylinder illuminated
gap = 26 L obliquely by a plane EM wave.
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#. A lumped impedance Z; is connected at the center of the cylinder. The dimensions of in-
terest are

i}\<2/1<2)\
Bia? < <1,

where A\ is the wavelength and By is the wave number. The second condition implies that the
cylinder is thin and only the axial current is induced.
The tangential component of the incident E field along the cylinder is assumed to be

Eiz" =F, cos QeiBo sin bz (1)

where Fj is a constant.
The current and the charge on the cylinder maintain a tangential electrical field at the surface
which can be expressed as
d

E;'Z—(;_jw/“z 2)

where ¢ is the scalar potential maintained by the charge and A, is the tangential component of
the vector potential maintained by the current. By using the Lorentz condition,

L@ -
d=j VA 3)
0
Equation (2) can be expressed as
A .
[Lz__JEﬁ §+B())AZ' (4)

The electric field maintained across the gap at the center of the cylinder can be expressed as

EgzZI,IOS(Z) (5)

where Z, is the center load, [, is the induced current at the center of the cylinder and 8(z) is a
delta function.

Since the tangential electric field should be continuous at the boundary we obtain the following
equation

E¢+ Ein=7,18(z) (6)
for —h<z<h.
Equation (6) implies that the total tangential electric field vanishes on the surface of the cylinder

and maintains a voltage drop of Z.[, across the gap at the center of the cylinder.
The substitution of (1) and (4) in (6) gives

O N3 o
52—2-/12+B%Az=—]; [Ec cos 6 e'JBOS'“"Z—Z,JOS(z)]

for —h<z<h. )
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The general solution for A, is the sum of the complementary function and a particular integral

Az:—v—] [C1 cos Boz+ C» sin Bl’z+9(z)]- ®)
0

where vy is 1/V wo€n, Ci and C, are arbitrary constants, and where the particular integral O(z) can
be obtained as

Eo

G(Z)Z,BU cos 6

- L :
e—JBosin OZ_E Z,‘]() Sin ,80|Z" (9)

In (8), A. can be divided into a symmetrical and an antisymmetrical component

A:(z)=A3(2)+ A%). (10)
Thus
AYz) = C, cos ﬂ)z+—E0 cos (Boz sin 0)—1 Zily sin B |Z|] (11)
Vo 1 ( BO cos 0 . ( 2 A0 0
A”(z):__j [C~) sin Boz—] Eo sin (Boz sin 0)]. (12)
# Vo - ,80 cos 0

We also divide the induced current on the cylinder into a symmetrical and an antisymmetrical
component:

L(2)=I3(2)+ I%(2)
and, by the assumed symmetries,
Le)=I(—2), IY)=—I%—D2). (13)

From the definition of the vector potential, we can write 4. in terms of I as follows:

Eo

Bo cos 6

po [" —
AS(Z):_f E(z")Kalz, 2') dz' = [Cl cos oz +
—h 0

. 1 .
s cos (Boz sin ) —= ZIysin Bo|2|] (14)
dar 2

h =] . . E . .
Ag(z)-_—i—:% y 14(z")Ka(z, 2') dz’ :v—o] [Cz sin Boz —JBO cgs 9 sin (Boz sin 0)] (15)

where
, e—IBy V(z—2' P +a?
Ka(z,z)z—v' (16)
V(z—2z')?+ a?

Equations (14) and (15) are integral equations for the induced currents, I$(z) and 1%(z).

2.2. Symmetrical Component of the Induced Current

The symmetrical component of the induced current /5(z) is determined from (14). The details
are given in appendix 1. The final solution for /%(z) is
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N _ jE() COS (B()}l sin 0) — M'ZTo(l i NzT_ga:| .
IZ(Z) 30B() COS 9 { l: COS B()h - M;Tca = N] ng MI(COS BOZ cos BOh)
Ni cos (Boh sin ) — NyMsT ju+ MiNyTea— Na cos Boh] . _
+ [ 05 Boh—MiTea— NiTra sin fo(h = z)
— M [cos (Boz sin 8) — cos (Boh sin 0)]} 17
where
=
1= Tcd( cos Bo (18)
. —Z 1, sin Boh(1 — cos Boh)?
i TcaZ 1 sin? Boh — jO60T cqTsa cos Boh (19)
1 .
Mzzm[l—(l()s (Boh sin 6)] (20)
N.— —Z 1 sin Boh[l —cos (Boh sin ) >

TH(IZL sin? Buh —jﬁoTedeu COSs B()h (21)

The constants, Teq, Tsa, Toa, Tear Tsa, and Ty, are defined in appendix 1. They are functions of
cylinder size, h and a, and the angle, 0, of the incident EM wave.

Equation (17) gives a complete expression for the symmetrical component of the induced
current on a cylinder with a center load Z,, when illuminated obliquely by a plane EM wave at
an angle 0; I4(z) is expressed as a function of the cylinder size, the center load Z;, and the incident
angle 6 of an EM wave.

2.3. Antisymmetrical Component of the Induced Current

By solving (15), the antisymmetrical component of the induced current /¢(z) can be determined
as in appendix 2. The final solution for /%(z) is

§ 5 sin (Boh sin 0) sec 'Bf)h —sin (B:—'h sin 0)
Eo 2 2
I3@)=

308, cos 0 Tuh|2)— ¥ sec BohT k)

-[sin (Boh sin ) sin Boz — sin Boh sin (Boz sin 0)] - (22)

The constants Tw(h/2) and T,(h) are defined in appendix 2 as functions of cylinder size, h and a,
and the angle, 6, of the incident EM wave.

Equation (22) gives the complete solution for the antisymmetrical component of the induced
current on a cylinder with a center load Z, and illuminated obliquely by a plane EM wave at an
angle 6. The important point we observe from (22) is that /%(z) is a function of the cylinder size
and the incident angle only, and is entirely independent of the center load Z,. The result is not
surprising because /%(z) is always zero at the center of the cylinder and an impedance loaded at
the center of the cylinder cannot have any effect on 1%(z).

The total current induced on a cylinder is the sum of [%(z) and I%(z). Since [%(z) is a strong
function of Z, and [%(z) is independent of Z,, the introduction of an impedance at the center of
the cylinder can modify I(z) greatly but does not affect I¢(z). In general, I¢(z) is zero or small
compared with 74(z) when 0 is zero or small. Therefore, we can expect to minimize the backscatter-
ing at or near the broadside direction by central loading because the backscattering in these direc-
tions is due mainly to I$(z). Moreover, in a resonant cylinder (2 h ~ (1/2 +n)\), I5(z) is the
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predominant component and central loading can actually reduce the backscattering in any aspect
angle. In an antiresonant cylinder (2h ~ n\), central loading can minimize the broadside back-
scattering but the off-broadside backscattering at: § = 40° cannot be reduced by central loading
because it is due to a large 1%(z). .

Some examples in the following section will illustrate these phenomena more clearly.

3. Numerical Examples for Some Special Cases

To show the dependence of the induced current on the center load Z,, the cases of a resonant
and an antiresonant cylinder illuminated by a plane wave at the broadside direction are considered
in the first and the second example. The dependence of the induced current on the incident
angle 6 is shown in the third example.

3.1. Induced Current on a Loaded Resonant Cylinder Illuminated by a Plane Wave at Normal
Incidence

When a plane wave is incident normally (§=0°) on a cylinder the backscattering is highest in
this direction. The symmetrical component of the induced current I%(z) is maximum and the
antisymmetrical component /%(z) is zero for this case. In a resonant cylinder with 2A = (1/2+ n)A,

we will see that the magnitude-and the phase of Iiz) can be significantly modified by a center
load Z,.

When 6=0°, I5(z) can be obtained from (17) to (21) as

jE() 1 "

308, [cos Boh—M\Toa— NlTsa] [Mi(cos Boz— cos Boh) + Ny sin Bo(h — |z])] (23)
where M; and N, are expressed in (18) and (19). It can be shown from (22) that /¢(z)=0 when
60=0°.

To present a numerical example, the specific case of

I5(2)

a=00173}\, 2h=043)\, ZszXI

is considered. In this case only the purely reactive center loads are considered because they
can be easily obtained, in practice, from a coaxial cavity which can be installed inside the cylinder.

The current distributions on the cylinder with various center loads are shown in figures 2
and 3. The strong dependence of I$(z) on Z is evident in these two figures. The effect of Z,
on I4(z) can be summarized as follows:

(1) When Z,=0 the induced current is very large and distributes along the cylinder as a
shifted cosine curve.

(2) When Z, = the magnitude of the induced current is greatly reduced from the value for
Z ;=0 and the distribution of the induced current becomes double humped with a null at the center.

(3) When Z,, is capacitive and finite, the induced current is smaller than the case of Z,=0
but larger than for Z, = .

(4) When Z, is inductive and finite, the magnitude of the induced current is smaller than the
case of Z; =, and the induced current starts to have three loops along the cylinder, and it is of
interest to note that the phase of the current at the center loop is reversed.

The most important and significant point is that when Z is inductive and of some finite value,
the magnitude of the induced current is reduced to a value even smaller than in the case of Z,,
= o and the phase of the induced current is reversed at the center part of the cylinder. From this
we can expect the existence of an optimum value for Z, which gives zero backscattering in the
broadside direction. Actually this is the case as we can see in a later section.

The current distributions on this specific cylinder as functions of Z;, shown in figures 2 and 3
have been confirmed experimentally by Chen and Liepa [1964A].
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3.2. Induced Current on a Loaded Antiresonant Cylinder Illuminated by a Plane Wave at
Normal Incidence

An inductive impedance as the center load has been shown to be very effective in reducing
the induced current on a resonant cylinder in the preceding example. In this example we will
show that a purely reactive impedance is not very effective in reducing the induced current on an
antiresonant cylinder with 2k =nA.

We choose a specific cylinder with antiresonant dimensions as

a=0.0173\, 2h =09, L —1Xy:

The induced current is calculated from (23) for various Z,. The current distributions on this
cylinder with various Z, are shown graphically in figures 4 and 5.

In these figures we observe that the introduction of a center load usually increases rather
than decreases the induced current of an antiresonant cylinder. However, an inductive impedance
tends to reverse the phase of the induced current at the center part of the cylinder as we see from
the case of Z;,=7800Q) in figure 4. This suggests that although a purely reactive impedance can-
not reduce the backscattering of a cylinder to zero an inductive impedance with a resistive com-
ponent may be used to reverse the phase of the induced current in such a way that the backscat-
tering vanishes. (In effect, an optimum impedance for zero broadside backscattering from an
antiresonant cylinder requires a large resistive component, as we will see in a later section.)

3.3. Induced Current on a Loaded Cylinder as a Function of the Incident Angle of a Plane
Wave

In this example, the dependence of the induced current of a loaded cylinder on the incident
angle of a plane wave is studied. We choose two typical cases, a resonant and an antiresonant
cylinder both loaded with an impedance clo: * to the optimum value for zero broadside backscat-
tering.

The first case is a resonant cylinder with a=0.0173\, 2o =0.43\, and Z,=;800(). The
distribution of the symmetrical component of the induced current, I(z), for this Z, is about 20 dB
lower than the value of I5(z) for Z,=0 (see fig. 2). The information we obtained from figure 6 is
that the distribution of I%(z) is essentially independent of incident angle except at the center of the
cylinder. The antisymmetrical component of the induced current, /%(z), on this resonant cylinder
is quite small as shown in figure 7. As already noted, /%(z) is entirely independent of Z, but it is
strongly dependent on the cylinder size and on the incident angle. Thus /%(z) is zero when 6
is zero and it reaches a maximum value when 6 is about 45°.  Itis noted that the fact that the magni-
tudes of I5(z) and I¢(z) are comparable in figures 6 and 7 is a consequence of the large reduction
in I5(z) produced by the nearly optimum load Z;=j800().

The second case is that of an antiresonant cylinder whose dimensions are a =0.0173A,
2h=0.85\, and Z;, =j600(). The distributions of /5(z) for different incident angles are shown graph-
ically in figure 8. Again we observe that the magnitude of /5(z) is only slightly affected by the
incident angle. The antisymmetrical component of the induced current, /%(z), on this antiresonant
cylinder is very large and its strong dependence upon the incident angle is shown in figure 9.

To summarize, we observe that while the antisymmetrical component of the induced current
of a loaded cylinder is strongly dependent on the incident angle, the symmetrical component of
the induced current is rather independent of the incident angle if the cylinder is loaded with an
optimum (or near optimum) impedance. This phenomenon tends to indicate that an optimum
central loading for zero broadside backscattering will remain effective for oblique incidence cases.
Of course, a large antisymmetrical component of the current induced on an antiresonant cylinder
for an oblique incidence can not be controlled by a center loading. This current can be modified
only by the double-loading technique, which loads a cylinder at two points. The double-loading
technique will be treated in a subsequent paper.
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FIGURE 9. Distribution of 12(z) along an antiresonant cylinder for different incident angles.

4. Backscattering of a Center-Loaded Cylinder Illuminated by a Plane Wave
at an Arbitrary Angle

The induced current on a center-loaded cylinder illuminated by a plane wave at an arbitrary
angle has been obtained in the preceding sections. Using the solution obtained there we can
calculate the backscattered field.

4.1. Backscattered Field of a Center-Loaded Cylinder

With the geometry of figure 1 and the solution of the induced current as expressed in (17)
and (22) we proceed as follows:
The symmetrical component of the induced current /%(z) maintains a vector potential at a point
in the far zone of the cylinder in the direction of 6:
s o e
* 47 Ry

where I$(z) can be obtained from (17) and where R, is the distance between the center of the

h
f I3(2)eB o5 0dz (24)
“n

cylinder and an observation point.
Performing the indicated integration in (24), the final expression for 4¢ becomes

juoEo e Boko {[cos (Boh sin 0)_M2T611——N2Tw] 2M
120783 R, cos Boh —MTeq —NiTsq cos® fsin 6

-[sin Boh sin 6 cos (Boh sin 6) — cos Boh sin (Boh sin 0)]

" [Nl cos (Boh sin 0) — N\M>To,+ MN>T .o — Ns cos Boh] 2[cos (Boh sin 0) — cos Boh |
Ccos B()h = MGl =N cos® 6

AY0)=

M,
2 sin 0 cos 0
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Similarly, the antisymmetrical component of the induced current /%(z) maintains a vector
potential at a point in the far zone of the cylinder in the direction of 6:

A

n

:Mmfh iByz sin 6
R, 1@ da (26)

where /¢ can be obtained from (22). After the integration in (26) is performed,

{1 sin (Boh sin 6) sec %— sin <§§i sin 0)}

Tu(h/2)— % sec BohTa(h)

Joko e JPollo

1O =100 R,

1

"2 cos?® @ sin O

{ sin Boh[(1 + sin? 6) sin (2Boh sin 6) — 2Bk sin O cos? 6]
— 4 cos Boh sin 0 sin?(Byh sin 0)} . (27)

To obtain an expression for the backscattered field, the following argument is employed:
The total vector potential maintained by the induced current on the cylinder is

AA0)=A%6)+ AY4H). (28)
The scattered electric field in the far zone of the cylinder due to the induced current is
Eo=—joAg= jwA. cos 6, (29)

and the Poynting power density of the scattered field is

.
2@()

P Eo| (30)

Hence, using the values of A45() from (25) and A%6) from (27), the final expression for the back-
scattered field becomes

Ey(0)=—

Eq e7iBoRo { [Cos (Boh sin 0)—M2T9,,—N2T,w,] 2M,
Bo Ry cos Boh— M Tey — NiTsq cos? 6 sin 0

* [sin Boh sin 6 cos (Boh sin 0) — cos Boh sin (Boh sin 6)]

+ |:N1 CcOS (,B()h sin 0) - /V1M2T(9" aF M]/V;)]zw - Nz CcOS B()h :|
CcOS B()h - M]T(‘(I - NITS‘(I
. 2oos (Boh sin )= cos Boh]__Mz 195 4 in g sin (280 sin 6)]

cos? 0 2 sin 6

% sin (Boh sin 6) sec %—sin <%h> sin 6

T,,(h/Z) “% sec B(lhTu(h)

1

2 cos? 0 sin 6

+

; [sin Boh [(1+sin? 0) sin (2Boh sin 0) —2Boh sin O cos® 0]
—4 cos Boh sin 6 sin? (Boh sin 9)]} . (31)

Equation (31) gives the complete expression for the backscattered electric field of a center-loaded
cylinder when illuminated by a plane wave with an electric field £, at an angle 6 with respect to
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the normal to the cylinder. The radar cross sections of some loaded cylinders are calculated from
(31) as functions of aspect angle 0 in section 4.3.  The calculated results are in excellent agreement
with the experimental results.

It is noted that the radar cross section is usually defined as

o= lim 47R;}

(32)

Fo(0) ‘2.

~ %0
I{T)L

4.2. Optimum Loading for Zero Broadside Backscattering

Before we show some numerical examples of the radar cross sections of loaded cylinders,
we will consider an optimum loading to achieve zero backscattering in the broadside direction
in this section.

When E¢6) in (31) is calculated as a function of 6 for a resonant cylinder a large peak occurs
at the broadside direction (§=0°). This peak is contributed by /%(z) on the cylinder and the con-
tribution due to the small /9z) in the off-broadside direction is insignificant in this case.  When Ey(6)
is calculated for an antiresonant cylinder, there are three possible peaks. The first peak at 6= 0°
is due to [¥(z) and other peaks at the off-broadside directions are due to [%z), which can be very
large on an antiresonant cylinder. Since [$(z) can be changed greatly by a center load we seek
an optimum loading which modifies /5(z) so that the backscattering in the broadside direction
vanishes.  The large backscattering in the off-broadside direction due to /%z) is not considered
here.

To make the broadside backscattering vanish, we can let

Eo(6=0°)=0. (33)

Since

' = 2E e iBofo [ My (sin Boh — Boh cos Boh) + Ni(1— cos Boh)
Ey(0=0°)=— ,

Bo R, cos Boh— M Teq— N1Tsq (34)
(33) implies
l]_:_ Sin B()h _B“/l CcoOSs ,81)/1‘ 35
M, 1—cos B,h (39)
If (18) and (19) are substituted in (35), an optimum impedance [Z, ], can be determined as
. — j60Tsq(1 — Boh cot Byl
L (36)

2 CcOS ,8()/1 = Z +,81|/I Sil] Bq)h

where Ty is defined in (48) in appendix 1.

This optimum impedance has been obtained by Chen and Liepa [1964a] and is included here
for convenience in discussing some results in the next section. A numerical example is given
in figure 10 in which the optimum central impedance [Z,}, for zero broadside backscattering from
a cylinder of radius «=0.0173\ is calculated as a function of the cylinder length. In figure 10,
we observe that, in general, the optimum loading for zero broadside backscattering requires an
impedance with both reactive and resistive components. For a cylinder shorter than one wave-
length a passive impedance is adequate but for a cylinder longer than one wavelength an active
impedance which has a negative resistance is needed to reduce the broadside backscattering to
zero.
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FiGURE 10. Optimum central impedance [Z,]o for zero broadside backscattering from cylinder of radius a=0.0173\,
as function of cylinder length.

4.3. Numerical Examples on the Radar Cross Sections of Loaded Cylinders

In this section the radar cross sections of a resonant and an antiresonant cylinder with various
loadings are calculated. The theoretical results are compared with the experimental results by
Chen and Liepa [1964b] and excellent agreement is obtained. Figure 11 shows the backscatter-
ing cross section of a resonant cylinder (2A=0.43\) as a function of the aspect angle for three
different loadings. When Z, =0 (a nonloaded cylinder) the cross section is very large. When
the same cylinder is loaded with an infinite impedance (Z, =), the backscattering cross section
is reduced about 20 dB. If the loading is adjusted close to the optimum value (Z; =j600(}), a
reduction of more than 30 dB is obtained. The optimum loading [Z, ], for this resonant cylinder
is 65+j626(). The agreement between theory and experiment is excellent.

Figures 12 through 14 show the radar cross sections of an antiresonant cylinder (2h=0.85\)
as a function of the aspect angle for three different loadings. When the cylinder is not loaded
(Z.,=0), the backscattering is approximately constant over the aspect angle range of 0 < 6 < 50°
with a slight maximum at §=40°. The theoretical and the experimental results for this case
are compared in figure 12 in which the zero-dB level is chosen to have the same absolute scale
as in figure 11.

Figure 13 shows the theoretical curve for Z;,=;300) compared with an experimental curve
for Z,=j212Q). 'The point of interest is that for this loading the backscattering in the broadside
direction is reduced considerably. These two curves, though with different loadings, agree quite
well over most of the aspect range except for small . The maximum backscattering occurs at
0 =42° and its amplitude is not reduced by the loading.

Figure 14 shows the theoretical curve for Z;, =j600Q) and a comparison with an experimental
curve for Z;, =j415€). The general behavior of these curves agrees very well. The maximum
backscattering occurs at §=42° and, again, its amplitude is not reduced by loading.
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FIGURE 12. Backscattering cross section of loaded cylinder versus aspect angle (6)

It is noted that the optimum loading [Z, ], for this antiresonant cylinder is about 230 + j435€).
In these three figures we find that the maximum cross section for an antiresonant cylinder at
# = 40° is not modified at all by a central loading. As mentioned before, this is due to the fact
that this maximum backscattering is produced by the antisymmetrical component of the induced
current, which is not affected by a central impedance.

1485



10 . 10
|
h = 0,425\ | Theory (Z; = j3009)
52, - a=0.0173\ : ——— Experiment (Z; = j212Q) 4 5
0 o |
2a |
| _ s
R 2 e FEEEEE e TR{ T T T T e
// N | ’ \
f \ | // \
B / \ | 5 N
2 o / N | / \ -1-5
’ \ | / \
3 \ ' \ i
: -10 |- / \ \ -
hy / \ | \
3 / | \
O /
PRRREY S / I\ / \ —-15
s \
7 I | I \
® / \ | ] \
& ) \
@ .20k [ v v\ H-20
(. \
! \ | |
\ |
-5 ‘\,1 | Il |8
\
v
»
S| I ———— R el
80° 60° 40° 20° 0 208 40° 60° 80°
) e—+—>0
FIGURE 13. Backscattering cross section of loaded cylinder versus aspect angle (6).
10 T 10
I
h = 0. 425\ { Theory (Z; = j600%)
5o e | T T T Experiment (Z; =j415Q) - 5
L ) E, |
2a :
DREESEES e ——I e — —— — — — = — === ==c=og| 0
,’ \\ : \\
/ N \
—_ / \ | \
fus] \ \
o -5 - / - -5
: / \ | /2 \
0 / \ AN 1 \
S / \ \ /1 \
@ -10 L / \\ / : \J \ - -10
0 / \
> \ |
5 / | '
T =5 |= [ \ --15
e 4 . \
| \
I \
-20 |- | -1 -20
I
|
-25 | ; - -25
|
|
= T e e TS
80° 60° 40° 20° 0 20° 40° 60 80

FIGURE 14. Backscattering cross section of loaded cylinder versus aspect angle ().

The excellent agreement between theory and experiment confirms the accuracy of the theory
and also the feasibility of the reactive loading technique for the reduction of the radar cross section
of a metallic body.
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5. Conclusion

In this paper we have shown the effectiveness of a loading technique for the reduction of the
radar cross section of a metallic body. An optimum loading developed in (36) can be used to reduce
the radar cross section of a resonant cylinder more than 30 dB in any aspect angle. For an anti-
resonant cylinder an optimum loading can be used to reduce the broadside cross section to an
arbitrarily small value but it cannot modify the off-broadside cross section, which is due to the
antisymmetrical component of the induced current. To reduce the radar cross section of an anti-
resonant cylinder over a wide aspect range, the double- or multiple-loading technique is suggested.
The study on the double-loading technique will be published later.

The author is grateful to R. E. Hiatt, T. B. A. Senior, and B. Harrison for helpful suggestions,
to V. Liepa and E. Knott for experimental measurements, and to H. Hunter and J. Ducmanis for
their numerical calculations.

6. Appendix 1. Determination of /:(z2)

Instead of solving (14) directly for /4(z), for convenience we will start from (11), from which

c; can be expressed as

Ey

Cy=sec Boh [.[1@4';(/1)— m

cos (Boh sin 6) + % Z1 1y sin [3.,/1} (37)

With (11) and (37), we obtain

14:(2) - A:(h )

. o E,
:T.,] sec Boh { [_/lvm;:(lz) m cos (Boh sin ()J (cos Boz— cos Boh)
4(; CcOS ﬁoll

A= /l(, sin Bo(h— |z|) + Bo cos

[cos (Boz sin 6) — cos (Boh sin 0)]} (38)
With the help of (14), another integral equation for /5(z) is obtained ‘s follows:

h
f B(s"Ka(z, 2')dz'
j

T sec Boh {[jvoA"S( )= ’B—i)m(nq (Boh sin 0)] (cos Boz— cos Boh)
0

0

PE= //10 sin Bo (h— | z])+ ;}(+f;}.h [cos (Boz sin B) —(Boh sin 0)]} (39)
) §
where
K,[(Z. Z’):Ku(z- Z,)_K(l(hw Z,) (4‘0)

and (o is 1207r. Equation (39) is valid for —h < z < h but A%(h) and [, in the right-hand side of (39)
are still unknown.
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However, due to the nature of kernel K4z, z’) which has a sharp peak at z=2z', the right-hand
side of (39) suggests a form for the solution of I§(z) as

I3(z) = C. (cos Boz— cos Boh)+ Cy sin By (h— | z])+ Cyl cos (Boz sin O) —cos (Boh sin 6)].  (41)
It is then reasonable to divide (3Y)-into three parts as tollows:

h
C(.j (cos Boz' —cos Boh)Kalz, z')dz'
—h

A sec Boh [jv(,Ag(h) Eo B(,h sin 0)] (cos Boz— cos Boh), 42)
g() Bo CO
= P .
Cy f sin Bo(h — |2'|)Ka(z, 2")dz' = L sec BohZ 1, sin Bo(h — |z|), (43)
0
h
Cef [cos (Boz" sin 0) — cos (Boh sin 0)|Ku(z, z')dz’
—h
“‘j47T E() . _ o
Lo Bocos 0 [cos (Boz sin 6) — cos (Boh sin 0)]. (44)

Equations (42) through (44) are well matched at the end points, z==h, where both sides of the
equations become zero. Furthermore, the constants C., C, and Cy can be determined by matching
these equations at the center of the culinder, z=0. This matching yields

— jdar
C.= onT(u sec Boh [jvoA h)— B cos 6 % (Boh sin 0):| 1—cos Boh) (45)
where
h
T(-d:f , (cos Boz' — cos Boh)K4(0, z")dz’ (46)
and
C"’ sec B()hZ[Io sin Bﬂh (47)
gl)Tsd
where
h
Tstl:f’ sin Bo(h — |2’ |)Ka(0, z")dz’ (48)
and
_”‘]477 E, . .
Co= " Toa Bocos @ L1~ 008 (Boh sin O)] (49)
where
h
Teazf [cos (Boz' sin 6) — cos (Boh sin 6)]Kd(0, z')dz". (50)
—h

1498



The substitution of (45), (47), and (49) in (41) gives

. {Tl, [jvoA%(h)

Z cos (Boh sin 0)] (sec Boh — 1)(cos Boz— cos Boh)
0

,80 cos 0

1 . ‘
+m2110 tan Boh sin Bo(h —|z|)

1 E,

Tonm [1—cos (Boh sin 0)] [cos (Boz sin §) — cos (Boh sin 0)]}- (51)

In (51), A5(h) and I, are still unknown, but /, can be determined from (51).
By definition,

Iy = 1.(0)=150) + 140), but I140)=0
hence
1,=1%0) (52)

Then I, can be expressed in terms of A%(h) by letting z= 0 in (51), and after some algebraic manipu-
lation (51) itself can be rearranged to give

[5z)=— C {I:ijAZ(h)_B f cos (Boh sin 0)]
0 0
“[Mi (cos Poz—cos Boh)+Ni sin Bo(h—|z])]
Ey . i 1 :
+B“ P [Ms[cos (Boz sin 0) — cos (Boh sin 0)] + N» sin Bo(h— |Z’)]} (53)
where
1
M= T (sec Boh—1) (54)
o Z,. tan Boh(sec Boh + cos Boh —2)
! TeaZ 1 tan ,8()/1 sin B()h _j()()Tr'tlT.w[ (55)
M= T [1—cos (Boh sin )] (56)
0d
o —Zusin B(,h[l—cos (Boh sin O) (57)

“ TeaZ 1 sin® Boh —j60TeaTsa cos ﬁoh

In (53) the remaining unknown is A4%h). To determine it we use the definition of the vector
potential,

S . I-L() 2 (' ’ ’
As(h)= o Lz Ky(h, z')dz'. (58)

After substituting (53) in (58), A%(h) becomes

s h) . jE() [COS (B()h Sil’l 0) (1w1,T(~u A N;Tsu) - (M:ZT(M 5 /’VzT-,\»,,)]
S U()B() cos 0 = M{T(‘u - NllTsu
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where

h
T(.,,:f (cos Boz' —cos Boh)Ku(h, z')dz' (60)
—h
h
T.W,ZI sin Bo(h — |2')Ka(h, 2")dz' (61)
—h
h
M= [cos (Boz' sin 0) — cos (Boh sin )] K,(h, z")dz'. (62)
—h

If (59) is substituted in (53) and the result rearranged, the final form of the solution for I$(z) becomes

Is( - jE() {[COS (B()h sin 0) _MzT(),,_/V-_)T,\-,,
4

e SOB() CcOSs 9 CcOSs ,B()h - /wlT(~(,_1N1T,g,, :l /”1 (C()S IB“Z_COS Boh)

Ny cos (Boh sin 0)— NiM>Tyq+ MiN>Tey— N» cos ,80/1] . -
l cos ok — MiTog— NiTo sin Bolf— |z

— Ms[cos (Boz sin ) — cos (Boh sin 9)]} (63)

where

M, (1 —cos Boh) (64)

1 cd

— 7, sin Boh(1 — cos Boh)?

Nl - TmiZL sin? B()h _,].()OT(’(IT,\':I CcOs ,80}1

(65)

and M, and N, are expressed in (56) and (57).

Equation (63) expresses [§(z) as a function of the cylinder size, the center load Z,, and the
incident angle 6 of an EM wave. i

As a matter of completeness and convenience, the integrals Teq, Tsa, Toa. Tea Tsa, and Toq
are expressed in terms of better known integrals:

Toa=Calh. 0= Culh, B)— cos Boh[Ealh, O)— Eq(h, h)] ©6)
Toa=sin Boh[Calh, 0)— Calh, h)]— cos Buh[Salh. 0)— Salh. h)] 67)
Toa=COh. 0)— C%h, h)— cos (Boh sin 6) [Ea(h. 0)— Eulhr, h)] 68)
Toa— Gl B)—co8 Buibialliy 1) 69)
Tsa=sin BohColh, h)— cos BohSu(h. h) (70)
Too=C%h. h)—cos (Boh sin O)E.(h, h) (71)
s
Calh, 0)= f" cos Boz' Kul0, 2')dz' (12)

h
Culh, h):f cos Boz' Ka(h, z')dz' (73)
h
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h
Eah, ())Zf K0, z")dz' (74)
—h

Edlh, h)= _" Kalh, 2')dz’ (75)
Salk, 0)= f_’, sin Bol2|Ka(0, 2z’ (76)
Sulh, B)= ﬁ" sin Bolz' | Kalh, 2')d2’ (77)
Co(h, 0)= Jﬁh cos (Boz' sin )K (0, z')dz' (78)
Coh h)= f j cos (Boz’ sin O)Ka(h, 2')dz . (79)

The integrals of (72) through (79) can be calculated on a digital computer.

7. Appendix 2. Determination of 79(z)
To determine 1%(z), we start from (12). The constant C, can be expressed as

Cy=csc Boh [jzr“Ag(lz)—Fj sin (Boh sin 6)] (80)

E,
Bo cos 6
Substituting (80) in (15), we obtain

h
f 192" )Kalz, 2")dz’'
~h

:4?77 cse Boh {:3 ko [sm (Boh sin 6) sin Boz—sin Boh sin (Boz sin 6)]
0 0 COS

+v9A4h) sin B(,z} (81)
If the solution for [%(z) is assumed to be
19(z) = C[sin (Boh sin 6) sin Boz — sin Boh sin (Boz sin 6)]. (82)

(81) is matched at z=0. We will match (81) at two more points.

If we set z=h/2 in (81) and use the substitution of (82), the constant C, can be expressed as
L[ 2mE [ B i (B0 6)] 427 e B, .
C,= T2 {Cﬂﬁo cos 0 [sm (Boh sin 0) sec —-—— 2 sin ( 5 sin 0)] A o sec ™, A:{h)} (83)

where
h
T,,(h/Z)zj ] [sin (Boh sin O sin Boz' — sinBoh sin (Boz' sin 0)|K,(h/2,z")dz'. (84)
By definition, 4%(h) is

a :&’L ¢ d(~ ! /:& A\
A4(h) 47Tf , [19z")Ku(h, z")dz 477(,,,T,,(h) (85)
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where

h
T,,(h)=f [sin (Boh sin ) sin Byz’ —sin Boh sin (Boz sin 0)|Kq(h, z')dz'". (86)

—h

From (83) and (85), A%(h) is determined as

ET.(h) [sin (Boh sin 0) sec %— 2 sin <-’Bé;h sin 0)]
Alh)= Boh : (87)
 cos 6 [2T,,(h/2) —sec —(2) T,,(h)]

After substituting (83) and (87) into (82) we obtain the final form of the solution for I4(z),

et e e )
E, > sin (Byh sin 0) sec B sm< B sin 6

308, cos 6 Tu(h[2)— ) sec BohT,(h)

I3 (z)=

“[sin (Boh sin 6) sin Boz — sin Boh sin (Byz sin 6)]. (88)

Equation (88) gives the complete solution for the antisymmetrical component of the induced current
on a cylinder. It is noted that [%(z) is a function of the cylinder size and the incidence angle 60
only, and is entirely independent of the center load Z.

For convenience the integrals T, (h/2) and T,(h) are expressed alternatively as follows:

T.(h/2)= sin (Boh sin 0) S¥(h, h[2)—sin BohSoh, h[2) (89)
T.(h)=sin (Boh sin 6) S9(h, h)—sin Boh SO(h, h) (90)

where

h o
Soh, h/2)=f sin (Boz' sin 0)Kq(h/2, z')dz’ 91)
h

h

Silo, h)=j sin (Boz’ sin 0)K4(h, z')dz’ (92)
h

h
S, h/2)=f sin Boz" Ka(h/2, 2")dz' (93)
h

h
SEN (/.. h)=f / sin Boz' K. (h,z")dz'. (94)

The integrals in (91) through (94) can be readily calculated on a computer.

8. References

As, B. 0., and H. J. Schmitt (1958), Backscattering cross section of reactively loaded cylindrical antennas, Harvard Uni-
versity Cruft Laboratory Scientific Report No. 18.

Chen, Kun-Mu, and V. Liepa (1964a), The minimization of the backscattering of a cylinder by central loading, IEEE Trans.
Ant. Prop. AP-12, No. 5, 576-582.

Chen, Kun-Mu, and V. Liepa (April 1964b), The minimization of the radar cross section of a cylinder by central loading,
University of Michigan Radiation Laboratory Scientific Report No. 5548-1-T.

Hu, Yueh-Ying (1958), Backscattering cross section of a center-loaded cylinder, IRE Trans. Ant. Prop. AP-6, 140-148.

lams, H. A. (1950), Radio wave conducting device, U.S. Patent No. 2,528,367.

King, R. W. P. (1956), The Theory of Linear Antennas, pp. 506-511 (Harvard University Press, Cambridge, Mass.).

Sletten, C. J. (1962), Air Force Cambridge Research Laboratories, private communication.

(Paper 69D11-581)
1502



	jresv69Dn11p_1481
	jresv69Dn11p_1482
	jresv69Dn11p_1483
	jresv69Dn11p_1484
	jresv69Dn11p_1485
	jresv69Dn11p_1486
	jresv69Dn11p_1487
	jresv69Dn11p_1488
	jresv69Dn11p_1489
	jresv69Dn11p_1490
	jresv69Dn11p_1491
	jresv69Dn11p_1492
	jresv69Dn11p_1493
	jresv69Dn11p_1494
	jresv69Dn11p_1495
	jresv69Dn11p_1496
	jresv69Dn11p_1497
	jresv69Dn11p_1498
	jresv69Dn11p_1499
	jresv69Dn11p_1500
	jresv69Dn11p_1501
	jresv69Dn11p_1502

