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This paper continues development of a full wave propagation theory for low-frequency radio waves
which is analogous to geometric optics. The effects of earth conductivity, reflection height, and earth
curvature are described by the path integral, and accurate methods for computing 1t, especially suit-
able for a programmed computer, are given. Knowledge of the path integral and the ionospheric
reflection coefficient, which are independent, permit calculation of skywave field strengths. Sample
calculations are shown which confirm that the LF skywave is diffracted deep into the shadow region.
Possible applications include calculation of LF and VLF field strengths and extraction of ionospheric
reflection coefficients from field measurements.

1. Introduction

The full wave solution for propagation between a spherical earth and a concentric ionosphere
can be expanded into a series of complex integrals. If the integrals are replaced by their saddle
point approximations, the series is identified as the ray hop series of geometric optics, so the
integrals are called wave hops [Berry, 1964|. This expansion was suggested by Rydbeck [1944]
and Bremmer [1949]. Wait [1961] firmly established the connection with the ray hops, pointed
out that the saddle point approximation was inadequate near, and beyond, the caustic, and sug-
gested evaluating the wave hops by numerical integration or by summing a residue series. Wait
and Conda [1961] made a few preliminary calculations. Continuing and extending this work,
Berry [1964] included height gain formulas and calculated the wave hops by numerical integration
for several representative cases.

A convenient form of the wave hops series is

E,=Eo+ Y vil;, 1)
i=1

J

where E, is the groundwave and v; is an effective ionospheric reflection coefficient.  For a locally
plane isotropic ionosphere,

yi=17, 2)

where T is the Fresnel reflection coefficient. The effects of ground conductivity, reflection height,
earth curvature, and distance are accounted for by the path integral, I;. This paper is concerned
with calculation of the path integrals.

Section 2 describes in detail methods for calculating the path integrals for a wide range of
frequency and distance. Some sample calculations are discussed in section 3, and two possible
applications are discussed in section 4.

2. Path Integral Formulas

A vertical electric dipole source of waves with wave number k= 27/\ is on a spherical earth
of radius a. A time function, exp (iwt), is assumed, and suppressed. The field is to be found on
the surface at a distance d=af. The effective reflection height is A.

For this paper, the starting point is equation (22) of Berry [1964]. Fock’s [1946] approximations
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for the spherical Hankel functions are

1/6
(01 w==i(3)" o), )
and
. 1/6 2 1/3
C(Vz% (x)=1 (g) W), t= <;) (=9 (3b)

The Airy functions W(x) are discussed by Spies and Wait [1961]. Using (3), and the asymptotic
form for the Legendre function, P (cos 0), the path integral for the jth wave hop is

—ikd
[j=eB14K e_ = f (1 +ztp2e= =W ()W s(t) (1 + Re(2) 2RI~ (2)pi(¢) dt, (4)
sin Jr
ka\13
where x =00, y=Fkh[v, z=0.5/v2, v= (E) , and (5)

I' is the contour of integration described below. The ground reflection coefficient is

W IWt)—q

K=o —g (©)
where
g=— NIt
and

n*=e€es—ipoc’o/w. (7)

The relative permittivity of the earth is €, and the conductivity is o; ¢ is the speed of light and uo
is the permeability of free space.
Finally,
W)Wt —y)
=
PO oWat—y) ®

and
~ k_,
K =11.961,/ ;v 5 9)

where Iyl is the dipole current moment. In this paper, lo/=1.

Equation (4) differs from that given by Wait [1961] only by the normalization, K, and the factor
(1+2zty°2.  Since z <1, this factor is important only if |¢| is large. A quantitative discussion of
its effect is given in section 3.

If |t| <02, (1+28)%2=1+5/2 zt. (10)
Using the Wronskian [Spies and Wait, 1961],

WW.—W,W,=2i. (11)

p— 2i .
1+R"“)_Wz(t)[W{(t)—qu(t)] 1)

Then (4) is written
o—ikd

Ei-Y(t)Fi(t) dt

I;= (— 1y-14Keils !
Cj+l(t)

J; (1 4+ zt)32eixt s (13)

sin 6
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where

E()=W 3 (t)—qW>(t), (14)
F)y=Wi(t—y)[Wst—y), and (15)
C)y=W(t)—qWi(). (16)

The contour of integration has been discussed by Wait [1961] and Berry [1964]. The contour
used for the numerical integration in this paper runs along the real axis from = to the origin, and
then into the third quadrant on a straight line with slope 1/4. In the third quadrant, the integrand
gets small exponentially with exp(Im(tx)), and on the real axis, when ¢ > 1 [Spies and Wait, 1961],

S S <_é ,3/2>
W) Wt) 3 : (17)

so the integration need be carried out for only a finite portion of the contour in the vicinity of the

origin.

2.1. The Saddle Point Approximation

The development here closely follows Wait [1961]. The difference is a small improvement in
the accuracy of the approximations.

If (—¢ > 1 [Olver, 1954],

Wit) = (— )" exp [(— VFi(é + m/4)] L[(— 1) i€, (18)
and
Wit) = (=0 exp[(— D¥i(E—m/4)] M [(—)kig], (19)
where
2
== (— t)3/-
3 3 ( AR,
L2)=3 Uiz, and MZ)='S V,Z, 20)
Jj=0 Jj=0
where
Uoz V(): 1, and
_@2+D@2j+3).. .61 L 6]+1 g
U; 216y ,and V; U; —1/ > 1. (21)

Substituting (18) and (19) into (4),

= - Bm/4K

f G(t)e-i20dy, (22)

sm
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. 2
where, letting a=(—1)!/2 and s = 3 a?,

Gloy=(1— atapral+ R (75 R) L2 23)
Q(t)z—xa2+é i( +o¢2)3/2—g jo3, and
30 g/o’, an (24)

aM(is) —iqgL(is)  L(—is)

fie= aM(—is)+ igL—is) L(is) (25)

The saddle point approximation for /; is (compare Wait [1961])

i e—ikd l: 2 ]1/2 G( ) T
. = p—i3m _— to)ei o) 2
’ Vsin 6 LiQ(t0) ’ (26)
where ¢y is the saddle point found from
472y — x?
do=TL=E — gy,
Y ’ 27)

Hence,

1/2 R 5l e Th=
[j = 2Keiml2e=ikd | | i <1 + _x_) (1— aBz)P2(1 + R)? X [M RT LA(iso)e ). (28)
x sin 0 2jay L(—iso0)

This reduces to Wait’s [1961] result if L, M, and (1 — «®z)*? are set equal to one. As a—>x,
L and M —1; and as a— 0, (1 —a32)??—1. Thus, the effect of retaining these factors is to increase
the accuracy of (28) for extreme values of «. Quantitative results are shown in figure 2.

The reader is referred to Wait [1961] for a complete discussion of (28). He shows that

x \12 . . . . . .
(l + 5 ) is the convergence coefficient of geometric optics; {Xto) is the difference between the
0.

electric length of the ray path and the distance along the earth; and R is the ground reflection co-
efficient. Thus, when =M =1, (28) multiplied by v; is the geometric-optics formula for the jth

FIGURE 1. Geometry of first two wave hops.
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ray hop. This justifies calling y;/; a “wave hop” and suggests using the concepts and terminology
of geometric optics. Referring to figure 1, ¢; is the angle of incidence at the ionosphere of the jth
hop, and 7; is the angle of incidence at the ground. The ray path length of the jth hop is D;.  The
region where 7; < 7r/2 is the lit region, 7;= /2 is the caustic, and beyond the caustic is the shadow

region.
Equation (27), and the condition (—¢) > > 1, show that (28) is valid only if d/j is sufficiently
small, i.e., if |7j— /2| is sufficiently large.

2.2. Residue Series for the Path Integrals
The integrand of (13) has poles of order (j+ 1) at ¢ if

W ts) = qW(t5) = 0. ©29)
The t; are related to the poles, 7¢, of the Bremmer [1949] groundwave by [Wait and Conda, 1958|

Wait [1961] shows that these are the only poles, so /; can be evaluated by summing a series of resi-

dues —at least in principle. The difficulty is the high order of the poles. Wait [1961] worked out

the form of the residue for the first wave hop, but did not use it for calculations. Methods for

calculating the residues of /;, especially suitable for a digital computer, are given in this section.
Denote the residue at t; of the integrand of I; by Res (j, t;). Then

—ikd =

2 Res (j, t). (31)

sin 6 §=0

I; = 8miKeil*

Rewrite (13) as

S emikd DB\ ()Fi(t) A0
I;=(— 1y-14eir K - f : dt =(— 1)~ 1deimiK € f A8 .
e ). o0 ,r——sm B (2

where, using (10),

D(t) = (1+5/2zt)ei=t (33)
Then
ajo aj jo PRI ajj
bj() bjl bjz coe . bjj
0 bjo bjr PR bjj-1
Res (7, t) = b;+11X 0 0 bjo 0 0 0 bij-2| » (34)
0 0 bjo bjx
where ajn(ts)ZA}")(ts)/n!, and bj;)(lg):B§n+j+l)([.ﬁ')/(n ! 1S (35)
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The superscript (n) denotes the nth derivative. The determinant is easily evaluated numerically
since it is nearly triangular.
Using Liebnitz’s rule for the nth derivative of a product [Kaplan, 1952],

n

gh (n)— E m' g(m)h(n m) (36)

m=0
the necessary derivatives of [E(t)F(t)] and
Aj(t)=A;() [E@)F(2)] (37)

are found recursively. This repetitive process is particularly appropriate for an electronic com-
puter. The necessary derivatives of D, E, and F for the first five [; are

D)) = (— ix)n—1e-ixt [n g %= 3% <1 +gzt) :| (38)

E'(t)=tWt)— qW (1),

E"(t)=tW () + (1 — q) W),
E®(t)= (22— q)Wat)+ (2 —q) W t), (39)
E®(t)= (4t — qt) W o(t) + (2 — 2q)W 3(¢), and

E®(t)= (4 —4dqt + 3)Ws(t) + (6t — qt®) W y(¢),

F'()=2i[Wxt—x]7>,
F'(t)=—2GF (),
FO={=2(t—y)+6G*}F'(z) (40)
F@(t)={—2+16(t — )G — 24G3}F'(t), and

FO(t)= {16(t — y)? + 20G — 120(t — )G + 120G} F'(¢).

In (40), G= W (t — )| Ws(t —y).

The bj, can be found by repeated use of (36) and (26), but are given explicitly here for the first
five hops:

bo=(Ctay*.j=1.. . .. 5 by=E1 ey, j=1,. . .,5

, . +1 .
C (ts)b,-z=ﬁ C'(ts)bjx +]—6 COts)bjo, j=2, . . ., 5 (41)
Cl(ls)bﬁ}— C"(ts)bﬂ + C(a)( S)bjl + = C(4)(ts)b]0, ] 3 4 5
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c'(ts)1>j4— C”(ta)bfs+j C(t)b ,2+3’ Ce ob,.+1—20 CHtbjo, j=14, 5
b= C'(t9) (€' + 5 (€0 (CTEICIE)

4 ¢ (C')PC"(ts) (€ e))2+ (C"(ts)P(C"(t))*C(t)

T2 (CCH )+ (€ )CR)CNt) + T35 (€ E)FCONe.

The function C(t) differs from E(t) only by the index on the Airy functions, so using (29) and
(39) the necessary derivatives of C(t;) are

C'(ts)=(ts— ¢®Wlts),
C'(ts) = Whlty),
CONty) = (1 — g*ts+ W ts),
CO(ty) = (4t,— 2 W(ts), (42)
CO)ty) = (3 — g2t + 2tsq + 4)Wy(ts), and
CO(t;) = (963 — 6g°ts + 6 W (t,).

Before the convenient form of (34) and the recursive method of (36) and (37) were noticed,
explicit expressions for Res (j, t5), j=1, . . . . 5, were derived and programmed. To appreciate
the economy of (34) and (37), note that Res (5, t) is the sum of 18 distinct terms, and one factor
of one of these terms, ass, is the sum of 73 distinct terms.

3. Sample Calculations and Discussion

An efficient program for calculating the path integrals must use all three methods given above.
The saddle point approximation should be used whenever possible because it is simplest; but it
is not valid near, or beyond, the caustic. The residue series is accurate and efficient deep in the
shadow region, but converges very slowly in the lit region. If these two methods do not overlap
in the caustic region, (13) must be integrated numerically.

The three methods of calculating the path integrals were compared by computing [;, j=1,

, 5, as a function of distance, d=1000, . . . , 8000 km, for 10 ke/s, 100 kec/s, and 1000 kc/s.
The regions of validity of the methods overlap enough to lend confidence to the computer routines
and to allow a program to automatically select the appropriate method. Two examples which
illustrate the comparisons are shown in figure 2. For all calculations in this paper, e,=15. The
solid line indicates I, the other lines show the departure tfrom [ of the various formulas. The
simpler saddle point approximation given by Wait [1961] has also been plotted. The caustic is
indicated by an arrow. Figure 2a shows I, (100 kec/s). There is a small difference between the
value and the simple form of the saddle point approximation near 1000 km. The numerical in-
tegration also departs from the value here, but this could have been avoided with a higher order
quadrature. Between 2000 km and 3000 km the error becomes very large in both the saddle point
approximation and residue series, so numerical integration is necessary. Beyond 6000 km, the
numerical integration becomes inaccurate.
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FIGURE 2a. Comparison of various methods of calculation, FIGURE 2b. Comparison of various methods of calculation,

I, (100 ke/s). 14 (10 ke/s).

Figure 2b shows I, (10 ke¢/s). For this case, only a small error would result between 2000 km
and 3000 km from using only the saddle point approximation and the residue series. The simple
form of the saddle point approximation is not as accurate for 10 ke¢/s as for 100 ke/s. The error
is increasing near 1000 km. This is because ay is large here, so the approximation, (1 —a?z)?2=1,
used by Wait [1961], is not valid in this region. However, in most practical applications, the 4th
hop is insignificant at this distance.

Graphical presentation of the phase of /; is impractical because it varies rapidly with distance.
Instead, a phase lag, relative to the free space ray path, is defined. Let —a <[4]=< 7 denote an
angle equivalent to A —i.e., [4] differs from 4 by an integral multiple of 277.  Then, the path integral
phase lag, B, is defined by

B;=—{l[phase [}]+[kD;] + m/2}. (43)

Since to) = k(d— D;) [Wait, 1961], (25) shows that, for perfectly conducting earth (R = 1), [phase ;]

E_"g‘_[kd]_[k(Dj_(l)] ’:“—[ij]—g in the saddle point approximation. Thus B; is generally

small and varies slowly in the lit region.

Figures 3, 4, and 5 show the amplitude and phase lag of the first 3 path integrals as a function
of distance for frequencies from 10 ke/s to 200 ke/s. (Note that the amplitude has been divided
by the frequency in kilocycles.) For the 70-km reflection height, the first hop caustic is at d =1880
km. Figure 3a shows the diffraction of the first hop into the shadow region. As would be expected,
the lower frequencies diffract further into the shadow region than the higher frequencies. The
phase lag of I; is shown in figure 3b. The exponential decrease of the amplitude and the linear
increase of the phase lag deep in the shadow region confirm the groundwavelike behavior of the
wave hop beyond the caustic predicted by Wait [1961].
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FIGURE 3a. Amplitude of 1; as a function of distance. FIGURE 3b. Phase lag of 1, as a function of distance, showing dif-

[fraction into the shadow region.

Figure 4 shows the amplitude and phase lag of I,. The relative minimum in the amplitude
between 2000 km and 3000 km is caused by the pseudo-Brewster angle in the ground reflection
coefficient [Bremmer, 1949; Berry, 1964]. The sharpest minimum is for a frequency of 150 kc/s.
Figure 4b shows the change in the phase lag corresponding to the minimum in the amplitude curve.
For 150 ke/s there is a rapid phase shift of 180° corresponding to the sharp minimum in the ampli-
tude curve. The frequency dependence of the pseudo-Brewster angle is clearly shown in figure
4a. The pseudo-Brewster angle is also shown in the amplitude and phase lag of I3 in figures 5a
and 5Sb.

The preserit computer program can calculate /4 and 5 but no examples are shown here, since
no new phenomena occur. Finally, the calculation is not limited to the frequencies shown—a
test case at 10 Mc/s ran successfully.

4. Examples of Applications

Equation (1) shows that the path integrals are the natural complements of ionospheric reflec-
tion coefficients. Reflection coefficients have been calculated and published for a variety of the-
oretical models of the ionosphere,'e.g., Johler, Walters, and Harper [1960], Johler and Harper [1962],
Wait and Walters [1963a, 1963b, 1963c| and Walters and Wait [1963]. Using these, or any other
reflection coefficients, and graphs of the path integrals, such as figures 3, 4, and 5, theoretical LF
and VLF field strengths can be calculated quickly and easily by hand.

For example, Wait and Walters [1963a] show that VLF reflection coefhicients for an expo-
nential ionosphere are given approximately by |T| = exp (—4 cos ¢)) for some constant 4. In
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FIGURE 4a. Amplitude of 1 as a function of distance, showing the FIGURE 4b. Phase lag of 1. as a function of distance.

pseudo-Brewster angle near 3000 km.

particular, for a frequency of 20 kc/s, and a reasonable choice of parameters, they find 4 = 3.
Cos ¢j is given exactly by [Bremmer, 1949]:

-1/2
cos @;j= [(1 <l — Ccos 2%) + h] [2a(a + h) (1 —cos 2%) + /12] (44)

If jhld << 1

K (jh\?
cos @js\/;ﬂ(’(—[) : (45)

With this model ionosphere, and the information in figures 3, 4, and 5, the amplitudes of the
first three wave hops were calculated and are shown in figure 6. The total field could also be
found by calculating the phases and summing. The sum should include the groundwave at dis-
tances less than about 1000 km.

The path integrals can also be used to remove the effects of the earth’s conductivity, diffrac-
tion loss, etc., from experimental data. In figure 7, monthly averages of 100-kc/s first-hop sky-
wave amplitudes are shown as a function of GMT for a 2510-km path from Attu to Sitkinak in the
Aleutians [Doherty, 1964]. These are Loran-C pulse measurements, so the groundwave could
be measured before the first-hop skywave arrived. The ordinate scale is 4 =20 log;o (E1/Eo) + 12.
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Since E; =TI, the ionospheric reflection coeflicient is given by
A—12 I
logio T=—%——logio = 46
20 E, =

The ratio of the first path integral to the groundwave was calculated for reflection heights of
65 km (daytime reflection height) and 85 km (nighttime reflection height), for a sea path. These
ratios are 217.4 and 295.3, respectively. With these ratios, and (46), the measurements in figure 7
can be converted directly to reflection coefficient magnitudes, without making assumptions about
the antenna pattern or transmitter power. Note, however, that the reflection coefficient is depend-
ent on the assumed reflection height and the assumed ground constants. For example, in Sep-
tember 1962, the average grazing reflection coefficient during the day for this path ranged from
0.013 to 0.018, and was about 0.07 for several hours during the night.

5. Concluding Remarks

The major barrier to practical use of the wave hop theory has been the difficulty of calculating
the path integrals near the caustic and in the shadow region. The necessary formulas for such
calculations are given in this paper and sample calculations are shown illustrating the general
characteristics of the path integrals. The path integrals can be used in conjunction with pub-
lished values of reflection coefficients to calculate theoretical LF, VLF fields by hand, or they
can be used to extract reflection coefficients from experimental data. Therefore, the path integrals
are being calculated as a function of distance for seven frequencies from 10 ke/s to 200 ke/s, for
reflection heights from 60 km to 100 km, for sea water paths, and for land paths with conductivity
0.01 and 0.001 mhos/m, and will be published soon [Berry and Chrisman, 1965].
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FIGURE 6. Sample calculation of amplitude of first three hops,
using figures 3, 4, and 5, f=20 kcls, |T|=exp (—3 cos ¢).
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FIGURE 7. Measured first-hop skywaves relative to groundwave,

f=100 kcls |after Doherty, 1965 .

6. References

Berry. L. A. (1964), Wave hop theory of long distance propagation of low frequency radio waves, Radio Sci. J. Res. NBS
68D, No. 12, 1275-1284.

Berry, L. A., and M. E. Chrisman (1965), Numerical values of the path integrals for low and very low frequencies, NBS Tech.
Note No. 319.

Bremmer, H. (1949), Terrestrial Radio Waves (Elsevier Publishing Co., New York, N.Y.).

Doherty, R. H. (1964), Low frequency propagation at high latitude. Paper presented at the Spring 1964 URSI Meeting,
Washington, D.C.

Fock, V. A. (1946), Diffraction of Radio Waves Around the Earth’s Surface (Publishers of the Academy of Science, Mos-
cow, USSR).

Johler, J. R., and J. D. Harper, Jr. (1962), Reflection and transmission of radio waves at a continuously stratified plasma
with arbitrary magnetic induction, J. Res. NBS 66D (Radio Prop.)., No. 1, 81-99.

Johler, J. R., L. C. Walters, and J. D. Harper, Jr. (1960), Low- and very-low-frequency model ionosphere reflection coefhi-
cients, NBS Tech. Note No. 69.

Kaplan, W. (1952), Advanced Calculus (Addison-Wesley Publishing Co., Inc., Reading, Mass.).

Olver, F. W. J. (1954), The asymptotic expansion of Bessel functions, Phil. Trans. Roy. Soc. London, Ser. A 247, 364-367.

Rydbeck, O. E. H. (1944), On the propagation of radio waves, Trans. Chalmers Univ. of Technol. 34.

Spies, K. P., and J. R. Wait (1961), Mode calculations for VLF propagation in the earth-ionosphere waveguide, NBS Tech.
Note No. 114.

Wait, J. R. (1961), A diffraction theory of LF sky-wave propagation, J. Geophys. Res. 66, No. 6, 1713—1724.

Wait, J. R., and A. M. Conda (1958), Pattern of an antenna on a curved lossy surface, IRE Trans. Ant. Prop. AP-6, No. 4,
348-359.

Wait, J. R., and A. M. Conda (1961), A diffraction theory of LF skywave propagation —an additional note, J. Geophys. Res.
66, No. 6, 1725-1729.

Wait, J. R., and L. C. Walters (1963a), Reflection of VLF radio waves from an inhomogeneous ionosphere. Part [. Ex-
ponentially varying isotropic model, J. Res. NBS 67D (Radio Prop.), No. 3, 361-367.

Wait, J. R., and L. C. Walters (1963b), Reflection of VLF radio waves from an inhomogeneous ionosphere. Part II. Per-
turbed exponential model, J. Res. NBS 67D (Radio Prop.), No. 5, 519-523.

Wait, J. R., and L. C. Walters (1963c), Reflection of VLF radio waves from an inhomogeneous ionosphere. Part IT1I.  Ex-
ponential model with hyperbolic transition, J. Res. NBS 67D (Radio Prop.), No. 6, 747-752.

Walters, L. C., and J. R. Wait (1963), Numerical calculations for reflection of electromagnetic waves from a lossy magneto
plasma, NBS Tech. Note No. 205.

(Paper 69D11-580)
1480



	jresv69Dn11p_1469
	jresv69Dn11p_1470
	jresv69Dn11p_1471
	jresv69Dn11p_1472
	jresv69Dn11p_1473
	jresv69Dn11p_1474
	jresv69Dn11p_1475
	jresv69Dn11p_1476
	jresv69Dn11p_1477
	jresv69Dn11p_1478
	jresv69Dn11p_1479
	jresv69Dn11p_1480

