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The Vlasov equation has been solved for the plasma resonance spectra of a realistic model by the
conductivity kernel method. The results give a clearer picture of the nature of plasma resonance than
heretofore available. The calculation includes Landau damping and does not impose unphysical
boundary conditions. The problem of chief interest here is the scattering of electromagnetic radia-
tion near the electron plasma frequency from a cylindrical plasma when the wave vector and polari-
zation are perpendicular to the cylinder axis. The plasma is nonuniform and bounded by a sheath,
and has diameter a small compared to the free space wavelength. The scattering resonances at the
lower frequencies are produced by charge density perturbations concentrated at relatively large radii.
But, the problem of a perfectly collisionless cylindrical plasma cannot be reduced to a one-dimensional
problem without neglecting some of the resonances with periodic electron orbits. It is argued that
weak coulomb collisions destroy these “transit time resonances,” and that the problem is adequately
described by keeping just one period of the electron orbit in the calculation of the conductivity kernel.
The cylindrical problem then reduces to the problem of the steady, driven, oscillations of a thin one-
dimensional slab of collisionless, Maxwellian, plasma, with a wall at x=0 which emits electrons and
absorbs all electrons that return to x=0. and an insulated wall at x = x,, which also absorbs electrons.
A model is used in which the unperturbed electric field, everywhere in the positive x-direction, is uni-
form in the plasma, 0<X=<s, and joins smoothly to a harmonic oscillator field in the sheath, s < X< x,.
The conductivity kernels for a large number of frequencies have been calculated, and inverted, on
large electronic computers. The results show that much of the Landau damping which determines
the line shapes is concentrated near the sheath, and the resonance frequencies are determined by

the properties of the sheath and the neighboring regions of the plasma.

1. Introduction

“Plasma resonance’ is the name given by Tonks
[1931a, b] to the resonances he found near the plasma
frequency in a system consisting of the cylindrical
positive column of a low-pressure mercury arc placed
between a pair of capacitor plates which were driven
by an oscillator, when the plasma axis was perpendi-
cular to the electric field. Plasma resonance has since
been found in free-space scattering of microwaves
from the positive column [Romell, 1951], in backscatter
of 55 megacycle radiation from meteor trails [Billam
and Browne, 1955], in the reflection from the positive
column placed across a waveguide [Dattner, 1957],
and in noise radiation [Lustig, 1964]. Our purpose in
this paper is to obtain a reasonable theoretical under-
standing of plasma resonance in the absence of a
magnetic field. We calculate the response of a nearly
collisionless plasma to an externally applied weak
driving field for frequencies on the order of the mean
plasma frequency. We include the nonuniformity of
the plasma and the sheath and do not introduce arbi-
trary boundary conditions.

Tonks attempted to explain the strongest resonance
as follows: Consider a sharply bounded cylinder of
cold, neutral, uniform plasma in free space. Let N
be the electron density, m the electron mass, and e

1 Most of this work was done at the University of California at San Diego, and was in-
cluded in the author’s Ph.D. thesis.

the magnitude of the electron charge. A slight uni-
form displacement, 8y, of the electrons with respect
to the heavy and therefore nearly stationary ions
produces a surface charge density —Nedy cos 6, and
a uniform restoring force inside the plasma of —27
Ne*dx. The system should oscillate at the angular
frequency w, with o= w,/V2, where w, = (4mNe*/m)"/?
is the plasma frequency, if the internal motion of the
surface charge is ignored. Tonks identified his
strongest resonance with the response of this dipole
plasma mode to the driving field. The observed
angular frequency was near w,/V2.

An equivalent model, an infinitely long cylinder,
which was thin compared to A =2mc¢/w, and had dielec-
tric constant 1-—w§/w2, was used to predict the back-
scatter from meteor trails [Herlofson, 1951]. The
experimental results for meteor trails [Billam and
Browne, 1955] are quite interesting. The authors
were apparently only interested in the main peak,
but their results seem to indicate that there may be
as many as six resonances, while the theory predicted
one. Tonks [1931a, b] suggested that the one or two
“anomalous’ resonances he observed were caused by
the nonuniform electron density and nonzero plasma
temperature. Theoretical work since Herlofson’s
paper [1951] has been directed toward taking adequate
account of these two conditions. The theory [Herlof-
son, 1951] also predicted that the scattering width at
resonance would be 8\/7, where the scattering width
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Microwave reflection from a positive column placed
across a waveguide; taken from Dattner [1957].

FIGURE 1.

was defined as the diameter of a cylinder which would
absorb and then reradiate isotropically all of the radia-
tion incident on it, and produce the same backscat-
tered intensity as the actual scatterer. Romell
[1951] found that at A=30 cm, a 3.2 ¢m diameter
cylindrical discharge plasma gave backscatter intensity
at the first resonance which was 0.8 that of a long flat
copper strip which was 15 cm wide. At least the first
two resonances excited by plane waves are essentially
pure dipole modes [Boley, 1958], as required by the
theory. Higher multipoles have been excited by
other driving field configurations [Parker, Nickel, and
Gould, 1964].

Dattner [1957, 1963] has experimented with the
cylindrical positive column of a mercury arc placed
across a waveguide with its axis perpendicular to the
E-vector. He has demonstrated that there are often
six or seven resonances (fig. 1). The strongest falls
at the highest arc current (lowest w/wp), and they form
a regular sequence. Dattner also introduced the
concept of the “series limit,” i.e., a definite upper limit
on the resonance frequencies.

The steady state structure of the positive column
and sheath is only beginning to become well under-
stood [Ott, 1963; Self, 1963]. Where characteristics
of the steady arc are needed we shall use experimental
data [Gabor, Ash, and Dracott. 1955; Gierke, Ott,
and Schwirzke, 1961; Harp and Kino, 1963].

The kinetic theory of plasma resonance is developed,
in section 2, by the conductivity kernel method. For
comparison with the kinetic theory, the adiabatic
fluid equations are solved in section 3. The fluid
theory is unsatisfactory for calculating the electric
fields. Nevertheless, with a carefully chosen boundary
condition, it is capable of predicting the resonance
frequencies.

2. Kinetic Theory of Plasma Resonance

Drummond, Gerwin, and Springer [1961] have de-
rived a general integrodifferential equation for weak,
oscillating electric fields in a collisionless plasma.
We give a simple derivation of the conductivity kernel
equation, for cases where the perturbed magnetic
field may be neglected, in section 1. Sections 2-2.5,

describe the simplifications which lead from the
cylinder problem to the one-dimensional problem that

we have solved, and sections 2.6 and 2.7 are descrip-
tions of the numerical solution and the results.

2.1. Conductivity Kernel Equation

Maxwell’s equations,

V-B=0, V-E=4mp,
cV XB=dmxj+oE/ot, (1)
and

cV XE=—9B/ot,

with the usual symbols, (Gaussian units except j, in
esu; i.e., j=Nev), imply the general wave equation

+47V p- 2)

Conductors and dielectrics external to the plasma
could be included by using the constitutive equations
[Panofsky and Phillips, 1962], but have no fundamental
role in plasma resonance.

The source terms are related to the distribution
function F of species s (where s== stands for singly
charged ions or electrons respectively) by

j=ezsfac v Fy(v)d?v, (3)

p=e Esfx Fy(v)d3v.
The identity

dt', (4)

t ’ ’ ’
FS(X, V, [):PWS(X(), Voo [0)+f ng(X ,’V 2 ! )
to dt

where the set of points (x' (x, v, t), v/ (x, v, t')) lie on
any continuous path S through (x, v), provides the con-
nection with the kinetic equation,

dF, _oF,
dt at

collisions » (5)

where S must now be the mean path in phase space of
the particles in a small neighborhood around (x’,v’).
Consider small, oscillatory perturbations about the
steady state,
Fy= Nogfos + fse =i,

where
f S el ©)

and

A :A0+A1€_iuﬁ,
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where A=E, B, j, or p, and where Noy(x) is the un-
perturbed density, and where o is of the order of the
electron plasma frequency.

In the discharges where resonance has been ob-
served, the frequency of momentum change by colli-
sions is very small compared to the plasma frequency
so we tentatively write the linearized Vlasov equation

for f;,

%w_ie* E - VUﬁ)s(x, V)N()s(x). (7)

dt mg

Collisions acutally play an important role, which is
described in section 2.7. We have neglected the
v X Bi/c¢ term on the right-hand side of (7), which is
valid for high frequency modes or for isotropic fos.

The zero order part of the set of equations (2) to (5)
is complicated by the collision terms. We assume
solutions of this set, and use experimental data[Gabor,
Ash, and Dracott, 1955; Gierke, Ott, and Schwirzke,
1961; Harp and Kino, 1963] when numbers are needed.
This process is consistent only if no high frequency
phenomena play an essential part in determining the
measured “‘steady-state” [Gabor, Ash., and Dracott,
1955; Ott, 1963].

Substituting eq (7) into (4), eq (4) into (3) and eq (3)
into (2), we obtain the following linearized equation

for Ei(x):

VE; +75 Ex=— e Ef (V=3V)

B
c?

t
f E: - Vo'fos(x', ve 1! w¥(x")dt' d®v, (8)

where ®?=4m7Nye*/ms. The quantities x'(x,v.t),
v'(x,v.t") are the position and velocity at time ¢’ on
the orbit that goes through (x,v)at¢'=t¢. Equation (8)
assumes the initial conditions
fix, v, tg—>—x)=0,

9

so we must follow the Landau convention [Landau,
1946; Thompson, 1962] with respect to any poles in
the integrals in (8). Let x;v) be a particular direction
such that v] # 0 except at isolated turning points, and
write dt' as dx/[vi. Let p be the number of times
(counting backward in time from ¢) that the orbit
through (x, v, ) has passed through a particular x;.
The path integral along each passage of the orbit is
expressed as a space integral by writing the integral
as a set of delta functions located on the orbit, i.e., let

g—iru(l’—!): ("i"’("’”u(x; — X 1,,)8(?(’ )

= (10)

where x' is in the plane perpendicular to x; at the

position x" on the orbit, x; , is the turning point, and
u(x; — xi, tp) is a step function such that the amplitude

is zero beyond the turning point, and where we must
take e~i“"=0 to be nonsingular at the off-orbit points
where it is undefined. Also define

opi =i (x,v: X', p)lvi(x,v; x', 1), (11)
which is either of *=1.
as a space integral

Now write the orbit integral
! ’ . ’ : P ,
J Ei(x') - v 1-'f()g(V ye et wf.(x )dt

i ’ 2 ’ 1 7
= i [Eix)- VofuVer ™ o (x) = &', (12)
» ’ i

where the integral extends over all regions which are
reached by any electrons, i.e., the limits of the space
integration are independent of velocity.

Using (12) in (8) and exchanging the order of inte-
gration gives

V2E, +—:§ZE,=J‘ I (x: x') - Ei(x")d3', (13)
where
T x;x)=3 Jw
Sp Y
api(V —% v)er it =0u2(x") V,«ﬁ),\-%- (14)

i

Equation (13) is the conductivity kernel equation
[Drummond, Gerwin, and Springer, 1961].

If the plasma thickness, a, in the direction of the
dominant fields is very small, i.e., ka < <1, where
k=w/c, then we may describe the processes inside
the plasma by the static approximation, V XE,
=0, B; =0, most easily obtained by setting 1/c=0 in
Maxwell’s equations. Then, since

v X V X El == Oa
we have

V2E1 =VV - El,
which, when combined with Poisson’s equation,
indicates that the wave equation, (2), splits into two
separate equations,

V2E, =47 V P,
and

6E1/8t=—477j,.

Equation (13) splits similarly, the more useful equation
being

Ei(x)= fﬁ” (x; x') - Ei(x")dx’, (13)
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where

S (x; x")=— 2 o-,,, = e7 000X (x") V yfosd?v.

s, p (14 )
If E,=E,+ E4, where E;is a driving field with sources
far outside the plasma, only E, can satisfy the electro-
static approximation, and since E, satisfies the free
space wave equation, (13’) becomes

E,,=fy - (Ep+Egd3x'.

The electrostatic approximation is valid whenever
the characteristic length is short compared to the
free-space wavelength.

2.2. Positive Column, w~w_

In the positive column the electron distribution
function fy-, is observed to be very nearly Maxwellian
[Langmuir, 1925; Gabor, Ash, Dracott, 1955] so that
fo-w? is invariant on the unperturbed orbits, which
simplifies (14). Henceforth we consider only high
frequencies,

O=w_->>w, (15)
and neglect the ion contribution, .7,. Then with the
Maxwellian distribution

Jo-=(Blm)le b, (16)
the conductivity kernel becomes
T (x; x')=—2w3(x)2 J-x O pi
p -
<V == v) ~ialt'=OBf, (v) —d3 17)

and in the electrostatic limit the kernel is

2
S (x; x)= LBw 2 Opi —U—~ e W=0fy (v)ddv.

= i

(17"

2.3. General Method of Numerical Solution

In the above form, (13) corresponds to a boundary
value problem. The problem can be changed to a
system of linear equations, which in principle can
always be solved numerically. In the experiments
the externally supplied driving field, Eq4, is always
known. Split E into

E=E;+ Ep, (18)

where E, is due to sources in the plasma. Then (13)

becomes

2
VZE,)JF‘;’—2 E,= fmx; x') (Ey(x") + Edx') )d3x',

(19)
since Eq satisfies the free-space wave equation.
In matrix notation (19) has the form A4,=b, with
solution y=A-1b, where
y= column (y1, y2, ¥3),
y;=column (E,j(x1), Ep(x2), . . .),
where x;, x», . . . exhaust the space of x. The in-

homogeneous terms, b, is constructed from the driv-
ing term in (19) and has the same labeling arrangement
as y. The matrix 4 is a 3 X 3 supermatrix

A=[43],

where the matrices A;; are, with 1, m, being the labels
given to points xi, X», and i, j being the labels on the
components of E,

2
[Azj]hn 811 ( % O1m +L1m) - [%j]lm,

where Li,E; is a difference representation of V2E;.

In principle 4 and A~-! can be formed numerically
for any system, e.g., cylindrical geometry. But in
the cylinder problem (with no z-dependence), .7 has
four components, each of which is a complex array
formed by integration over two-dimensional orbits
and is expensive in computer time. Inverting 4 is
also expensive, since it would necessarily be quite
large. In the following two subsections we reduce the
problem of the low-lying dipole modes of a thin cylin-
drical plasma to a one-dimensional problem, which
we have solved numerically.

2.4. Transit Resonance and the Coherence Length
of an Orbit

Drummond, Gerwin, and Springer [1961] pointed
out that the orbit 1ntegral could have poles which arose
from the resonances between the orbits and the fields.
These transit poles arise whenever w/27 is a harmonic
of the transit frequency 1/T, where T is the period of
the particle orbit. For a slab of width L, with zero
magnetic field and reflecting walls, T= 2L/v In a
magnetic field there are transit time poles at the cyclo-
tron harmonics, and their effects have appeared in
experiments [Bekeﬁ Coccoli, Hooper, and Buchs-
baum, 1962]. However, they do not appear in the
ionosphere backscatter experiments [Bowles, private
communication]. The apparent reason has been given
by Dougherty [1964], who solved a model Fokker-
Planck equation, and found that the leading effect
is not a simple collisional damping [Comisar, 1963],
but rather a term which tends to destroy the poles.
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Consider a collisionless system in which all orbits
are periodic. Go back to (12) and sum over successive
periods of the orbit, which are identical except for a
phase factor eiP*™, where T(x, v) is the transit time on
the collisionless orbit. Then the orbit integral becomes

t
f Ei(x') _ Vo folv e ol w2(x")dt’
= t
= <2 eiano) % El(X,) . vldfOSe,iw,/wz(xl)dt/’ (20)
7 Ty

where the integral includes one complete period of
the orbit. The transit time poles arise from the sum

S einolo=1/(1— eoT). (21)
0

Since we have already adopted the Landau [1946]
convention, we may assume an infinitesimal positive
imaginary part of o to force this. sum to converge to
(21). The transit time poles are at

wm=21mm|To; m=0,1,2,. ... (22)
Note that the conductivity kernel equation becomes
exact if we integrate along exact unperturbed orbits
including collisions. The conductivity kernel equa-
tion then becomes equivalent to the single particle
Liouville equation. FEach orbit integral may be re-
placed by an average over many trials of the orbit.
We assume it is sufficient to include only random,
weak, coulomb collisions, so that the exact orbits
are only slightly different from the collisionless orbits
over times short compared to the relaxation time, 1/vy.
Then the magnitude of the left-hand side of (20) is

less than

i < e"Tne > Imax(xv v), (23)

n=0

where I,..(x, v) is the set of maximum values attained
by the orbit integral over one period of the orbit, in-
cluding points. x’ not reached on the collisionless orbit,
and T is the transit time on the nth passage of a trial
of the collisional orbit. We may reasonably expect
that only the first term in the sum in (23) will be im-
portant if the T,.’s have a spread, A T, satisfying

AT=27w. (24)
For v on the order of vy, and v,T < <1, we have the
approximate relations

AT _Av
T v’
and
V ) = V()Tva

which imply that
A T = 1/07‘2

for weak collisions. Let T=T. when the equality in
(24) is satisfied. Then

1/2
T,= <2_7T .

(O) )

If AT is the width of a Gaussian distribution of orbit
times, we find that i <ei"°’T"C> = i e~ yn+inoTy where

n=0 0
vy=(wvT?/2*. When Ty > T, all but the first term in
the sum are negligible, which supports (24).

For a plasma which is thick compared to a Debye
length, L), AT may be much less than T, and still
satisfy (24) for all electrons except those with such
high energies that their number can be neglected.
The condition for the existence of transit time poles
is that the “coherence length” of the orbit must in-
clude many passages. This requirement is not sat-
isfied by low-pressure mercury arcs with no or weak
magnetic field or by the ionosphere [Dougherty,
1964]. With L.= (mw,/ve)'2L, we find L.=102L; for
Dattner’s data |1963], using standard estimates of the
momentum changing frequency due to weak coulomb
collisions, vy.

However, we need not abandon the conductivity
kernel formulation for the Fokker-Planck equation.
The range R, of the kernel is short compared to typical
orbit coherence lengths for almost any interesting
plasma. To zeroth order in R/L. we may neglect
collisions during the first passage from x to x’. Since
the size of the plasma is many Debye lengths, e is
a rapidly oscillating function of »; the contribution to
the kernel of any given passage after the first is very
small. Even if L. is several times the plasma size
the kernel will not be significantly affected by any
but the first passage. We simply drop the higher
passages on the orbit. Thus, while collisions nowhere
appear explicitly in our conductivity kernel, they play
a very important role in determining its form, and this
is in spite of the fact that by the usual criterion,
vo < < w, collisions may be neglected.

2.5. Reduction of the Cylinder Problem

The highest noticeable resonance is generally ob-
served to fall near the plasma frequency at the center
of the discharge tube [Dattner, 1963; Schmitt, 1964],
and the so-called ““main” resonance, at roughly
[Dattner, 1963] 0.4 of the highest plasma frequency
(we have assumed that the average electron density
is approximately one-half of the maximum). The
lowest modes should be concentrated at relatively
large radii, where w = w,(r). Their character is essen-
tially one-dimensional for low-multipoles and long
wavelengths in the z-direction, provided that transit
time resonances are destroyed by fluctuations.
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Consider the scattering of plane waves by a thin,
infinitely long, cylindrical plasma with z-symmetry.
The driving field is

o A ot
h,,—xel“‘y "’),
or

E.=(7 cos 6+ 4 sin ) [cos (kr sin 8)+i sin (kr sin 6)]e~i!,
(25)

where r, 6, are cylindrical polar coordinates and x, y
are rectangular coordinates in the r, 6 plane, with z
- along the cylinder axis and #=0 on the x-axis.

For a thin plasma of radius a < <\, where A is
the freespace wavelength, we have kr<ka<<1.
In Dattner’s experiments [1963] ka ranges from 0.08
to 0.33. Write

E,=Xe '+ Oka, (25")
and neglect terms of order kr for r < a, while retaining
the full wave equation for r > a. This has been called
the quasi-static approximation [Kaiser and Closs,
1952]. To zeroth order in ka the conductivity kernel
equation is (13’), where the kernel is given by (17')
without the sum over higher passages:

; 2 % !
L ix: x,):&B_Z:(ﬁJ' V;’f Jo-(v)eyiotw=05,

e i

(17"

From the symmetry of the unperturbed plasma the
f-dependence of & at fixed r must be of the form
20" — 6), which is sufficient to guarantee that driven
oscillations have the same multipolarity as the driving
field. Therefore, to zeroth order in ka the fields are
pure dipole modes,

E,=& (1 cos 0+ e(rf sinb, (26)
or
,, & | €
\/ = Ep:<é" 1= —r+7> cos O =—4meN,(r) cos 6.

To zeroth order in ka [see the discussion above (13')]

sin 6

VXE,=—(e+re'—&)z=0.

Let A, =¢€/€’ be the characteristic length and assume
(as we have done everywhere in the static approxi-
mation, and as is verified by the results) that \,/a < <1.
Then to lowest order in ka and \,/a

e€=&]r,
and

e= O(\/a).

Without transit time poles the terms of order \,/a
may be neglected when we substitute (26) into (13’),
i.e.. the off-diagonal kernel S,, does not contribute
to the equation for & because € is small.

Since the range, R, of the kernel in any direction
should be only a few Debye lengths. the 8" dependence
may be expanded,

cos 8'=cos 6+ 0 (R/a).

Neglecting the term O (R/af. the cos 6 dependence
can be cancelled out of the conductivity kernel equa-
tion for all § such that cos § > > ka.

By choosing x;=r we can now do the 6’ and z’'
integrations immediately [see the definition of ¢ (=0

(10)], and obtain the one-dimensional equation

&)= La%/(r; r') (& (r')+ Ea(r')dr’, (27)

where

2iBw*(r) [ = ;
A (r: r')zlﬁ%)ﬁ vfo-(v)e "= av, (28)

where e~i”=0 is just a step function at the turning
point multiplied by e =0 The orbit times, t' —¢,
are now calculated in a one-dimensional potential,
the corrections being @ (R/a).

For a given energy there are two terms in (28),
one connecting r and r’ directly, the other connecting
them through a reflection from the nearest turning
point. The kernel is symmetric.

For r = a we have

o’

V’E, + 5 E,=0. (29)

The appropriate solution of (29) must be chosen by

requiring continuity of E, at r=a. Therefore a meas-

ure of the scattered radiation is
“ &)

=== 7=k G(r())
ro@—To a—Try

o .

€la)= (30)

If the radiation does not penetrate significantly into
the plasma beyond ry, then

e(a):%f‘: & (rydr,

(31)

. €(n e
so that to zeroth order in % the radiation fields are
a

proportional to the “dipole moment,”

D= f 2 (32)

r

The outgoing wave solution of (29) for the §-component
of Ej is,
e(r)= AH(II)(/{I‘). (33)

where k= w/c and H" is the Hankel function of type 1.
The boundary condition is

ela)=D|a. (34)
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The average power radiated away per unit length is

Proa= 1i111 (re?(r))/4. (35)
Define the incident power as
Pin(': ZUE?{/[!"”’ (ﬁ())
and define the dipole scattering width, d, by
d: “’Pra(JPinc. (37)

The dipole scattering width is one half of Herlofson’s
isotropic scattering width. For small ka the first
term in the-asymptotic series for H{! gives A, and the
scattering width is given by

d_m

a 4

DD*
(ka)? 2 (38)

The approximations we have made to reduce the cylin-
der problem to a one-dimensional problem correspond
to the following model, in which it is assumed that the
v, z dependence of E,; can be neglected: The slab of
plasma is bounded by a flat inner wall at x=0 and a
flat insulating wall at x=w. The inner wall emits a
half-Maxwellian distribution of electrons and absorbs
all electrons which strike it. A sheath is built up on
the insulating wall. The infinitely massive ions are
distributed in such a way as to satisfy Poisson’s equa-
tion. This model could be duplicated very closely
if the inner wall were a hot tungsten plate emitting
cesium plasma.

It is convenient to scale (27) and (28) by measuring
distances in Debye length times V2 and time in plasma
periods. Let x=0 be an arbitrary position, and let

Lp= (2kT[ma2(0))"2.
The scaling is
x— xLp,
t—1t"— 7/wy(0),
@o—> — kTepole,
(39)
E— —kTE[Lpe,
o — wp(0)£),
Bv* = w,

where ¢p(0)=0. We will usually pick x=0 at the
inner wall. The scaled longitudinal kernel becomes
(:*t@()(_l') o

oz,

where = is the sign of v.  Note that, since ¢o(x) +w=wo
is invariant on the orbit, the kernel is symmetric.

K(x. x/) e—Ww 2 gi(‘h(r, W%, x’)dw’ (40)

The insulating wall which confines the positive
column is not included in the conductivity kernel as
written above. Unperturbed orbits with energy above
the floating potential do not return to the plasma, which
is accounted for by not including orbits after they
have hit the wall. The oscillating electric fields will
cause some electrons to reach the wall even though
their unperturbed orbits do not, and vice versa. This
causes a perturbation in the number of reflected orbits
and therefore in the current and the electric field.
Let v.(x) be the velocity of an electron whose unper-
turbed orbit reaches the wall with v, =0, i.e.,

v, (%, ve; 2) = 0. (41)
To first order in the perturbation duv. of v., the per-
turbed current at (x, t) due to perturbations in the wall
current is

T

1/2
8/ =— eBNo(x) (E> e BEDy B, . (42)

Integrating along the unperturbed orbit
e [t-U(r, ve ay)

OVe=——

mJ) ..

Ei(x")éA=dt’

() 7 ’ 3 5 n * 3 i .
=—— plot'(x, ve, Ty) J' E[(X/)CI‘”T{17, (43)
0

m

Because we drop
There-

where the orbit starts at the wall.
all transit time resonances dv. is nonsingular.
fore

&j=0 e "%, (44)

which may be neglected if we consider only w’s such
that the oscillations are concentrated in regions where
exp (—pv3(x))<<1. In the plasma exp (—pB)
= O(m/m, )2,

A similar one-dimensional problem —driven oscil-
lations of the sheath on a semi-infinite uniform
plasma—has been solved numerically by Pavkovich
[1963] for frequencies o < wy(s). The properties of
this system and the non-uniform plasma with a sheath
are very different.

2.6. Numerical Solution of the Conductivity Kernel
Equation

The numerical solution of the conductivity kernel
equation was performed on the computers of the
University of California at San Diego and the Na-
tional Center for Atmospheric Research. One pro-
gram formed the conductivity kernels and stored them
on magnetic tapes. A second program read the ker-
nels from the tapes, called a standard subroutine which
inverted the kernels by the Gauss-Jordan method,
and formed the solution, £),.

Efficiency of the inversion program required that
the matrices needed for the inversion be stored en-
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tirely in memory, which limited us to about 70 points
on the x-axis. Actually, 61 points were used, and this
was very satisfactory. For several reasons efficiency
decreased especially rapidly for errors in the kernel
of less than a few tenths of one percent, so errors were
held to that level. The resulting errors in E, range
from less than one percent to a few percent. The
calculation required one hour of machine time for a
batch of 20 values of .

All integrations were done as simple sums. When
the path length, x —x’, was long, the phase, Qr(x, v; x')
sometimes varied by even more than 27 between
neighboring values of v on the integration mesh, so
that even though the mechanics of the integration were
unchanged (simple sum) those portions of the velocity
integration were actually done by sampling [Meyer,
1954].  Accuracy of the integration was checked both
by examining the convergence of the kernel and the
fields as the step sizes were made smaller, and by
comparison with the Landau kernel [Pavkovich and
Kino, 1963; Pavkovich, 1963] in the case of very weak
fields.

2.7. Results From the Conductivity Kernel Method

Experimental data [Gabor, Ash, and Dracott, 1955;
Gierke, Ott, and Schwirzke, 1961; Harp and Kino,
1963] on arc structure was used as a guide, but be-
cause of considerable uncertainty in the plasma
frequency at the sheath edge it was necessary to try
various values of the steady fields. Since the field
measurements and plasma resonance experiments
have not been carried out on the same plasmas,
there was no point in searching for steady fields
which would give D(Q) closely resembling, say, Dat-
tner’s curves.

All of the systems studied had a constant field, Ey,
in the plasma, smoothly joined to a harmonic oscil-
lator field, (x —x0)€Q3,, in the sheath, where x)<s is
such that Ey=(s—x0)Q2%. We give results for two
systems which differ in £y, Q. and thickness. With
Ey, and Qg scaled to the sheath edge. system 1 has
Ey=0.121. Qg =0.746. which is a reasonable fit to
Gabor, Ash, and Dracott [1955] data. System 2
has stronger fields, Ey=0.232 and Qg =1.93. The
relative sheath strength, Q2,/E,, is about three times
greater than in system 1. System 1 is relatively
thicker, i.e., over the full range of € the total oscil-
lating field has insignificant penetration to the inner
wall; but system 2 is damped by the inner wall if
Q > 0.40.

The most important characteristic of the oscillations
excited in the plasma is the magnitude of the dipole
moment,

D= (DD*)1/2 (45)

The energy stored in the macroscopic variables at any
time is equal to the amplitude of the field energy,

1 s
gZEL E Edx. (46)

The rate of dissipation of energy must balance the
power absorbed from the external field; i.e.,

Q Tw
Pdiss:_gfo E(IImEpdx, (47)

or

Piiss=— Q EqdmD/87, (48)

for uniform E,. The number of cycles required to
dissipate the macroscopic energy, &, would be

Q=¢&]2m EqImD), (49)

and the phase shift of the scattered radiation isf=tan™!
(ImD/ReD). Figures 2a and 2b are plots of &, Dy,
ImD, (, 6 versus ( for systems 1 and 2, respectively.
The frequencies are scaled to the plasma frequency at
the inner wall. Both systems show peaks in the
dipole moment.

System 1 is the more interesting. The dipole mo-
ment and energy have two strong resonances and at
least two more weak peaks. The strong resonances
occur at nearly the same frequencies for both &and D.

Calculating the scattering width at the first reso-
nance from (38) we find

d/\=8.5(ka),

where we have set a equal to the thickness of our slab
of plasma. At ka=0.3, which is certainly near the
upper limit for the quasi-static approximation, d/a= 15,
or d/IAN=0.7. For ka=0.1, d/la=5 and d/A=0.08,
and even ka=0.05 gives dla=2.7, d/x\=0.02. A
cylindrical plasma corresponding to system 1 would
certainly have d/a > 1, and might come within a factor
of two of Herlofson’s cold plasma result, d/\=4/m,
which was obtained as the radiation damping limit.

The relative damping, %, is uncorrelated with &,
but the coupling to the driving field, D, has sharp peaks
at the resonances. In this sense plasma resonance
is due to maxima in the coupling rather than the other
possibility, minima in the damping [Leavens. 1963].

Figure 3 shows E, for several values of (. Beyond
the second node of E, the extrema are very weak,
because of Landau damping. The damping may even
be large for the first half-cycle of £, if it falls near the
sheath edge, because the electrons reflected from the
sheath tend to be out of phase with the unreflected
electrons [Qg, = 0.75Q,(s)]. This is apparent in the
kernels, three rows of one of which we show in figure
4. The two rows with the diagonal far from s are simi-
lar except for a scale factor.
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System 2 has one strong resonance and two weak
resonances. Above Q=0.40 the field penetrates to
the inner wall, which apparently causes enough damp-
ing to prevent any more peaks from occurring. Multi-
plying the frequencies in system 2 by two will scale
them to the same base as those in system 1. The
positions and spacings of the peaks are quite different
from system 1.  The Q({2) curve has even less relation-
ship to the D(Q) curve. The first resonance is weaker
than in system 1, but could still have d/a > 1 for reason-
able values of a and £.

We have studied several other systems with stronger
steady fields. One of them was a very thin system,
so that the total E=FE,+E, penetrated to the inner wall.
All showed well defined peaks in D(£), but none had
the strong resonances of system 1. The effect of a
stronger field on the electron orbits is to decrease
t(x, v; x’), lowering the minimum velocity for which
wt < <27, and thereby enhancing the imaginary
part of K near the diagonal and weakening the real
part, so more damping is to be expected with stronger

fields.

We would like to emphasize the following:

Any relationship between the first resonance fre-
quency and the average plasma frequency is purely
an accidental consequence of the form of the un-
perturbed plasma. This is clear because the portions
of the plasma into which the fields do not penetrate
can be modified freely without affecting the calcula-
tion. This implies that the partial success of cold
plasma theories [Tonks, 1931a, b; Herlofson, 1951;
Crawford, 1963] in describing the first resonance is
also accidental. There is no difference of kind
between the first and higher resonances. It is
especially worth emphasizing that all of the resonances
come from a single model, and one should not add an
extra cold plasma resonance to the resonances found
from kinetic theory or fluid theory [Crawford, 1963].
There is nothing fundamental about the series limit
[Dattner, 1963; Crawford, 1963]. The higher reson-
ances produce relatively weak changes in the dipole
moment because of Landau damping. Furthermore,
the Landau damping can be expected to increase when
() is greater than the largest plasma frequency. These
two effects presumably bring resonances above the
"‘s(;:ries limit” down to an undetectably small ampli-
tuae.
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3. Adiabatic Fluid Theory

In this section we, (1) sketch the derivation of a
linearized fluid-type equation of motion by the usual
procedure of taking moments of the electron Vlasov
equation and terminating the set by making the
adiabatic approximation; (2) consider possible “bound-
ary conditions” on the fluid equation; and (3) calculate
resonance spectra.

3.1. Fluid Equations for Electrostatic Oscillations
The first two moments of the Vlasov equation are

aN

E+V-(N<v>)=0, (50)

ImK

DIAGONAL AT IX=47
ReK

.225
|
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© o
o
—
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|
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I

DIAGONAL AT 1IX=15
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FIGURE 4. Three rows of the conductivity kernel.

Q=.255. System 1.

and
(W_ZV_>M-V W<ur>)+ Yoy s
where N is the electron density, and
SR f :c v f(v)dv. (52)

In what follows we use v=<v>+u,<u>=0,

<E>=<i>+<ul>,u?=3<u2>. (53)
The set of moment equations is terminated by taking
the second moment equation and setting < ujujur >
=0. The same approximation is made more easily

by the adiabatic approximation <6%+ <v>- V>

(PN-*)=0, with y=3 since only one degree of free-
dom is involved. Linearizing the moment equations
and using Poisson’s equation we find the equation of
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motion for one-dimensional problems,

3€E0 , 1
5 Ep—l—l—tg <w2—w§(x)+

, 2eE, w?
- )

u—;’ Eq-  (54)

mau m

The normal form of (54) is
" D 5 Wp 1~
y +(qz—p2)y=—7§ 2 d, (54)

where

ek 9 [eEy\2
q2=w2/u2,1)2:[wf)+—°——(”—lo> u2,

2m  2u?

and

E,=wpx)y. (55)
To derive (54) from the moment equations, terms in
vo, V 1y, and V u? are neglected. For the electrons this
is justified to within a few kT (potential drop) of the
insulating wall. The fluid equation scales with the
Debye length. The same scaling used in section 2
gives

2 . R , 2 .
1;:+E,, 4;, +§ (slz — (21'; IF E“) Ep :g Qlf E(lw (5())

or

" 2 2 2 E, :3 o 2 ’
VA =+ =S By =3 BEa. (56))

Different fluid equations are sometimes obtained by
the isothermal approximation or by making the adia-
batic approximation in the laboratory reference frame.
The differences can be important. For example, if
@ is a harmonic oscillator potential the requirement
that £, be zero at infinity gives a continuous spectrum
of free (E;=0) oscillations for (54), but a discrete
spectrum for the similar equation obtained by making
the adiabatic approximation in the laboratory frame
[Weibel, 1960]. The latter result disagrees with
results obtained from the Vlasov equation [Weibel,
1960]. It is well known that the adiabatic fluid
equations can give reasonable values for the splitting
of the resonance frequencies [Gould, 1960; Leavens
and Abramoff, 1961; Fejer, 1962; Crawford, 1963;
Leavens, 1963; Nickel, Parker, and Gould, 1963;
Weissglas, 1963; Hoh, 1964]. The conductivity kernel
solutions suggest a “resonance condition” which we
apply to the fluid equations in the next section.

3.2. Resonance Condition

There is no reason to impose boundary conditions
on the plasma oscillations, and indeed the kinetic
theory results indicated a continuous spectrum.

[t may be, however, that we can find approximate
conditions for resonance which would be used in the
same way as boundary conditions. The conductivity
kernel solutions suggest that we might be able to
predict resonance frequencies with the fluid equations
by wusing the FE(s) = 0 boundary condition in the
problem of free oscillations, but that only the odd eigen-
values are resonances. For slowly varying amplitude
(as a function of Q) this corresponds roughly to maxi-
mum dipole moment. The resonance splitting is
twice that given by a rigid wall boundary condition
at the sheath edge.

3.3. Resonance Spectrum
In the domain 0= x <s, the coeflicient p? in (56")
is relatively slowly varying and for weak fields the E3
and E§ terms may be neglected, only the variation of
Q, being significant. The free oscillation equation is
n 2 2 2

3 3 (Q2—Q2(x))y=0, (57)

where

Ep=Qypy.

The asymptotic solution of (57) which becomes
exponentially small into the plasma is [Heading, 1962

. 7(2,,(1) f-’ _ _)1/“ .l}_ <§fl )z/:;]
Ey g’/z(.r)( ..~',h(h Al 9 ..-',h(lx . (58)

where

&)= & (x0) =0,

and Ai(¢) is the Airy function. The only zeroes of £,
are in Ai(¢). Let Ai(—¢&)=0, then the condition for
resonance 1s

3(r 2/3 .
(zj g(.r)dx) =&, i=1, 3,5, .

0

(59)

For constant E, this reduces to

E
7%5?’2=—Qi(v;—tanh“v;): vi =(1— eifos |(R)12. (60)

S()lving (60) graphically for system 1, we find the follow-
ing frequencies for the first five resonances:

=1 3 5 7 9
&i=2.34 5.52 7.94 10.04 11.94
0;=0.178 0.239 0.286 0.324 0.365

The & were taken from the British Association tables
of the Airy function [Miller, 1946]. The Q; are scaled
to the plasma frequency at x=0. The agreement
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between the (); and the positions of the peaks on the
D(Q) curve for system 1 is quite good; () is in error by
1 percent, and the average spacing is extremely close.
For system 2, we find

Q;=0.103 0.156 0.194 0.228 0.259.

The first resonance agrees extremely well with the
conductivity kernel solution, but the splitting is a factor
of two too small.

It is interesting to compare the fluid solutions for E,
(fig. 5) and the kinetic solutions, figure 3. The plotted
fluid solutions were actually obtained by numerical
integration of (56), but they agree with (58). Direct
comparison is impossible, one set of solutions being
for the driven problem, the other for free oscillations.
Nevertheless, it is clear that the fluid solutions are not
very satisfactory. The fluid equations are useless
well into the sheath, where their solutions exponentiate
extremely rapidly [Leavens, 1963]. Otherwise, the
main qualitative difference is the more rapid decrease
of the amplitude of successive extrema as one moves
toward the wall in the case of the conductivity kernel
solutions. The success in calculating the resonance
frequencies merely reflects the fact that the spatial
nodes of the fluid solutions have approximately the
correct spacing.

4. Summary and Conclusions

Plasma resonance in nonuniform plasmas bounded
by sheaths has been studied by the conductivity kernel
method. Although this is a collisionless method we
were able to account for the dominant effect of weak
collisions by cutting off orbit integrations when the
path length became greater than the coherence length,
i.e., when an ensemble of electrons released from the
point (x,v) would reach x' after times which would
have a spread of more than 27/w. The coherence
length is much shorter than the mean free path; for
Dattner’s arcs it is approximately one plasma diameter.
With the orbit cutoff it was possible to reduce the
problem of low lying dipole resonances of a cylinder
to a one-dimensional problem.

The one-dimensional problem of steady state driven
oscillations was solved numerically for a model which
used a linear potential in the plasma, continuously
joined to a harmonic oscillator potential in the sheath.
The model has plasma resonances. The most inter-
esting static potential (which was also probably the
best fit to experimental measurements of the static
fields near the sheath) had two strong resonances and
at least two weaker ones.

The program to solve the conductivity kernel equa-
tion will work for any static potential, but as yet reson-
ance experiments and static field measurements in
the sheath and the plasma have not been done on the
same arc. Cesium plasmas would be ideal for such
an experiment. With a hot, flat, tungsten plate facing
an insulating plate across a gap of ~ 50 Debye lengths

2=.195

FIGURE 5. Fluid solutions of the free oscillation problem, F

. P
versus position.

System 1.

the experiment would correspond exactly to the one-
dimensional problem solved by our program, and the
field measurements would not be too difficult.

Although Landau damping of the conductivity kernel
solutions was important, we found that the adiabatic
fluid equations, with a “boundary condition” chosen
to correspond approximately to maximum coupling to
the driving field, gave an extremely accurate prediction
of the resonance frequencies in the most realistic
case studied, and predicted the first resonance quite
accurately (i.e., agreeing with the conductivity kernel
solutions) even for a system with overly strong static
fields. Qualitative comparison with Dattner’s data
[1963] shows that the relative spacing of our calculated
resonances is too large for the higher resonances,
which is expected because we have used a model which
has an increasing density gradient into the plasma.
The “level spacing” is, however, in qualitative agree-
ment with Dattner’s data.

In conclusion, we note that the “*boundary condition™
was inferred from the conductivity kernel solutions in
the neighborhood of the sheath. The sheath not only
influences the line shapes through Landau damping,
but also has a strong influence on the positions of
the resonances.

1332



It is a pleasure to thank M. N. Rosenbluth for his
guidance. We are grateful for the cooperation of the
computer centers of the University of California at
San Diego and the National Center for Atmospheric
Research. This research was supported by the
U.S.A.E.C., the University of California, and the
National Bureau of Standards.

5. References
Bekefi, G., J. D. Coccoli, E. B. Hooper, Jr., and S. J. Buchsbaum

(1962), Microwave emission and absorption at cyclotron harmonics
of a warm plasma, Phys. Rev. Letters 9, No. 1, 6-9.

Billam, E. R.. and I. C. Browne (1955), Meteors, ed. T. R. Kaiser
(Pergamon Press, Ltd., London and New York, N.Y.).

Boley, F. 1. (1958), Scattering of microwave radiation by a plasma
column, Nature 182, 790-791.

Comisar, G. G. (1963), Collisional damping of plasma oscillations,
Phys. Fluids 6, No. 1. 76-82.

Crawford, F. W. (1963), Resonances of a cylindrical plasma column,
Microwave Laboratory Report No. 1045, W. W. Hanson Lab.,
Stanford University.

Dattner, A. (1957). The plasma resonator, Ericsson Technics 13,
No. 2, 309-350.

Dattner, A. (15 Mar. 1963)., Resonance densities in a cylindrical
plasma column, Phys. Rev. Letters 10, No. 6, 205-2-6.

Dougherty, J. P. (1964), Model Fokker-Planck equation for a plasma
and its solution, Phys. Fluids 7, No. 11, 1788-1799.

Drummond, J. E., R. A. Gerwin, and G. B. Springer (1961), The con-
cept of conductivity, J. Nucl. Energy, Part C: Plasma Phys. 2,
98-108.

Fejer, J. A. (1962), Scattering of electromagnetic waves by a plasma
cylinder, General Motors Report No. TR62-2091..

Gabor, D., E. A. Ash, and D. Dracott (1955), Langmuir’s paradox.
Nature 176, 916-919.

Gierke, G. V., W. Ott, and F. Schwirzke (1961), Fifth International
Conference on lonization Phenomena in Gases, Munich.

Gould, R. W. (1960), Scattering from a plasma column, California
Institute of Technology Report No. 1, Contract DA36-039 SC—
85317.

Harp, R. S., and G. S. Kino (1963), Measurement of fields in the
plasma sheath by an electron beam probing technique, Micro-
wave Laboratory Report No. 1076, Stanford University.

Heading, J. (1962), An Introduction to Phase-Integral Methods,
p. 29 (Methuen and Co., Ltd., London).

Herlofson, N. (1951), Plasma resonance in ionosphere irregularities.
Arkiv Fysik 3, 247-297.

Hoh, F. C. (1964), Longitudinal oscillations in a nonuniform plasma.
Phys. Rev. 133, No. 4A, A1016-A1020.

Kaiser, T. R., and R. L. Closs. (1952), Theory of radio reflections
from Meteor trails. I, Phil. Mag. 43, 1-32.

Landau, L. D. (1946), On the vibrations of the electronic plasma, J.
Physics USSR 10, 25-34.

Langmuir, 1. (1925), Scattering of electrons in ionized gases, Phys.
Rev. 26, 585-613.

Leavens, W. M. (1963), Effect of the sheath on plasma resonance,
Meeting of the Division of Plasma Physics, American Society,
San Diego, Calif.

Leavens, W. M., and R. Abramoff (1961), Theory of plasma reso-
nance, Convair Report ZPH-093.

Lustig, C. D. (1964), Microwave noise resonances from a plasma
column, Phys. Letters 9, No. 4, 315-317.

Meyer, H. A. Editor (1954), Symposium on Monte-Carlo Methods
(John Wiley and Sons, Inc.. New York, N.Y.).

Miller, J. C. P. (1946), British Association Tables, Part-Volume B.

Nickel, J. C., J. B. Parker, and R. W. Gould (1963), Resonance oscil-
lations in a hot nonuniform plasma column, Phys. Rev. Letters 11,
183-185.

Ott, W. (1963), Ein Versuch zur Klarung des Langmuir-Paradoxons,
report of the Institute fiir Plasmaphysik, Munchen.

Panofsky, W. K. H., and M. Phillips (1962), Classical Electricity
and Magnetism, 2d ed. ch. 11 (Addison-Wesley Publishing Co.,
Inc., Reading, Mass.).

Parker, J. V.. J. C. Nickel, and R. W. Gould (1964), Resonance oscil-
lations in a hot nonuniform plasma, Phys. Fluids 7, No. 9, 1489-
1500.

Pavkovich, J. (1963), Numerical calculations related to the R.F.
properties of the plasma sheath, Meeting of the Division of Plasma
Physics, American Physical Society, San Diego, Calif.

Pavkovich, J., and G. S. Kino (1963), R. F. behavior of the plasma
sheath, Meeting of the Division of Plasma Physics, American
Physical Society, San Diego, Calif.

Romell, D. (1951), Radio reflexions from a column of ionized gas,
Nature 167, 243.

Schmitt, H. J. (1964), Acoustic resonances in afterglow plasma,
Appl. Phys. Letters 4, No. 6, 111-112.

Self, S. A. (1963), Exact solution of the low-pressure plasma sheath
equation, Microwave Laboratory Report No. 1009, Stanford
University.

Thompson, W. B. (1962), An Introduction to Plasma Physics, p.
182 (Pergamon Press, London).

Tonks, L. (1 June 1931a), The high frequency behavior of a plasma,
Phys. Rev. 37, 1458-1483.

Tonks, L. (15 Sept. 1931b), Plasma electron resonance, plasma reson-
ance and plasma shape, Phys. Rev. 38, 1219-1223.

Weibel, E. S. (1960), Oscillations of a nonuniform plasma, Phys.
Fluids 3, No. 3, 399-407.

Weissglas. P. (1963), Resonance oscillations in a hot nonuniform
plasma, Phys. Rev. Letters 10, No. 6, 206-209.

Wolff, P.-A. (1956), Theory of plasma resonance, Phys. Rev. 103,
No. 4, 845-850.

(Paper 69D10-566)

1333



	jresv69Dn10p_1321
	jresv69Dn10p_1322
	jresv69Dn10p_1323
	jresv69Dn10p_1324
	jresv69Dn10p_1325
	jresv69Dn10p_1326
	jresv69Dn10p_1327
	jresv69Dn10p_1328
	jresv69Dn10p_1329
	jresv69Dn10p_1330
	jresv69Dn10p_1331
	jresv69Dn10p_1332
	jresv69Dn10p_1333
	jresv69Dn10p_1334

