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The resonances of the earth ionosphere cavity are considered directly as a cavity problem rather
than as a limiting case of propagation in a quasi-waveguide with an arbitrary (spherically symmetric)
conductivity profile. By using an approximation to a theoretically derived profile, values for the
frequencies and Q factors of the lower resonances are computed which compare with experimental
results as well as or better than the values derived from previous models. The effects of small changes
in the profile are also considered. It is shown that ionic conduction in the lower atmosphere should
not be neglected and that the “knee” in the conductivity profile where the transition from ionic to
electronic conductivity occurs has a significant, and previously unrecognized, effect, particularly on

the Q factors of the resonant modes.

1. Introduction

The existence of resonances of the cavity between
the earth and the lower edge of the ionosphere and
their excitation by lightning flashes was predicted by
Schumann [1952]. Experimental measurements have
amply confirmed Schumann’s prediction, and the
resonant frequencies and Q factors have been deter-
mined [Balser and Wagner, 1960]. The “quality
factor,” Q, is defined as 27 times the ratio of the stored
energy to the energy loss per cycle; it is a measure
of the sharpness of the resonance. Theoretical cal-
culations have been performed under various simpli-
fying assumptions [e.g., see Schumann, 1952; Wait,
1964; Galejs, 1961a, b, and 1962; Chapman and Jones,
1964; Jones, 1964]; many of these give reasonable
overall agreement with experiment, but none is entirely
satisfactory. The most successful models tend to be
somewhat artificial and to show great sensitivity to
artificially introduced parameters. Careful adjust-
ment of parameters has been particularly necessary
to reproduce the observed increase of Q with increasing
frequency.

It is conventional to approach the resonances as
limiting cases of propagation in the quasi-waveguide
between earth and ionosphere and to express the prop-
erties of the boundaries by surface impedances. The
models that give the best results consider a uniformly
conducting earth and either an exponential ionospheric
conductivity profile, sharply bounded at some (often
frequency-dependent) critical height [e.g., see Galejs,
1961a, b 1962], or an ionosphere constructed of several
homogeneous layers [e.g., see Jones, 1964]. The
effects of finite conductivity below the ionosphere
may be treated by a later perturbation calculation.

Treatment of the problem explicitly as a resonant
cavity and use of a smooth conductivity-height profile
to eliminate the nonphysical surface charge at the
lower “edge” of the ionosphere should simplify the
analysis and produce better results. This has been

done by using a conductivity profile recently derived
theoretically from fundamental considerations by Cole

and Pierce [1965].
2. Differential Equations

Maxwell’s equations and the constitutive relations
in mks units are

VXH:J+%D D =KeE
V><E+aa—tB=0 Bt
D= J=oE
vV -B=0.

Here H is the magnetic field, E the electric field, B
the magnetic flux density, D the displacement, J the
current density, and p the charge density. The per-
mittivity and permeability of free space are denoted
by € and wo, respectively; K is the local dielectric
constant and o the conductivity.

The wave equation in H is derived in the usual way
by assuming a universal exp (iwt) time dependence,
where w may be complex, taking the curl of the V X H
equation, and eliminating B, E, and D. We find
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For vertical polarization (the conventional case),
H - r=0, where r is the radius vector from the
center of the earth, and, since V - H=0, we may
expand H in spherical coordinates as

H=3 0 X0, o).

im

where X0, ¢)= rXVY™O, ¢), and the

1
VI 1)
Y6, ¢) are the ordinary spherical harmonics.

Substitution of this expansion into the differential
equation, with the assumption that n and K are func-
tions of r only, gives the differential equation for the

radial function fim(r) d (n+ iKR)
9 o+ iKK
& D) g, _dr_._i] _
[_dr2 e Kk — ik = S g i =0,

where “m” has been suppressed because it does not
enter the operator. The necessary boundary condi-
tions are that the energy flow should be outward from
the cavity, downward into the earth, upward into the
ionosphere.

If we further specialize to the case 1= e, a constant,
for r < a, the boundary condition at r=a may be made
explicit in simple form.

For r < a, within the earth, n ~ 10> km~!,r ~ 6 X 10*
km, and |k] ~10-*km~! at ELF, where |/| is the mag-
nitude of (complex) k, so the leading terms of the
differential equation are

[Z—;— ikne} fin=0.

The appropriate solution, corresponding to a downward
wave that decays with time, is

f(n)=A exp [(tkne)'/?r],

where the square root is chosen to be in the first
quadrant for % in the first quadrant.
Just below the earth’s surface,

% Fla)=(ikno"2f(a.).

Assuming the earth-air transition to be sufficiently
abrupt that the % (n+iKk) term in the radial equa-

tion predominates, we may write

% (Z_Q / %z% (n + iKK)(n + iKK)

so that
df . _ma)tikdf = mla)+ikdf
dr (a4)= Ne + 1Kk dr (a-) Ne dr (a-).

Choosing 4 so that f(a-)=1, we have the initial condi-
tions at r=ay

flay)=1

f'(as)=(n(a:)+ ik) (ik/ne)">.

The boundary condition for large  may be expressed
by requiring that the outward radial component of
the Poynting vector, which may be written as

S,=(E X H%*),
~—[m—1Im k) (Re fRe f'+1Im fIm f’)
+Re k(Re fIm f'—1Im f Re /'),

remain positive. Here * denotes complex conjuga-
tion, Re and Im denote real and imaginary part, respec-

tively, and /" :ﬂ_

o

In the frequency range, ~ 7 to 100 c/s, appropriate
to the lower Schumann resonances, |k| and 1/r are of
comparable magnitude. At low altitudes, n < <|k[;
at high altitudes, n > > |k|. For likely conductivity
profiles, equality occurs at heights of 50 to 60 km.
The differential equation is explicitly soluble in these
limits, if we assume an exponential profile, no exp (r/L)
for m at high altitudes. The solutions are

n << |k| (d*dr?2+ k?)f=0
f=A exp (ikr)+ B exp (— ikr)
n>> |kl (d?/dr2—ikno exp (r/L)—1/L d/dnf=0

f=exp (r/2L[CHM(2L(— ikno)* exp (r/2L)
+ DH@(2L(— ikno)'”? exp (r/2L))]

where H{V and H?® are the Hankel functions of order
one of the first and second kind. If the square root
is taken in the upper half plane, H{V(H?) represents |
the solution that is regular (irregular) at infinity.
Only the first is appropriate to this problem; the
second represents incident energy. A “‘matching”
of the asymptotic solutions to find the eigenvalue £k,
and thus resonant frequency and Q, would be highly
inaccurate; because both the regular and irregular
solutions are constant to first order at the lower end of
their domain of applicability, the transition region
where n ~ |k| is of great importance.

For any £ a solution—which does not in general
satisfy the boundary condition at large r—may be
found by numerical integration of the radial differential
equation, starting from the known boundary condition
at r=ay. For k not an eigenvalue, S, will become
negative above some height; an inward flux of energy
is necessary to support the imposed variation of H
with ¢, 6, and t. By repeated integrations with suc-
cessive refinements of the trial value of %, systemati-
cally chosen to maximize the height at which S,
becomes negative, we may approximate the eigenvalue
ki to any desired degree of accuracy. Restated, the
height h. at which S, becomes negative, considered
as a function of complex k, has a pole at the eigen-
value ;. We are finding this pole by a simple ascent
method.
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Having found /. the resonant frequency and
may then be computed as

f=c Re k27
Q=Re k/2 Im k).

The result for m > > |k| strongly resembles one
given by Wait [1962] for propagating waves in the
flat-earth case. If the dropped terms A%—I[(/+1)/r?
are retained, with r approximated by the earth radius
a, the order of the Hankel function is [1—4L*A?
— I+ 1)/a®]"?. Since the modified Bessel function

K is defined by Ku(x):gi"“H‘U‘ l(ix), our solution dif-

fers from Wait’s only in that £? is replaced by Ai*
—l(l+ 1)/a®, a familiar average correction for spherical
geometry.

3. Calculations

The conductivity profile derived by Cole and Pierce
leads to a profile for n that is reasonably well fitted by
an equation of the form n(h)=4 exp (h/a)+ B exp
(h/B), where h=r—a; the error is certainly of less
significance than that due to the assumption of spheri-
cal symmetry. The values of 4, B, «, and B derived
from the suggested approximation give

n(h)="7.5X10"% exp (h/6.4)+ 2.3

X 10712 exp (h/3.0) km~!;
nearly as good a fit may be obtained with somewhat
different parameters. The two terms represent ionic

and electronic contributions to the conductivity.
The value of m, should be between 3 x10% and

2x10% km~!; computed from the conductivities of
1
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average earth and sea water, respectively. A reason-
able average is probably about 10> km~1.

The radial equation was numerically integrated by
using a high speed computer optimizing the complex
variable /£ by successive approximation. This was
done for the n-profile above, referred to as I, and for
two others:

II n=5.0X10"% exp (h/6.4)
+2.3 X 10712 exp (h/3.0) km~!

III n=5.0X10"% exp (h/6.4)
+2.3 X101 exp (/2.7) km~1.

Profile Il gives reduced conductivity in the ionic
region and displaces the “knee” of the curve, while
III has a slightly steeper onset of electronic conduc-
tion with an essentially unmoved knee. The value
ne=10° km~! was used in most calculations; values
of 10* and 10° were also used for profile I, [=3, to
check sensitivity to this parameter.

These profiles and the resulting mode frequencies
and Q factors, together with those of several of the
better previous models of various types, and experi-
mental data are given in figure 1 and table 1.

Note that the experimentally observed increase in
() with increasing frequency is reproduced in each
case, I, I, and III, which has not been true of pre-
vious models. Also of interest is the considerable
effect, particularly on Q but also on frequency, of a
small change in the conductivity in the ionic region
(profile II). In previous models, this conductivity
has been omitted or, at best, treated as a perturbation
affecting Q but not frequency.

The results are quite insensitive to earth conduc-
tivity: with profile 1, /=3, a factor of 10 change in
ne changes f by 0.2 percent, Q by 0.5 percent, both
quite insignificant.
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TABLE 1.

Frequencies and Q factors of the cavity modes

=1 =2 =3 =4 1=: Profile
Measured F=Tig 14.1 20.3 26.3 32.5
1) 0=4.0 45 5.0 5.5 6.0
oselens £=10.6 18.3 25.9 335 41.1
Constant h' f=8.3 14.2 20.0 25.8 31.7 = l 6 X 1071 exp (h/3.25) km~'h > h' =50 km
(2) a0=176 b5.8 0<h<h'
alh') = wey f=8.0 13.8 19.5 25.4 31.3 [ n=1.6 X101 exp (h/3.25) km~'h > h'
@) 2()=3.8 i
“Average” [=8.05 14.25 20.5 268 |ooeeiieia n=1.6x10"" exp (h/3.25) km~'h' =45 km (Day)
(3) 10 =6.75 5.1
acqg 5 PC4.7 [p= 8.1 X 10 "% exp (h/2.25) km 'A' =60 km (Night)
Two Layer £=1.90 14.13 20.3 26.4 32.6 |[p=[0 0<h<70 km
) 0=41 6.0 6.9 75 8.2 110" km ! 70 < h < 100 km
4.9x10° km! h > 100
| imghy | Beaotacaciesicon] O kenassascoonocd 315 | n=T75x10"% exp (h/6.4)+2.3X107"? exp
0=4.1 4.7 5.1 | n.=10%km ! (h/3.0) km™!
f+0.2% Same, n.=10¢, 10*
Q=0.5%
1l f=T55  |eerererreriennnnd 196 [eoeoeinnn 319 | 7=5.0X 105 exp (h/6.4)+2.3X 10-12 exp
0=145 53 5.6 | p.=10° km! (h/3.0) km !
111 =7.11 13.9 20.0 26.2 324 | =5.0%10"% exp (h/6.4)+2.2X 101 exp
0=4.6 591 5.4 5.6 58 | ne=10° km ! (h[2.7) km™!
S S | E—— — — _— N o
(1) Balser and Wagner [1960].
(2) Galejs [1961b].
(3) Galejs [1962].
(4) Jones [1964].
SALf=10.
b At f=30.
¢ With “‘cosmic ray” ionization, n exponential below A’ 7=3.76 X 10-* km ' at h=0, and continuous at A’.

A typical modeform is shown in figure 2.  Although
drawn for the /=1 mode with profile I, these profiles
are all but indistinguishable from those for other
modes and conductivity profiles. Energy and loss
density profiles derived from this are given in figure 3.
The energy densities are 3 woH - H* and % &E - E*;
the loss density is |E - J*|. Note that the loss density
is significant only near the height where n=|k| (for
Im k£ < < Re £ this is o= o/e€).

4. Importance of the Knee of the
Conductivity Profile
From the definition of Q as 27 times the ratio of
stored energy to energy loss per cycle, we have

0= wlelJE - E*dV+po[H - H*dV]
N 2[E - J*dV

In the cavity, r = a, the earth radius, and

H~LX=flatt— 1) 2 v49, 0)é
a 00

E,~ :llf/u((r—i—ieow)_1 <8602+ ctn 6 > (l+1)=12Yy8, @)

kS 1/2
G UL+ 1)2Y (8, @)
E = E 2, at low altitudes
— ~ _nf— 1/2
Jr= by = s U 1) 246, )

The spherical harmonics are normalized to

fx,* - X,szfY;“Y,dﬂzl,

so that (neglecting field penetration into the earth)

w 1+ fx Iflz/(n2+|klz)dh+a2f: |f12dh
0 .

Q*Z

a0 [ e+ [kan

Now if we approximate 1 by mo exp (r/L) near hy, where
= |k|, and observe that |f| =1 for 0 < h < h*, and
f= 0 elsewhere, we have upon performing the integrals

O QWLL (/,“H_M /1*)
{

L(ISTal)

where Re k = |k| has been used.

Note in figure 1 that the points where |k|=mn for
[=1105 (Jk] ~2 to 7X10~* km™!) lie on the knee of
the curve. This has two effects: the effective value of
L decreases as [ increases, and the increase in hg as [
increases is greater than it would be for a single ex-
ponential fitting the upper portion of the conductivity
profile. Both tend to produce an increase in Q with
increasing [. Therefore neglect of ionic conductivity,
which is responsible for the knee, is not justified.
Treating it as a perturbation to compute corrections

to the (s, as has been done before [Galejs, 1962], is an
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FIGURE 2. Approximate radial dependence of fields.

improvement, but the changes in the resonant fre-
quencies (clearly not negligible: compare cases | and
II) are all but impossible to calculate.

5. Conclusion

The values of the resonant frequencies and of the
Qs of the cavity resonances found by the method of
this paper compare with experimental values as well
as or better than those of previous models. Although
further variation of parameters would almost certainly
produce more accurate results, the worth of such cal-
culations is questionable. First, the experimental
values, particularly those for (s, are not that well
established, and the resonant frequencies exhibit
considerable temporal variation. Second, the assump-
tion of spherical symmetry is clearly invalid because
the conductivity profiles change temporally (diurnally,
seasonally, etc.) and with geographic location; these
influences may be expected to have an effect that

Y n*
<
O
"
>
[ 4
& ho MAGNETC ENERGY
[ DENSITY
g Y
g T
" b
@ ELECTRIC ENERGY
& DENSITY >\
o \
é \
A

u {3 0SS DENSITY
] ! \

II i\

K \ A

/ ‘A
% L% 10km
. A f——1
CLit Ns ~
HEIGHT
=k

FIGURE 3. Approximate radial dependence of energy and loss

densities.

should not be neglected. Also, anisotropy of the
ionosphere due to the earth’s magnetic field will have
some effects.
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