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The paper deals with various approximate procedures for calc ulating the di s tortion of a pulse 
afte r it has propagated th ro ugh a dispers ive c hannel s uc h as a waveguide. The methods used for 
evaluating the integral s utili ze a s tationary phase principle . Both impuls ive- type and quas i·monochro­
matic sources are considered. It is shown that , in most cases, the tran sie nt res ponse may be obtained 
straightforwardl y from the shape of the phase versus freque ncy characteris ti cs of the sys tem. So me 
attention is given to the co mplication whi ch arises wh en the group veloc ity has an extremum as a 
fun c tion of frequ ency. 

1. Statement of Problem and General Introduction 

The problem is to calculate the waveform of an electromagnetic pulse after it has propagated 
through a linear dispersive c hannel or medium. The waveform of a compone nt of the elec tro­
magne ti c field at the input is designated Eo(t) and the transformed waveform at the output is 
E(t) . Thus, Eo(t) is given, while E(t) is so ught. 

To facilitate the solution , the source field is written as a Fourier integral 

1 J +00 Eo(t)= - g(W)eiw1dw, 
27T -00 

where, for the moment , g(w) has no s ingularities on the real axis of the complex w plan e. 
inverse of (1) is given by 

where g (w) may be regarded as the spectrum of the source pulse. 

(1) 

The 

(2) 

After the spectral component g(w) exp (iwt) passes through the system it will be modified by 
the transfer function R(w) exp [- icp(w)] where R(w) contains the amplitude and any other slowly 
varying complex functions of w. Thus, the output pulse is represented by 

1 J +oo E(t)=- R(w)g(w)eiw1e- i'f{w)dw. 
27T _00 

(3) 

In some cases, the e valuation of this integral may be carried out by analytical means whe n the 
fun c tions g(w), R(w), and cp(w) have simple algebraic forms. Unfortunately, more than not, the 
transfer fun ction R(w) exp [- icp(w)] is some complicated function of frequency which may be 
given only in numeri cal form. In such cases, it may be feasible to evaluate the integral by a 
purely numerical procedure. With the wide availability of the digital computer , thi s is certainly 
fashionable at the mome nt. Consequently, one might say that the proble m has been solved and 
no furth er discussion is needed. However, it would be a pity if one accepted thi s answer since 
all physical insight into the nature of transient processes has been ignored. Furthermore, apart 
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from the economic considerations of using large-scale computers, the direct numerical procedures 
require very special precautions when the integrand of (3) is highly oscillating. The awkwardness 
of the situation is compounded when the numerical data for R(w) and cp(w) are given only at a 
finit e number of real frequencies, let alone the possibility that data for a whole frequency range 
might be missing. 

From the above considerations, there seems to be a need to utilize approximate procedures 
for handling integrals of the type given by (3). Furthermore, by exploiting some of the rapidly 
varying characteristics of the transfer function, certain approximations can be made which lead 
to great s implifications. 

The point of view adopted here is similar, in many aspects, to those expounded many years 
ago by Sommerfeld [1914] and Brillouin [1914]. However, in this paper, the emphasis will be on 
transfer functions which are characteristics of propagation channels such as the earth-ionosphere 
waveguide. Also, we shall be concerned with source pulses which have spectra covering a wide 
range of frequencies. 

2. The Stationary Phase Method 

As a starting point, we write the integral (3) in the following form: 

J +'" 
1 = -00 C(w) exp [- iF(w)]dw , (4) 

where F(w) is real and contains all the rapidly varying phase terms, while G(w) is a slowly varying 
function which may be complex. In accord with the classical notions of the stationary phase 
method, the important contributions to the integrand are where the function F(w) is stationary. 
This suggests that we write F(w) as a Taylor expansion about the frequency Ws which is defined by 

F'(ws) = [aF(w)/aw ]w=ws = o. 

Thus, 

F(w) = F(ws) + (w -; ws)2 F"(ws) + (w ~ ws)3 F'''(ws) + . (5) 

For many purposes, the series may be truncated beyond the term containing the second derivative 
F"(ws). Furthermore, in the physical systems under consideration, the stationary points usually 
occur in pairs at w = ± Ws. 

The contribution from + Ws may be approximated in the following manner: 

(6) 

where the slowly varying G(w) in (4) is taken outside the integral and replaced by its value at w = Ws. 
The integral is now easily transformed to the well-known form 

J+OO 
-00 e- ix2dx = (7T/i)1 /2. (7) 

Thus, 

[ 27T ]1/2 . 
1+ ~ G(ws) iF"(ws) exp [- £F(ws)]. (8a) 
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In a similar manner, the contribution from w =- W s is found to be 

_ * [ 21T ]1 /2. J - = G (ws) _ iF"(ws) exp [ + tF(ws)], (8b) 

wh ere the asterisk denotes a complex conjugate. Writing, 

(9) 

it is a simple thing to show the combined contribution is 

(10) 

where the + 1T/4 is to be used when F"(ws) > 0 and the - 1T/4 is to be used when FI/(ws) < O. 
When the integral has additional saddle points, the cQntributi on from them must be added to 

those from ± W s. 

3. Pulse Propagation in an Ideal Waveguide 

The applicability of the simple stationary phase method is bes t illustrated by an exam ple. 
Th e mudel we s hall c hoose is a vertical electric dipole sitting on the bottom surface of a parallel 
plate waveguide. In terms of cylindrical coordinates (p, cf>, z), the dipole of le ngth ds is located 
at the origin, while the perfectly co nducting walls are de fin ed by z = o and z = h. When the dipole 
current varies as I(w) exp (iwt), the magne ti c field has only a cf> co mponent given b y [Wait, 1962] 

H ( ) - I(w)dseiwt . a ~ f (:') , 
q, W - - 4h l ap . _ L.. E" 1o~ (kS"p) cus (kc"z) 

n- O, 1, 2, . .. 
(11) 

where Eo = 1, En = 2(n =Fe 0), 

en = 1Tn/(kh) , 

and k= w/c. The func tion H(~) is the Hankel function of the second kind of order zero. Now, in 

this particular problem, the input function is the waveform io(t) of the current in the source dipole 
and the output is the magnetic field hq,(t) as a function of time t. These are related to the time· 
harmonic quantities I(w) and Hq,(w) in an analogous manner to (2) and (3). Specifically, 

(12) 

and 

I(w)= L: io(t)riwtdt. (13) 

For this example, we shall choose io(t) to be a suddenly applied impulse (e.g., an idealized lightning 
discharge). Thus, 

io(t) = 108(t), 
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where o(t) is the unit impulse function. Thus, from (13), it follows that: 

I(w)=Io, (15) 

which, in effect, says that the source has a uniform spectrum over all frequencies. 
The transient response of the waveguide channel for this impulsive current may thus be written 

where 

Iods a 00 (7TnZ) 
hq,(t) = 4 h - 2: E"V,,(p, t) cos h' 

7T ap ,,=0 
(16) 

(17) 

The integral V,,(p, t) will now be evaluated by the stationary phase method and the result 
will be compared with the known exact result. The central assumption is that the Hankel function 
may be replaced by the first term of its asymptotic expansion. Thus, 

(18) 

where 

_. (2i)1 /2 [[ . (7Tnc)2] 1/2 p] -1/4 G(w)- - w2 - - - , 
7T h c 

(19) 

and 

[ (7Tnc)2] 1/2 p 
F(w)= w2 - h 7;-wt. (20) 

The radical in the latter expression is to be chosen so that the real part is positive if 1 wi > l7Tnc/ hi 
and the imaginary part is negative if 1 wi < l7Tnc/h I. Physically, these conditions amount to say­
ing that only outgoing propagating modes are permitted for p~ 00, while the cutoff modes are 
damped in the positive p-direction. 

The stationary phase point, obtained by applying F'(ws) = 0 to (20), is given by 

w s =(7Tnc/h)ct/X 

where 

It is also a simple matter to show that 

F (w s) = - 7TnX/ h, 

and, finally, 

_ 2c (7TnX) , V,,(p, t) = X cos -h- u(t), (21) 
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where u(t') = 1 for t' > 0, = ° for t' < 0, and t' = t - (PIc). This is to be compared with the exact 
value given by [McLachlan and Humbert, 1941; Budden, 1951] 

V ) 2c [ (7T~ 2 . (7T~ I ct+X] (') n(P, t = X cos h)-; sm h) og" -P- u t . (22) 

When X < < ct or p, and if p > > h, the term containing the logarithm is negligible. On close 
inspection of the matter, it is seen that these are just the conditions for the stationary phase method 
to be valid. It is also worth noting that (21), for h = 00, may be checked by comparing it with pair 
912.3 in Campbell's and Foster's [1948] tables. 

The transient magnetic field, within the stationary phase approximation, is found from (16) 
and (21) to be 

h~(t) = ;~~~ l~O En [ cos (7T~!) + (7T~!) sin (7T~X) ] X cos (7T~:'Z) u(t') (23) 

which is valid when X « ct or p and p» h. 
It is clear from (23) that the individual modes, for n > 0, vary with time in a quasi-sinusoidal 

manner with a quasi half-period which is approximately given by 

T 
2 

h 1 
nc [l + (2plct')] 1/2 seconds for n > 0. (24) 

This shows that the apparent period of the oscillation increases slowly with time. It is also in­
teresting to note that the higher order modes have shorter oscillation periods. Of course, in the 
case of the zero-order mode (i.e., n=O), the magnetic field varies with time monotonically as 
[(ct)2 - p2] - 3/2. 

4. Application to More Realistic Models 

As indicated above, the application of the stationary phase method is quite straightforward 
when applied to transient calculations in conventional waveguides with no wall losses. On the 
other hand, if the waveguide walls have finite conductivity, the problem may be very difficult if 
highly precise results are desired. Fortunately, for most cases of practical interest, the attenua­
tion of the modes is accounted for by a multiplicative factor which, in the frequency plane, may be 
designated by exp [- a,,(w)p] where a,,(w) is the attenuation coefficient as a function of frequency. 
Within the approximations of the stationary phase approach, the transient response of the indi­
vidual modes is then simply multiplied by exp [- an(ws)p] where Ws is the stationary phase point 
as computed for the lossless case. This perturbation technique has been applied on earlier 
occasions to the computation of transient waveforms in the earth-ionosphere waveguide [Wait, 
1958]. Apart from the plausibility of the approach for small losses, a mathematical justification 
has been given by Gajewski [1958] for metallic walled waveguides at centimetric wavelengths. 

In order to discuss the full significance of the stationary phase method in mode theory, it is 
desirable to return to (4). When the integrand represents an individual mode, the rapidly varying 
phase function F(w) may be written 

F(w)= wp -wt 
vp(w) 

(25) 

under the assumption that the phase characteristics of the source and other factors are sufficiently 
slowly varying to be lumped into G(w). Here, it is understood that vp(w) is the phase velocity of 
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a given mode. The stationary phase condition may now be written 

F'((}.)s)= ~ )-t=O, 
V{/\WS 

(26) 

whe re Vg(Ws) = 1 / [I~~()] is, by definition , the group velocity. Often it is convenient 10 
aw V/I W W=Ws 

use (26) to estimate the stationary point Ws from given data on Vg(w) plotted as a function of w. In 
a similar manner, one may wish to estimate the second derivative F"(ws) which occurs in the 
denominator of (10). In thi s case, 

F"( )- [a 1] W P ---
s - aWVg(w) W=Ws 

(27) 

which, as indicated, is the derivative evaluated at W = Ws. 

In the preceding development, it has been tacitly assumed that the phase function F(w) may 
be adequately approximated by the firs t three terms in a Taylor expansion of F(w). Clearly, 
this is inadequate when the second derivative F"(ws) vanishes. This would lead to particular 
difficulty in trying to evaluate (10). As an alternative for situations of this type, we develop F(w) 
in an expansion about the point Wg which is defined by the solution 

or 

F"(w)=-; F(w)=O 
aw 

~ _1_= __ 1_ avy(w)=O 
aw Vy(w) v~(w) aw . 

(28) 

(29) 

This condition corresponds to the situation where the group velocity, as a function of frequency, 
has a minimum or a maximum. In the case of practical waveguides in radio technology, Vg(w) is 
usually a smooth monotonic function and the condition is not satisfied for any finite frequency. 
However , there are numerous examples in seismology [Ewing, et al., 1957] and, in certain cases, in 
terrestrial radio waveguides [Wait, 1962] where the group velocity has a maximum or minimum. 
For example, an analytical model of the earth-ionosphere waveguide would indicate the group 
velocity, for the dominant mode, has a maximum at a frequency (Wg/27T) of about 22 kc/s for typical 
daytime conditions [Wait and Spies, 1964] (i .e., where the phase velocity versus frequency curve 
has maximum curvature). 

Instead of (5), we now write 

F(w) =F(wg)+(w - wg)F '(wg)+(w- wg)3F '''(wg)/6+. ... , (30) 

where the second derivative term is abse nt on account of 

F"(Wg)=O. 

When the series in (30) is now truncated beyond the third term, it is a simple matter to show that 

f 00 ( 03F":\ J + == 2G(wg)e- iF(wr) 0 cos OF' + --6-; dO, (31) 
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where 

!1 = W- WfJ , F' = F'( wfJ)' and F"' = F"'(wfJ) . 

When F'" > 0, the approximate expression for J + may be written in the following form: 

( 2 ) 1/3 . [ (2) 1/3] J == 27T1/2G(W) - e- iF(wqJv F' - , 
+ g F'" . F'" 

where v(Z) is the Airy integral defined by 

1 f oe v(Z)=- cos [Zs+(s3/3)]ds. 
V7i 0 

In a similar manner, we find that the contribution from W= -Wg is given by 

J == 27T1 /2G*(w ) (~)1/3 e+ iF(wq)v [F' (~)1 /3 ] . 
- g F'" . F,n 

As a result, 

_ _ 47T1/2IG(wg) 1 ~ [, ( 2) III 
J = J++J- = 1F"' 11/3 cos [F(Wg) -~Wg)J v F F''' ' 

where , in analogy to (9), 

A very similar expression holds for F'" < O. . Then, it is convenie nt to write 

When thi s is applied to a waveguide mode, 

where Wg is defined as the solution of 

Also, for thi s situation, 

and 

F - Wgp 
(Wg)--( -)-wgt, 

Vp Wg 

a 
- Vg(w)=O. 
aw 

F,=-P--t 
Vg(Wg) , 

F"' = p [~_l ] 
aw2 Vg(w) W=Wg 
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(35) 

(36) 
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FIGURE 1. The Airy function and a related integral. 
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From the above, it is evident that the transient response of a waveguide mode is an oscillatory 
function with a constant frequency wg/21T". It has an amplitude which is proportional to IF 1111 - 1/3 

and the envelope is proportional to the Airy function v( - x) where x = - F '(2/F 111)1/3. It is under­
stood that the transient response so calculated is valid only when x has a magnitude not large 
compared with unity. If this is not the case, higher order terms in the expansion in (30) should be 
considered. To show the manner in which the envelope of the pulse varies with time in this region, 
the function v( - x) is plotted in figure 1 as a function of x from - 5 to + 3. For a waveguide mode, 

- [ P ] ( 2 )1 /3 
x- t- Vg(Wg) Fill (38) 

which is positive when t > p/Vg(Wg) since Fill is positive when the group velocity has a maximum 
(at W = wg ). Thus, in a sense, the curve of v( - x) versus x in figure 1 may be regarded as the time 
history of the envelope of the leading portion of the pulse response of the waveguide. In this case, 
time increases from left to right. On the other hand, if the group velocity has a minimum, F III is 
negative and then we should note that 

- [ P ] ( 2 ) 1/3 
x - - t- Vg(wg) -Fill , (39) 

which indicates that time increases from right to left. 

5. The Quasi-Monochromatic Pulse 

The approaches mentioned above are applicable to propagation of the broadband pulses in a 
dispersive channel. In these cases, the spectral characteristics of the source are sufficiently broad 
that they may be lumped into G(w) and taken outside the integral in either (4) or (31). However, 
when the source has most of its energy in a relatively narrow band of frequencies, another approach 
is desirable . 

An important practical situation corresponds to choosing the source to be of the quasi-mono­
chromatic form 

(40) 

where Wo is the (angular) carrier frequency and A(t) is a specified well-behaved function which may 
be called the modulation envelope. The corresponding spectrum, using (2), is 

g(W) = L: A(t)ei(wo- w)tdt. 
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Using (3), the response of the dispersive propagation channel is then to be obtained from 

E(t) = - A(c)ei[wo- w)f+Wl-<p(w)]R(w)dwdi, 1 J +00 J +00 • 

27T -00 -00 
(42) 

where R(w)e- i<,:>(w) is the complex transfer func tion of the channel. The phase function cp(w) is now 
expanded in a series about the carrier frequency woo Thus, 

cp(w) = cp(wo) + Dcp' (wo) + (D2 /2)cp"(wo) + (D3/6)cp'''(wo), (43) 

where D = w - woo It is tacitly assumed that higher order terms in D may be neglected.! 
We now seek a method to carry out the w integration in (42). To facilitate this step, it is 

conveni e nt to replace exp [- i(D3/6)cp"] by a suitable integral representation which involves only 
the first power in D in the exponent. This is obtained by noting that the definition of the Airy 
function v(y) of argument y may be written as a Fourier transform [Wait, 1962] 

1 J +x . "/3 . I 1 - e- 1X ' e- 1XYc x =- v(y). 
27T - x 7T1/2 

(44) 

The in verse of this tran sform is 

(45) 

Using thi s result , it is then readily found th at 

[ . D3,,,,,,(wo)] 1 J +x 
.,.. ( ) [l·(,,,"'/2)1/3y"] fly, exp - l 6 = 7T 1/ 2 - x V y exp.,.. H c. (46) 

which is the desired form. 
On using (43) and (46), it is now see n that (42) tak es the rather ominous·looking form 

.. 1 J +x J +x J +x • E(t) = e,w"l-1<,:>(w,,) --:Ji2 A(t)v(y) 
27T -x - x -x 

X exp [in[t - i- cp'+(CP"' /2) 1 /3Y] - ~iDV'] dydidD. (47) 

We now introduce a new variable z such that 

(48) 

The exponential term in the integrand of (47) then becomes 

[ _.( 2/2) + . (i - t + p' - (cp'" /2)!/3y )2]. 
exp l 7TZ l 2cp" (49) 

Now, since we are dealing with frequencies w near Wo, the limits of the new variable z may be reo 

1 It is also assumed he re that R(w) is s lowly varying compared wi th exp 1- irp(w)J in ' the vic inity of~ . Thu s, it may be taken out of the integral and re placed 
by Rtwo). In most of what follows, we s hall set R (Wo )= I for the sa ke of conve nience. 
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garded as - 00 and + 00 . Thus, using the result that 

J+x 
-x exp [i7TZ2/2 ]dz = 21/ 2 exp (i7T/4), (SO) 

we obtain 

E(t) = eiwot- i<P<wo) _ 1_ J +x r +x A(t) exp [i(c - t + cp' - (cp'" /2) 1/3y )2/(2cp")] X 1 v(y)dydl. (S l) 
(2i) I/27T - x . -x V cp"(wo) 

Then, on introducing a nother variable u defined by 

it is seen that (Sl) becomes 

E(t) = exp [i(wot - cp(wo) - (7T/4))J 

(i - t + cp' - (cp'" /2) 1/3y)2 

2cp" 

7T 
- u2 

2 ' 

1 J+x J +x X (27T)1 /2 -x -x v(y)A [t - cp ' + (cp'" /2)1 /3 y + (7Tcp")1 /2UJ exp (i7TU2/2)dudy . (S2) 

This general expression, although it appears to be rather complicated , may be used as the starting 
point for a number of inves tigations dealin g with the effec t of di spersion of pulses. For example, 
if it is permissible to set cp'" = 0, (S2) reduces to 

E(t) = .!.(l - i)e iwot-i<P<wo) J+X A[t - cp'+(7Tcp")1/2UJ ex p (i7Tu2/2)du 
2 - x 

(S3) 

by virtue of the iden tity 

J+X 

-x v(y)dY= 7T 1/2, (S4) 

which is a special case of (4S) when x = O. Equation (S3) is identical to the special case derived 
by Ginzburg [1964] who neglects cp'" at the outset. If, in addition, cp" = 0, it is seen that 

E(t) = e iwoHp(wo) A[t - cp'] , (SS) 

which is the well·known result for a non di spersive channel. Here, the pulse envelope has been 
delayed by cp'(wo) seconds but has not changed its shape. On the other hand, the carrier phase 
is de termined by cp(wo). The quantities cp' and cp are referred to often as the group delay and the 
phase delay, respectively. 

6. Discussion of Pulse Distortion 

Equation (S3) may be used to s tudy the di stortion of the pulse shape, provided the cp'" term 
is negligible. For example, if the origin al pulse has a rectangular shape such that 

A(t) = ° for t < - To /2 

= 1 for t > - To/2 and t < To/2 

= 0 for t > To/2, (S6) 
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it readily follows tha t: 

I-i. . f'" E(t) = -- e,wol - ,,,,-wo) exp (i1Tu2/2)dll. , 
2 II, 

(57) 

where 

-() 
U2 = [ "( )]1 /" 1Tcp Wo -

and () = (To/2) + t - cp' (wo). Here, () is the time meas ured from the in s tant - (To/2) + cp'(wo). If th e 
di s persion is sufficiently small, UI and U 2 become infinite and (57) reduces to (55), as it must. 

To illustrate the influence of the di spersion , it i s ass umed th a t the s ignal dura tion To is large 
compared with [1Tcp"(Wo)]t /2 . Then , the form of th e leading edge of the signal may be writte n 

IE(o l == 2;/21 J,~ exp (i1TU2/2)du I, (58) 

wh ere Ut = - (} / [1Tcp"(WO)] 1/2. Usin g readil y ava il a ble tabula ted data for th e above Fres nel integral, 
E(t) is plotted as a fun c tion of - Ut in fi gure 2. Th e absc issa, in thi s case, may be regarded as a tim e 
scale wh ere ze ro corres pond s to the tim e t = cp'(wu) whi c h is the total group de lay. As indicated, 
so me e ne rgy arrives before thi s tim e for an ac tual di spers ive medium. The tim e for the pulse to 
ac tually build up to its fin al value may be described conve ni entl y by a param e ter [,). This is de fin ed 
as th e time from () = 0 for th e pul se e nvelope IE(t)1 to a pproac h within 5 pe rce nt of unit y. From 
in s pec tion of fi gure 2, it is see n th at 

[/, == 4l1Tcp"(Wo) 1' /2 seconds. (59) 

A typical va lu e of [,) for daytime propagati on in the earth -ionosp he re waveguid e of he ight 70 km , 
at 15 kc/s, for a ra nge of 5000 km is 300 f.L seG. Th e param e ter [,) is proporti onal to the square root 
of range a nd it de pe nds in a ra th er co mplicated mann er on other geo me trical para me ter s. How­
ever, it is only sli ghtly de pe nde nt on the nature of th e ionospheric model ass um ed once th e r e fl ec t­
in g he ight has bee n s pecifi ed. 

It is inte res tin g to note that the di s torti on of th e envelope s hape indicated in fi gure 2 is very 
similar to th e s patia] pa ttern res ulting from diffraction a t a semi-infinite sc reen. In ge neral , for 
the wa veguide case, decreasing the carrier freque ncy towards c utoff cau ses the e nvelope fun c tion 
to spread out increasingly (i. e ., tlJ beco mes larger). Also , as may be seen from a de tailed stud y 
of the complex form given by (56), the instantaneous frequency shows a modification from the 
carner woo This may be described as "angle modulation." 

FIGURE 2. The leading edge of the envelope of a step· 
modulated carrier in a dispersive medium. 
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Using essentially the present second-order theory (i_e_, neglecting cplll, etc.), a number of 
papers have appeared which deal with distortion of pulses both in acoustic [Pearson, 1953; Proud 
et aI., 1956] and electromagnetic waveguides [Elliott, 1957; Karbowiak, 1957; Kotvun, 1958] _ A 
rather disconcerting aspect of Elliott's [1957] work is that hi s calculated envelope patterns do not 
have the oscillations near the final buildup region of the pulse. The existence of these "Fresnel 
wiggles" has been recently confirmed by Ito [1964] who carried out some very convincing experi­
ments in an electromagnetic microwave guide at frequencies of 7.8 and 8.2 Gc/s, which were 
respectively 1.19 Ie and 1.25 Ie where Ie is the cutoff frequency. Similar effects were observed 
by Walther [1961] who worked with acoustic waves in a water-filled channel. 

7. Complications at an Extremum of the Group Velocity 

The generalization of the above treatment for the rectangular pulse to allow for the third deriva­
tive cplll(WO) may be readily obtained from (52). Thus, using the special form of the source envelope 
given by (56), it is a straightforward matter to show that 

E( ) = 1 - i eiwot- i.p(WO)} +" {F [To - e - (cplll /2)1 /3y] + F [ e + (cplll /2)1 /3y]} ( )d 
t 2 1/2 - ( ")1 /2 (")1/2 V Y y, 1T - x 1Tcp 1Tcp 

(60) 

where 

is the standard Fresnel integral. The primes over cp indicate differentiation evaluated at the 
carrier frequency Wo/21T. 

To study the leading edge of the signal, we again choose To to be effectively infinite. Thus, 
(60) becomes, for the leading edge of the field, 

. . [1 l-if +x , [e+(cplll/2)1 /3y] ] 
E(t) = e,wol-l.p(wo) 2+ 21TI /2 - 0< F (1Tcp")1 /2 v(y)dy , (61) 

whereas, for the trailing edge 

E(t)=eiwot- i.p(wo) -+--~ F 0 cp y v(y)dy' [1 l-'f +>o [T,-e-( ''' /2)1 /3] ] 
2 21TI/2 - 0< (1Tcp") 1/2 (62) 

As indicated by (61) and (62), the leading edge and the trailing edge of the signal envelope have a 
different form. This asymmetry is a result of the cplll term in the argument of the Fresnel integrals. 
To characterize completely the envelope fmiction, we need to introduce another parameter f3 
defined by 

f3 =[ cp'" (wO)/2jI /3[ 1T"( Wo)] - 1/2, (63) 

in addition to the "buildup" time tb. Gershman [1952] has introduced the f3 parameter in con­
nection with a rather qualitative discussion of reflection of an rf pulse from the ionosphere near 
its critical frequency WeI" For example, if Wo /wer= 0.9 , he estimates that f3 is from 0.23 to 0.3 for 
the E layer and from 0.14 to 0.21 for the F layer. Thus , it is of considerable importance to know 
if the signal envelope shown in figure 2, for f3 = 0, is significantly modified for finite f3 values of 
this order. In an example, Gershman shows that near the ste~pest portion of the leading and 
trailing edges of the signal the envelope is not modified by more than 2 percent over that shown 
in figure 2. However, differences are somewhat greater in the "forerunner" or "tail" regions. 
A proper understanding of this phenomenon awaits a detailed numerical study of the integral in (60). 
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An interesting limiting case which may be s tudied without diffic ulty is whe n (7TCp" ) 1/2 is e ffec­
tively zero (which occurs at a n extreme of the group velocity). In thi s case, it is not difficult to 
show that (61), for cp"'(wo) < 0 , reduces to 

[ ( 2 ) 1/3] E(t) =eiwot -i<P\ wol T () _ cp'" , (64) 

while, for cp'''(wo) > 0, 

E(t) = eiwol-i<p(wol {1 - T [- () C~,,) 1/3] }, (65) 

where 
1 J X T(x) = 7T 1/2 _ '" v(y) dy' (66) 

As usual, () is the time measured from the instant - (To /2) + cp' (wo) which, in th e abse nce of di s­
persion, is the leading edge of th e s ignal. Thus, in (64), the fun ction T c haracterizes the s hape 
of th e e nvelope of th e s ignal when cp'" is negati ve (i.e., group veluc ity has a minimum at wo). The 
function T(x) is shown plotted in figure 1 for a range of x from - 5 to + 3 where the abscissa is 
proportional to time from left to right. On the other hand , in (65), the function 1 - T charac terizes 
the s hape of the s ignal e nvelope when cp'" is positive (i.e., group velocity has a maximum at wo). 
However, in thi s case, the abscissa in fi gure 1 correspo nds to tim e moving from right to left. 

Asymptotic expan sions for the f unction T(x) may be read ily obtain ed b y making use of formulas 
quo ted by Antosiewicz [1964] who also gives some add itional nume ri cal data of closely related 
functions. Retaini ng only the leading term in the asymptoti c represe nta tion, it follows th at 

T(x) - l- 1 exp(-~x3/2 )for x » 1 
27T 1/2 x 3/4 3 

and 

T(x) - 7T 1 /2(~ x)3/4 cos G (- X)3/2 + ~) for - x > > 1. 

This points up the mark ed asymmetry of the envelope func tion abo ut the origin. As also indicated 
in figure 1, T(x) is highly oscillatory for negative x (i.e., in the " forerunner" region) whereas it is 
monotonic for positive x (i.e., in the " posterior" region). 

The shape of th e signal enve lope at the trailin g edge fo r th e case cp"(wo) = ° is found in a ve ry 
similar manner to the above. Thus, for cp'" (wo) < 0, (62) becomes 

E(l) = eiwot - i~(wol { 1 - T [ (0 - To) (_ !", f3 ] } (67) 

while, for cp"'(wo) > 0, 

(68) 

The assumption 111 the above of effectively infinitely long pulse le ngth requires here that 
To 1 2/cp'" 1 1/ 3 > > 1. In this case, it is necessary to suitably superimpose th e responses in (64), 
(65), (67), and (68). An interesting consequence of the superposition is that the response or s ignal 
envelope is not sy mm etrical about the center of the pulse. This is to be co ntras ted with the 
situation exemplified by (57) whic h leads to a symmetrical envelope. In fact, in ge neral , it may 
be asserted that distortion resulting from even·ordered derivatives of cp (w) leads to symmetrical 
pulse di s tortion. Asymmet ry IS introduced when any of th e odd -ordered de rivatives of cp(w) 

co ntribute to th e final response. 
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8. The Forerunner 

In the preceding discussion of quasi· monochromatic pulse propagation, it is tacitly assumed 
that the spectrum of the signal has a predominant peak at the carrier frequency wo/2n. This is 
usually justified for the main body of the signal provided the dispersion is well behaved in the 
vicinity of Wo (i.e., no strong absorption bands near wo). However, in any dispersive channel such 
as a waveguide, some energy always arrives immediately after the instant t= d/c where d is the 
distance between the source and the observer and c is the velocity of light. While this part of 
the signal usually has a very small energy content compared with the main signal occurring in the 
region at t = cp' (wo), it is of interest to make a quantitative estimate of this "precursor" as it is 
sometimes called. This is readily accomplished by applying the s tationary phase method directly 
to (42) where we regard g\w) to be slowly varying compared with other factors in the integrand. 
Obviously, this will be valid only at very small times in the response where the very·high frequencies 
dominate. The integral to evaluate these has the same form as (4) and the result (10) may be 
used directly. For example , if the source Eo(t) is given by 

then, 

Eo(t) = sin wot for t> 0 
= 0 for t < 0 

g(w)=J OO sin wote- iwtdt=+ Wo , 
o wil-w 2 

and the "precursor" is given by 

(69) 

(70) 

(71) 

where + n /4 is to be userl. for cp" > 0 a nd - n /4 for cp" < 0, and where Ws is the saddle point deter· 
min ed by 

Expressing thi s result in terms of waveguide mode parameters, 

(2)1/2 Wo 1 [( d) n] E(t),=, - cos w t--- +-
n wil-w~lda1~:(w)lw=ws s vp(ws) -4 ' 

(72) 

where -n/4 is to be used for a (l/vg)/a w > 0, and + n/4 for a (l/vg)/a w < O. It is understood that 
this result for E(t) is to be used only to estimate the early forerunner response. That is, in the time 
region following t = d/c seconds but before the arrival of the main body of the signal near t = cp '(wo) 
= d/vg(wo). Because Ws ~ Wo in this early forerunner region, (72) is usually of negligible magnitude 
compared with the field amplitude in the main body of the signal. 

9. Concluding Remarks 

In this paper, an attempt has been made to collect together various methods for handling 
transient calculations for a dispersive channel. The approach has been to employ simplifications 
at the expense of rigor. Like most asymptotic results , the indicated formulas should be applied 
to a given problem only when accompanied with a certain amount of caution. 
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