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Propagation of electromagnetic waves in multimode waveguides of variable height is investigated.
The model consists of two uniform rectangular waveguides connected by a linearly tapered waveguide
section. Using a generalized reciprocity theorem for waveguide junctions, a previous quasi-optic
solution of this problem is‘extended to account for reflected waves. The results have application to
the theory of VLF radio propagation when the effective height of reflection of the ionosphere boundary
varies along the path. The analytical investigation has been complemented by laboratory measure-
ments taken from a two-dimensional microwave model, and good agreement with calculated results
was achieved.

1. Introduction

The diurnal variation of the electrical properties of the ionosphere results in a change of the
effective height of the ionosphere lower boundary along the path of propagation. These spatial
variations of the effect height of reflection modify the field patterns across the waveguide. If
the change is sufficiently gradual the waveguide theory developed for a uniform earth-ionosphere
waveguide may be generalized in a fairly straightforward manner [e.g., see Wait, 1964]. Further-
more, the observed data [Crombie, Allen, and Newman, 1958; Wait, 1959, 1961]| are consistent with
this picture. However, it is now apparent that near sunset and sunrise lines, mode conversion
effects may be important. It is the purpose of this paper to consider this problem.

A two-dimensional dual model waveguide described previously [Bahar and Wait, 1964] is the
basic tool in the present investigation. In this scaled model, rather ideal conditions are assumed.
At the ionosphere boundary (considered to be sharply bounded), the tangential magnetic field of
the VLF radio wave is assumed to vanish, corresponding to a reflection coefficient R;=—1. The
earth’s boundary is assumed to be perfectly conducting, corresponding to a reflection coefhicient
Ry,=1. Consideration is restricted to the lower order modes (which account for most of the energy
of the VLF radio waves at large distances from the source). It has also been assumed in this
work that

hlap < < |C?| and (kao/2)"® ReC > 2,

where a is the radius of the earth, A is the effective height of the sharply bounded ionosphere,
k is equal to 2m/free-space wavelength, and C is the cosine of the angle of incidence at the earth’s
boundary. With these restrictions a flat earth approximation can be introduced. Furthermore,
the effects of the earth’s magnetic field have been neglected.

It has been shown [Wait, 1964; Bahar and Wait, 1964] that, with the assumptions stated above,
the modal equation governing the propagation of TM modes in the actual earth-ionosphere wave-
guide is the same as for the TE modes in the dual model waveguide of half-height corresponding
to the height of the ionosphere in wavelengths. The cosine of the angle of incidence of the pth
mode on the boundaries of the waveguide, derived from the appropriate modal equation [Wait,

' The research reported in this paper was sponsored by the Advanced Research Projects Agency on Contract C.S.T. 7348 (ARPA Order No. 183-62).
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1960], is given by

@p—1),

W —
Cp_ 2kh p_]-a 293 (1)

where k= 2m/\ is the wave number mentioned above.

The original curved earth-ionosphere waveguide is represented by the upper (or lower) half
of the rectangular dual model waveguide (see fig. 1). The upper (or lower) conducting boundary
of the model waveguide represents the ionosphere boundary and the plane of symmetry (x, z) repre-
sents the earth boundary. Also TM modes propagating in the earth-ionosphere waveguide are
represented in the dual model by TE modes. Of course, it is necessary that only waves with
electric fields that are symmetric about the x-axis of the model waveguide are initially launched
into the waveguide; thus the tangential magnetic field at the plane of symmetry (x, z) vanishes,
which conforms with the vanishing tangential electric field at the earth’s surface. It should also
be noted then that the pth mode in the earth-ionosphere waveguide corresponds to the (2p —1)th
mode in the model waveguide since the even modes with asymmetric electric fields must be ex-
cluded. A more detailed discussion of the modeling technique is given elsewhere [Maley and
Bahar, 1963, 1964; Bahar, 1964].

The diurnal change in the effective height of the ionosphere derived from phase velocity
measurements as reported by Pierce [1955] and Crombie, Allen, and Newman [1958] have been
discussed by Wait [1959, 1961]. From the viewpoint of mode theory of VLF propagation, Wait
obtains a value of Ah (the change in the effective height) between 16 and 18 km, in good agreement
with values obtained by Bain et al. [1952], who analyzed the interference pattern of the groundwave
and the first hop skywave at 16 kc/s. The model waveguide with a half-height A;=12.7 ¢m (oper-
ated at 9 Ge/s) would thus represent the earth-ionosphere waveguide 88 km high (at about 13 kc/s)
under more or less normal conditions prevailing at night. Similarly the model waveguide with
half-height A,=10.16 cm would represent the earth-ionosphere waveguide 70 km high under the
conditions prevailing during daytime. This paper deals with a special case in which the transition
between the day and night propagation paths is assumed to take place over a length of several
wavelengths rather than in the abrupt manner discussed in an earlier paper by the same authors
[Bahar and Wait, 1964]. The transition region is assumed to be wedge-shaped, and it is bounded
by uniform waveguide sections of unequal cross sections representing the day and night propagation

paths.
Ty
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e model. of the idealized earth-ionosphere waveguide
e used in the experimental investigation.
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2. Formulation of the Problem

The half-height A(x) of the waveguide, as a function of the distance x along the axis, is ex-
pressed analytically by
hd_hu

h(x) = hq~+[u(x) — u(x — L)] —7 X +u(x—L) (ha— ha) 2)

where u(x) is the unit step function defined as,

0 for x <0
u(x)=
1 for x =0,

L is the length of the transition path, and A, and A4 are the heights of the uniform waveguide sec-
tions at the terminals of the transition region. The gradient of the height profile in the transition
region is restricted in the following analysis by the condition

a _hu
¥ = tan ¢=h’T<O.25. (3)

The total variation in height is assumed to be about a wavelength and, thus, the length of the tran-
sition region is restricted by

L > 4(ha— ha) = 4. (4)

This is not a serious restriction judging from the nature of the problem under consideration.

The linear transition described here has been investigated by Wait [1962], who considered a
TM wave incident on a wedge-shaped transition between two parallel-plate waveguides. These
solutions are extended in this paper. Here the transition region between the uniform waveguides
is analyzed as a waveguide junction.

To derive the scattering of the waveguide modes for the case of propagation in the day-to-
night path, a quasi-optical method is used in which reflections are totally neglected. This approxi-
mation is very suitable whenever a low-order mode propagates through a multimode waveguide in
the direction of increasing cross section, as was illustrated rather rigorously in the investigation
of mode conversion for the case of propagation of grazing modes in a multimode waveguide with an
abrupt height discontinuity [Bahar and Wait, 1964]. The above solution is then used to derive
the scattering when the direction of propagation is reversed (night-to-day path) by invoking the
reciprocity theorem. In this manner, reflections for the night-to-day propagation path need not
be neglected.

In order to apply the reciprocity condition at each discontinuity in the gradient of the height
profile (x=0, x=L in fig. 2), it is necessary to derive a generalized interpretation of the reciprocity
theorem for waveguide junctions.

Y ppc
P=p,
T PORT PORT D
FIGURE 2. Wedge-shaped transition region between the PORT_~ B hi hy
day and night propagation paths. a A PORT C

’ f . I i m |
0z 2 X

v ax— L xeL
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At the terminal surfaces in the wedge region (ports A, B, C, and D in fig. 2), the tangential fields
are described by a finite number of unattenuated modes and an infinite number of evanescent
modes. The electric “basis” field (transverse field pattern) for the nth mode in ports A and B,
for instance, are denoted by ®4 and ®% respectively. In the problem under consideration

D4 = cos kiy,, |¥] < ha and ®E=cos vyp, lo| <y (5)
where wr
1141 - 24 (6a)
and
_nw
Vn —ﬂ (6b)

It will be found very convenient to use matrix notation throughout this work and thus, before
proceeding with the analysis, the definitions of the symbols for the matrices and their elements
are stated.

Let @4 and @ denote the “basis” field row vectors whose elements are ®4 and ®5 respectively,

and let @ denote the total ““basis’ fields row vector, representing all the ‘“‘basis” fields in both the
ports A and B, of the junction under consideration. Hence ® is defined as

b= [DADB]. (7)

The quantities a;f and b; are defined as the nth mode complex wave amplitude (referred to
port A) of the wave traveling towards and away from the waveguide junction respectively. Thus
| a4 | is the magnitude of the forward traveling nth mode and arg (a#) determines the phase of this
wave relative to the other waveguide modes. The symbols @ and b4 are wave-amplitude column
vectors whose elements are @/ and b4 respectively. Similarly, with respect to terminal B, a? and

and b? are wave-amplitude column vectors whose elements are a? and b? respectively. The total
wave-amplitude column vectors are defined as

at b4
= and b = (8)

ab bP

Then the electric field at port A expressed in terms of the “basis” fields and wave amplitudes is

EA(y, t)=Re {®P4[a*+ b1] exp (twt)}.

Matrices Y and Y* are diagonal characteristic admittance matrices whose elements Y4 and Y2

are the nth mode characteristic admittances for ports A and B respectively. The total charac-
teristic wave admittance is defined as

YA 0
Y= : ©
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The symbols Z4, Z8, and Z are characteristic impedance matrices. They are equal to the inverse
of the matrices Y4, Y2, and Y respectively.
Matrices W4 and W?* are diagonal matrices whose elements W' and W are the power normal-

ization factors defined by

hg U
WA :f [Di!Pdy = hq and W{f:J [DEPode = puis. (10)
hq -
The total power normalization matrix is defined as

w4 0 ha 0
= = , (11)
0 we 0 pus

where [ is the unit diagonal matrix.

The symbol S4 is a diagonal matrix whose elements are S:; S# can be identified as the sine of
the angle of incidence of the nth mode on the narrow walls of the model waveguide in port A. It
is given by

Sa=[1—(ka/ky1"?, n=1,3,5... (12)

where k4 is given by (6a). These elements are related to the mode characteristic admittance

n

through the equation

Ya=YS, (13)
where Y is the free-space wave admittance. They are also related to the mode propagation con-
stants B4 through the equation

e =kS3, (14)

where £ is the free-space wave number.

Symbol S44 is a square reflection scattering matrix, whose element SZ4 is the complex ampli-
tude of the nth reflected mode when the mth mode of unit amplitude is incident on the junction
from port A. Similarly, S?% is the reflection scattering matrix related to the waves in port B.

The symbol SB4 is a square transmission scattering matrix, whose element S24 is the complex
amplitude of the nth mode transmitted through the junction to port B when the mth mode of unit
amplitude is incident on the junction from port A. Similarly S4# is the transmission scattering
matrix related to transmission through the junction from port B to port A.

The total scattering matrix is then defined as

SAA SAB
S= : (15)
Spa S

In terms of the matrices defined above, the scattering matrix equation of the waveguide junction
becomes

b=Sa. (16)

Similarly, the above matrix quantities can be defined corresponding to ports C and D (fig. 2).
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List of Symbols

a, a*=forward traveling wave amplitude vectors
ao=radius of the earth
b, b4=backward traveling wave amplitude vector
h = height of the ionosphere, or half-height of model waveguide
ha=half-height of “daytime” portion of waveguide
ha=half-height of “nighttime” portion of waveguide
1=V —1
k=free-space wave number
m, n, p, q. s=integer indices
u = unit step function
x, y, z= Cartesian coordinates
E = electric field
£ = electric field amplitude matrix
H = magnetic field
H= magnetic field amplitude matrix
R =reflection coefficient
S = scattering matrix
S44 =reflection scattering matrix
BA = transmission scattering matrix
S4 =sine of the angle of incidence for the mth mode
W = power-normalization matrix
Y= free-space wave admittance, characteristic admittance matrix
?zequivalem admittance matrix
7 = characteristic impedance matrix
= propagation constant
e = dielectric constant
A= free-space wavelength
w= permeability
@, ®4=basis-field row vector
p, ¢, z = cylindrical coordinates.

3. Day-to-Night Transition Path

The incident wave traveling in the direction of the axis (from the narrow to the wide uniform
waveguide as indicated in fig. 2) is assumed to be the TE,,, o mode for which the electric field in
the narrow waveguide is given by

E.= af exp (— ikxS%)P4(y) = ah exp {— ikxS#h} cos kiyy 17)

where £ and S are defined by (6) and (12) respectively.

For the case considered, the width of the model waveguide increases monotonically (or re-
mains constant) as the wave advances along the waveguide, and the cross section of the multimode
waveguide never changes abruptly. Thus, the assumption that reflections may be neglected can
be applied; this renders S44 =0, S¢C=( (actually this assumption was also verified experimentally).

The waveguide region shown in figure 2 is regarded to possess junctions for the sake of analysis.
For example:

Junction I is bounded by the x=0 plane and the p= p, cylindrical surface,

Junction II is bounded by the cylindrical surfaces p=p;, and p=p., and

Junction III is bounded by the cylindrical surface p=p. and the plane x=1L.
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Junction II, being a uniform linear wedge region, will transmit the incident waves without
mode conversion.

(a) Scattering through Junction I.

Let x, v, z be the coordinate system connected with port A (x=0 plane) and let p, ¢, z’ be the
coordinate system connected with port B (p= ps cylindrical surface). The axes z and z’ are par-
allel as indicated in figure 2.

The distance Ax (along the x-axis) between the terminal surfaces x=0 and p = py of junction I,
as a function of the azimuthal angle ¢, is

Ax = py (cos ¢ — cos ) 2‘% (Y —¢?) (18)

where { is given by (3) and cos s is replaced by the first two terms of its Maclaurin series expansion.
The radius py is related to the parameters of the height profile (2) by the equation

— h" =
P sin s

a
)

(19)

with a similar relationship for p..
On neglecting reflections, the electric field at p= py, by substituting (18) into (17), is given by

Ez(p =p1») = a;1n exp {_ kS,

m

Ax} @4 = af exp {—ikpsSAU?2} - exp {ikpuSip*2} cos kiy. (20)

The electric field in a uniform radial waveguide is expressed in terms of the orthogonal basis
fields ®? by the equation

Hkp)
E.= Eb,, o ’)CD,, (21)

where ®f is given by (5), and H{?) is the Hankel function of the second kind and order v,. The

form of (21) follows immediately from an earlier analysis of the wedge region [Wait, 1962].
It now immediately follows that the continuity condition of the electric field at p=p; is
given by

ay, exp { —ikpySiy*(2} exp {ikpsSi? 2} ;) = DIbE _2 DLSm - (22)

Now, subject to the restriction of (3) on the gradient of the height profile,

My _ M Sin ¢ __ mmwe

Acp= =
kay = 2hq 2 sin Y 2y e

(23)

To solve for the scattering coefficients S%, premultiply by @8 and integrate with respect to ¢
over the interval (0, ¥); thus

B = % ot =

¥
Xf exp {1kppSLp?/2} cos vap cos vmede
0
2
:E exp { — ikppSAY?|2}IBA. (24)
1451
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As indicated before [Wait, 1962], the integral /24 in the above equation can be expressed in

nm

terms.of a Fresnel integral F(x) defined by

F(x):.f: exp {”;xz} dx. (25)

To be explicit,

1/ 7 \12 “i(V;n—Vn)z QoA 12 Vm — Vn }
BA—=r= = e =L
Lo 4(2%) {exp[ dah HF{(W) <w+ 2as, >
2&,‘3 12 Vm— Vn
+F {(?) ("’ 2a )H
M] { 24N [ vut v, } {(2_0;,;‘_,>”2< _V_L’)H}
+8Xp[ dat [F ( 77) <d’+ 20 ) ) VT 0

where

ot = P05, 27)
2
(b) Transmission through the uniform radial waveguide Junction II.
In this junction no scattering takes place, and it can readily be shown [Wait, 1962] that the
transmission coefficients in the forward and backward directions between the terminal surfaces
p» and p. are given, respectively, by

S)Lng = H(uz,:l(kpe)/H(fr:l(ka)Smn (28)

The relationship between the coefficients S8 and SZ¢ checks with the general reciprocity
theorem (appendix A) applied to uniform radial waveguides. The H{! and H? are the Hankel
functions of the first and second kind (of order v,,) respectively.

(¢) Scattering through Junction III.

One should appreciate that the wave incident on Junction III comprises several modes even
when only one mode is incident on Junction I. However, in the analysis it is necessary to con-
sider only one of these modes incident on Junction III. On using superposition the result for
several incident modes is readily obtained. The incident wave approaching Junction I1I from the
radial waveguide is thus taken to be

(2)
. HY (kp)

m

E.=af, H (hpe) @f (30)

where ®¢ =®E is given by (5).
The basis fields in the rectangular waveguide are

@D = cos kPy (31)
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where
ni

B s LU .
= Sh, (32)

The electric field in the rectangular waveguide expressed in terms of these basis fields is

Ez=2bﬁ’exp[—ik(x—L)S’,f] (33)

where
SD=[1— (kD [k)2]/2- (34)

Neglecting reflections, and following the analysis applied to Junction I, it readily follows
that the continuity condition for the electric field at x =L is given by

aS, exp {ikpeSSUPI2} exp {—ikpe SGe?2} = S BLBL = S DLSIC ag (35)

in which S§ = S2-

To solve for S2¢. premultiply by ®2 and integrate with respect to y over the interval [0, Aq4].

nm?

This gives

9 (h
SDC=exp {tkpeSSY?/2} EJ dexp {— ikpeSS@*2} cos vme cos kPydy
0
v
=~ exp {ikpcSSY?/2} %f exp {— ikpeSCp?I2} cos vmp cos vapdp
0

2
=exp {ikpSSY?/2} E @257, (36)
where, as in (23), it is assumed that

kPy = v, and TR (37)

hd [IJ

and (I5)* is the complex conjugate of I25. The latter is defined by
lll . v ¢
I,?,gZJ exp {iaCp?} cos vup cos vmede, (38)
0

which in turn can be expressed in terms of the Fresnel integrals as in (26). Thus

kpeSC
chssn (39

Combining the results of the scattering and transmission in the separate sections of the wedge
region and denoting the scattering coefficients of the composite Junction (with terminal planes at
x=0and x=1L1) T, it can be readily shown that the transmission scattering matrix (from port A to
port D) is given by

TDA — GDCSCBSBA (40)
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where SB4 S€B and SPC are given by (24), (28), and (36). The reflection scattering matrix for port A
is assumed to be the zero matrix

T44=0). (41)
The electric field at x=L is therefore given by the matrix multiplication

E(x=L)=®PTP4a4. 42)

4. Night-to-Day Tapered Transition Path

When the cross section of the model waveguide decreases as the incident wave propagates
in a nonuniform waveguide (propagation in the direction of decreasing p or x), the reflections cannot
be considered negligible unless the gradient of the effective height profile is very small. As in the
case when the height profile had an abrupt discontinuity [Bahar and Wait, 1964], it was observed
experimentally that there were substantial reflections in the case of a wedge transition region (for
the night-to-day transition path), even when the gradient (3) of the height profile was { = tan {s
=0.25. In view of this, the method developed in the previous section to derive the scattering
matrices is not effective in this case. However, since a very good approximation to the solution
of scattering in the day-to-night propagation path is already available from the preceding analysis,
the solution to the problem of scattering in the night-to-day path can be obtained readily from it by
the use of the reciprocity theorem. The reciprocity theorem, for waveguide junctions with uniform
waveguide ports of constant cross section.and a linear axis -of propagation, is given by the matrix
equation

—

WYS=WYS (43)

where the matrices WY and S are defined in section 2 and the curled symbol above the matrices
represents the transpose operation. Equation (43) states that the matrix product WYS is sym-
metric. The corresponding relationship between the transmission scattering matrices S48 and

SBA |s
JWAYASAB — SBAYBJ/B. (44)
In terms of the elements of the matrices, the reciprocity theorem is given by

WA YASAB — J/BYBGBA - (45)

m= m~mn n-n

The derivation of the above theorem is given by Kerns [1961]. A generalization of this the-
orem for the case when the cross section of the terminal ports of the waveguide is not constant
is given in appendix A. The scattering matrix S48 can therefore be obtained directly from the
previous solution for SB4 without involving any further approximations, since the reciprocity
theorem is exact. Hence

SAB:[WAYA]—ISBAYBWB' (46)

The fields transmitted through the wedge region to port A can be derived in a straightforward
manner by means of the scattering matrix 742 in the following matrix equation:

E(x=0)= T 40D, (47)

where the transmission scattering matrix 742 is related to the matrix 724, given by (40), through
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the reciprocity theorem as in (46),

T4» = [WAYA]—ITDAYDW"=§ ZATpay» 48)

where the power normalization matrices 4 and W and the impedance and admittance matrices
Z4, YA YD are defined in section 2.

In order to derive the fields within the wedge region or to obtain a first-order approximation
of the reflection scattering matrix 7PP, it is necessary to apply the generalized reciprocity theorem
(appendix A) to each of the subsections of the wedge region, (since ports B and C are not rectangu-
lar). In particular it is necessary to determine the scattering matrices S48, SCP SBB and SPP,
This shall be done in the remainder of this section.

Using the generalized reciprocity theorem, it can be readily shown that the transmission scat-
tering coefficients through Junction I (fig. 2) from the terminal surface p = p to the terminal surface
x=0is given by

WH B BA
S‘:,l,i — n-_n SBA = S (49)
mn /A YTA"™ nm kpw
m* m Sl!l (ﬂTp,> IH(,,I':(kph)lz

where Y74 and Y?P are the total wave admittances defined by (A.10) and (A.11) for the uniform
rectangular waveguide A and the uniform radial waveguide B respectively. The power normaliza-
tion constants defined by (10) are

Wi=ha~W8=ppy 60

m
since

pv = aly.

Assuming the incident field at the terminal p=p; of Junction I is given by ®2a8 the trans-
mitted field at the plane terminal x=0 is

Ez(x=0)=2‘bﬂbﬁ=2<b’*5“’a” 51)

n~nm=m*
n n

The total field (including reflections) at the surface p=p, is approximately

E(p=py) = ®iSAE exp {ikSiAx} ab. (52)

n—nm
n

This field can be expressed in terms of the incident and reflected modes at the terminal surface
p=pp by the equation

E(p=pp)=", ®E[8ym+SBEla 2 (53)
p

where Sp is the reflected pth mode due to an incident mth mode at the terminal surface p= p.
Hence, the continuity condition on the electric field yields

n-nm

> Dp[Spm+SEBlal ~ ¥ ®4SAE exp {ikSiAx}ab. (54)
P

n
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To determine the reflection coefficients SE2. premultiply by ®% and integrate with respect
to ¢:

[}
SBE + 8pm = % > exp {iogy?} { J;) exp { —iaie?} cos vy cos V,,(pukp} S
% . AT
= 2 E exp {law}lg;}s;;; (55)

=S s

n

where (SB4)* is the complex conjugate of S#4 which is given by (24).
bn pn

Hence, in matrix notation, the reflection scattering matrix is given by
SBB ~ (SBAYkGAB _ ] (56)

The scattering matrix S for the waves that are transmitted through Junction III (in the
direction of decreasing p), and the reflection scattering matrix SP? at the terminal x =L, are derived
in the same manner as were S and S*2, by the use of the reciprocity theorem and the continuity
condition of the electric field. It can be verified that

WY whpd)
Sea= we yroSmm = Su T [HD (koS35 (57)

m

and
SPD ~ (SPCYESCD — | (58)

where (57) and (58) are analogous to (49) and (56) respectively.

The reflection scattering matrix 7°? for the composite junction (the entire wedge region) can
now be obtained either by cascading the scattering matrices of the three elementary junctions
or by direct inspection:

TDD = §PD + §DCSCBSBBSBCSCD ' (59)

where the first term represents the reflections due to the discontinuity in the gradient of the height
profile at x=1L, and the second term represents the reflections due to the discontinuity in the
gradient at x=0.

The field at any point within the wedge region may be derived in a similar manner, since all
the scattering coefficients have now been derived.

5. Propagation Through a Wedge Region With a Very Small Gradient in the
Height Profile

Experimental data obtained from the model waveguide show that the reflection coefhicients
for either direction of propagation can be entirely neglected when the gradient of the height profile
in the wedge region is restricted by the condition

{ = tan lb:@ = 0.03. (60)
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Hence, for the case (hq— hqs)=0.76\, L must be about 25\ before the reflection coefficients 1y
can be neglected together with the reflection coefficients 7'44.

Provided that the condition on the gradient (60) is satisfied, it is also seen that

vpbll’Z s mhals ;
AT~T< 0.3. (61)

Hence, a further simplification in the computation of the scattering coefficients can be made. The
exponent in the integral of (24) can be substituted approximately by the first two terms in the
Maclaurin series expansion such that, for the propagating modes (S4 < 1),

. tkppSA p? 1S4 pyp?
exp {iade?} =exp {%mﬁ} ~1+ ——‘5%- (62)

The scattering coefficients can now be evaluated in closed form [Wait, 1962] for either direc-
tion of propagation, since reflections are now neglected in both directions. With the mth mode
approaching the junction from the narrow waveguide (port A), the scattering coeflicients can be
shown to be given by

[1+i/.-p,,S;}l * <1 2 )]
P sm=n

9 3 mm?
SBA=exp { — ikppS4y?/2}-

iA'pI)Sﬁr 2 6nm (— ]) nvzm mstn
2 (m?—n2)? ’

T

|:i7Thll‘Syﬁl(hl[_h(l) <l_ 2 >:| _
L 2L\ 3 wm) T

ihaS4(ha—ha)  32nm
L\ (m?— n?)

- (—ikhaSy0*)
Sy 5 }—

n—m

(=) 8 ue 7= -

In the expression for S#4 the following approximation has been introduced:

ikhoSip (1 2 ikhoSAy (1 2
o )~ T @)

2 3 mm? 2 3 mm?

since it has been assumed that

kppSAw®  khaSip
5 =5 << 1,

and

= tan 1112@-

From this expression it is clear that the incident mode essentially undergoes a phase shift on
propagating through Junction I. In the earlier analysis by Wait [1962], this phase factor was
neglected.

From the above results it is also seen that, for n # 1, the scattering coeflicients decrease

. 1 . . . .
rapidly as o and that very little energy is converted into the higher order modes. It is also

seen that the magnitude of the scattering coefficients is inversely proportional to the length of
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the taper region (the scattered power is inversely proportional-to the square of the length of the
wedge region [Solymar, 1959]).
Examination of (49) and (56) shows that, provided the condition (61) is satisfied, SBE can be

n

neglected, since not only are the reflection coeflicients S44 negligible, but even the transmission

coeflicients SB4 (n # m) are small in magnitude.
Finally, it should be pointed out that the results of the analysis in this section should be re-
stricted to the cases when the incident wave can be assumed to be essentially comprised of lower

order modes.

6. Experimental Results

Calculations have been carried out for the case of the principal mode propagating across the
night-to-day path with h,=3.05\ and hqs=3.81\ (fig. 2) for the following cases:

(a) L=20A
(b) L=10A\.

The transverse electric field variations (amplitude and phase) obtained from the calculated scat-
tering coefficients are plotted in figures 3 and 4, together with the experimental data from the
model waveguide. The scattering coeflicients 742 are tabulated in tables 1 and 2.

For the case L=20\, the approximate formulas (63) for the evaluation of the scattering co-
efficients between the rectangular and radial sections have proved to be quite accurate. [Equation
(48) has been used to obtain the scattering coefficient of the entire junction. This involves the
application of the reciprocity theorem so that reflections are not neglected for the night-to-day
path.]

It should be noted that even in this case where the gradient of the height profile is very small,
the amplitude of the third mode is approximately 12 percent of the principal mode in the narrow
waveguide section. The amplitude of the higher-order modes m = 5 drops substantially (the ampli-
tude of the fifth mode is about 2 percent of the principal mode). This indicates that for the case
of nonperfectly conducting boundaries a surface impedance concept would be applicable since
most of the incident wave is scattered into near grazing modes.

From the computed data it is obvious that for the case L =10\ the approximate formulas for
the scattering coefficients (63) are not appropriate and the more accurate formulas (24) involving
the Fresnel integrals should be used. Special care should be taken in evaluating the transmission
coeflicients in the tapered region (28), (29) since the values of the order and the argument of the
Hankel functions cross over, with the order being less than the argument for the near grazing
modes and the argument being less than the order for the higher order modes. In all the above
calculations only the first six (even) modes have been accounted for (n=1, 3, 5, 7, 9, 11), this
being justified by the fact that most of the incident energy is scattered into the lower order modes.

It is rather revealing to investigate in some more detail the coefficients that are involved in
the calculation of the amplitude of the third mode transmitted into the day path with the principal
mode of unit amplitude incident from the night path. This is obtained by the following summation:

Téll) = i SABSBCSCD
p

2p “ppTpl”

Since it has been noted that only the near grazing modes are of particular significance, in order to
simplify the following discussion only the first and third mode will be considered; hence

AD ~ GABSBCSCD 4 QAB QBC SCD
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FIGURE 3. Amplitude and phase variations at the trans- FIGURE 4. Amplitude and phase variations at the trans-
verse plane x=0 for the case when a TE , mode traveling verse plane x= 0 for the case when a TE,, mode traveling
in the direction of the negative x-axis is launched into in the direction of the negative x-axis is launched into
port D with 1.= 20\ (fig. 2). port D with L= 10X (fig. 2).

TABLE 1. Scattering coefficients TAP for the night-to-day propaga-  TABLE 2. Scattering coefficients TAP for the night-to-day propaga-

tion path hq=3.05\ hg=3.18\ L =20\ tion path h,=3.05\ hq=3.81\ L=10\
n Re(T4) Im(T4P) n Re(T%2) Im(T%?)
1 0.1051E+01 0.3583E — 00 1 0.1090E + 01 0.1765E — 00
3 .1887E—01 — 1351E—00 3 —.1194E— 00 —.1125E—00
5 .7920E — 04 .1940E — 01 5 — .3798E— 01 6171E—01
7 8953E — 02 — .2083E — 02 7 .1022E— 02 —.1364E—01
9 —.2212E— 02 — .1139E— 02 9 — 2000E — 02 9152E — 02
1 — .8585E — 03 —.7392E—03 11 .1086E — 02 .5656E — 03

Where E + XY = 10+XY Where E =+ XY = 10+YY
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The first term is clearly the contribution to 74 due to mode conversion at Junction III (fig. 2) while
the second term is due to mode conversion at Junction I.

Now it is interesting to note that, as was predicted by the preceding analysis, the amplitude
of the scattering coeflicients S§P and S4f for L =20\ is half that for the case L=10A. Nevertheless
the amplitude of the conversion coefficient 74P is 12 percent of the amplitude of the transmission
coefficient T4E for the case L= 20X compared with only 13 percent for the case L=10X. It should
be noted that this is not due to a large reconversion coefficient from the second mode back into
the first mode at Junction I for the case L =10\ since |S4#| =1 in both cases where L =10\ and
L=20\. The behavior of the coefficient 74P is best understood by noting the phase relationship
between the two major contributions to 74P (i.e., conversion at Junction I and II). While these
contributions are only about 10° out of phase for the case L =20\, they are about 90° out of phase
for L=10A\.

The above discussion sheds light on design considerations of a taper section (between two
multimode waveguides of different cross sections), with minimum mode conversion. While it
has been pointed out in the discussion of the wedge region with the very small gradient that the
conversion coefficients decrease as 1/L, this is strictly true only if each Junction (fig. 2) is taken
separately. On treating the composite junction as one unit it is clear that the total conversion
factor does not decrease monotonically with increasing L. Thus in order to surpress mode con-
version it is necessary to choose the length of the linear taper L such that the two major contribu-
tions to 74P are exactly out of phase and thereby tend to cancel out (destructive interference).
This aspect of the problem is not pursued any further in this paper, which is principally concerned
with the analysis of the propagation problem.

The amplitude of the electric field along the axis of the waveguide is plotted in figure 5 for
the night-to-day propagation path with L=10A. The undulation of the electric field for x > L is
clearly seen to be principally due to the interaction of the principal mode with the third and fifth
modes.

7. Concluding Remarks

It is evident that the quasi-optical technique is applicable to problems of propagation in multi-
mode waveguides when the direction of propagation is from the narrow to the wide waveguide.
However, for propagation in the opposite direction it is necessary to modify the quasi-optical
approach. In this paper, the required extension has been carried out by applying a generalized
reciprocity theorem for waveguide junctions with nonuniform cross sections. Substantiation for
this approach is obtained by using a modeling technique which at the same time has provided in-
sight into the nature of the problem.

Finally, it might be mentioned that transmission through a transition region with a gradually
varying height profile (not necessarily wedge-shaped) between two multimode waveguides with
finite surface impedance boundaries can also be solved by a generalization of the methods described
here. This case will be discussed in a subsequent paper by the first author.
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8. Appendix A. The Generalized Reciprocity Theorem for Waveguide Junctions

The characteristic admittance for a waveguide of nonuniform cross section is generally not
the same for a forward and a backward propagating wave. It is also a function of the distance along
the axis of the waveguide. Only in straight cylindrical waveguides with constant cross sections
is the characteristic admittance the same for both directions of propagation, and independent of
the distance along the axis of the waveguide.

For a radial waveguide, for instance, the characteristic admittance for the principal wave
traveling in the direction of increasing radius p (Junction II, fig. 2) is [Wait, 1962],

)
e — =y "
n E: l H(VZ)(AP) 2 (Al)

where Y is the wave admittance in free space and where £} and HI) are the tangential electric and

magnetic fields, respectively. Here H®'(u) is the derivative of the Hankel function of the second
n

kind and order v, with respect to the argument u. For perfectly conducting walls the argument of

the Hankel functions is

nwm
Vn= 2!!1

where s is the azimuthal boundary of the radial waveguide as indicated in figure 2.
The characteristic wave admittance for the wave traveling in the direction of decreasing
radius p is, on the other hand,

_Hy_ . HY(kp)

Yu E: L ]{‘,,l") (/'p)

(A.2)

where the Hankel function of the first kind replaces the Hankel function of the second kind in (A.1).
[t should be noted that Y} is equal to the complex conjugate of Y, , and that for large /p,
Y; =Y, =Y.

Now, for the region under consideration, it may be shown that [Kerns, 1949
f (E'<H"—((E"x H')-ndS=0 (A.3)
5

where S is the closed surface bounding the region of integration, 7 is the unit vector normal to S,
and E', H' and E", H" are any two electromagnetic fields of the same frequency that can exist within
the source-free region bounded by S.  Equation (A.3) is valid in the present context since the elec-
tromagnetic characteristics of the medium are isotropic. Furthermore, for the present applica-
tion, S consists of the inner conducting surface Sy of the waveguide junction plus the terminal
surfaces Si and S of the two-port. At the terminal surfaces of the junction, the electric and
magnetic fields can be expressed in terms of the basis fields @, (defined in sec. 2), and thus (A.3)
may be written as

f 2 E [(I):n((lf,’" =P b;,,)CD,,(Yﬁ([;; = )= (Dm(”::, Sb ) DR (YEa s y:, [);,) ]([S = (A.4)
Sa SB “m

n
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where a,,, b,, and a,, b, are elements of the total wave amplitude vectors (8), related to the electro-
magnetic fields E', H' and E”, H", respectively. For waveguide ports with boundaries correspond-
ing to orthogonal surfaces of separable coordinate systems, the basis fields are orthogonal; hence,
in this case (A.4) reduces to

I:E ( ))1 + b1)1)W)II(Y;rl(lIII Y;l b;:l) - a;;l+ b;:l) III(YHI 7)1 Y?II blll) ] = (A‘5)

m

where W, is the power normalization coefficient defined in (10). In matrix notation this can be
written as

@+ W(Y+d'—Y-b')= (@ +b"W(Y+a' —Y-b') (A.6)

where a is the transpose of a.
Since the transpose of a scalar is equal to itself, (A.6) reduces to

@WY'Sa’ = &@'SWY'Sa’ (A7)
where Y7, the total characteristic admittance, is defined as
YI'=y++4Y-
and b is replaced by Sa, where S is the total scattering matrix defined by (15).

Now since a’ and @” can be chosen arbitrarily, the reciprocity theorem for waveguide junctions

is, from (A.7),

WY'S = (7Y'S) (A.8)
since
(WY")=WYT.

For completeness, the relationship between the scattering matrix S and the equivalent ad-
mittance matrix Y of the junction can be shown to be given by

P Gl S_Y+~f/_
R Y +7 (A9)

The equivalent admittance matrix Y relates the amplitude matrix of the electric field E =a-+bto

the amplitude matrix of the magnetic field H=Y*a—Y-b through the equation H=YE. For the

case of waveguide ports for which Y* =Y~ (A.8) and (A.9) reduce to the more familiar forms.
The total characteristic admittance for a radial waveguide is

4Y
T VA L Ve
e e o) A (4.10)

For waveguides with constant rectangular cross sections, such as port A in section 6 for ex-
ample, the total characteristic admittance is

VA= I E = IS (A.11)

where S is defined by (12).
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