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In this paper a new theory for the calculation*of the radiation resistance of antennas in gyroelectric
media is presented. .This new theory-ensures the irreversibility and finiteness of the radiation
resistance.

1. Introduction

In recent years many investigators [e.g., Staras, 1964; Weil and Walsh, 1965] have contributed
significantly to the problem of calculating the radiation resistance of a dipole antenna immersed
in an electrically anisotropic homogeneous medium whose anisotropy is due to a magnetostatic
biasing field Bo. However, the method they have used to calculate the radiation resistance —the
so-called conventional method —leads in general to an infinite value for the radiation resistance,
and on this account the method and the result it yields are open to question. Some have inter-
preted this infinity as a type of resonance in the medium, while others have attributed it to the
infinitesimal size of the source. It is our contention that the difficulty is of a-more basic nature and
is due not simply to the size of the source but to the method of calculation. In this paper we show
that when the radiation resistance is calculated in accord with the laws of reversibility and irre-
versibility, the radiation resistance turns out to have a physically reasonable value. Since radia-
tion resistance is on the same footing as circuit resistance in the sense that they both are measures
of irreversible power, we require that only the irreversible part of the power be used in calculating
radiation resistance.

Our point of departure is the conventional expression for the time-average power P. Using
combinations of outgoing and incoming fields we split P into its irreversible part P;,. and its re-
versible part P.., such that P= P, + P,., and show that P;, is free from singularity whereas P,,
is not. Thus, for the radiation resistance R we obtain R = CP;,, where C is a constant. This result
obeys the required conditions of finiteness and irreversibility. Previous investigators have used
the expression R=CP = C(P;,,+ P,.y) and therein lies the source of their difficulty because this
expression, due to the presence of P, violates not only the required irreversibility but also the
condition of finiteness. We present a general formula for the irreversible power radiated by an
arbitrary current distribution varying harmonically in time. We show that this formula reduces
to the conventional result when By=0 (isotropic media) or when B, = o (uniaxial media).

To construct an expression for the irreversible part of the power emitted by a source we recall
that in the case of an accelerating point electron in vacuum the combination of half the retarded
minus half the advanced field is free from singularity, [Dirac, 1938], and corresponds to the irrever-
sible power radiated by the electron [Schwinger, 1949]. We extend this idea of taking a combina-
tion field to the case of a monochromatic source radiating into a lossless, homogeneous, gyroelec-
tric medium.
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2. Formulation of the Problem

The radiation resistance R of an antenna is defined by the relation
R=CPy, 1)

where C is the reciprocal of the squared amplitude IT* of the current Re /e~ feeding the antenna
and Pj,, is the irreversible part of the time-average real power P emitted by the antenna. Accord-
ingly, the problem of calculating radiation resistance amounts to the problem of calculating from a
knowledge of the antenna current density Re J(r)e=i! the irreversible part of P.

It is well known that the power P is given by

P:—% Re j J4(x) - By (r)dV @

where the integration extends throughout the volume occupied by the antenna current and E,
denotes the electric vector of the outgoing wave generated by the antenna. However, it has not
been recognized that P generally has not only an irreversible part Py, but also a reversible part
P, as displayed by the relation

[P= 1 P (3)

Indeed, the question of reversibility and irreversibility has never before been raised in this connec-
tion. This is perhaps due to the fact that the dual nature of P may be overlooked in certain special
cases without affecting the value of the radiation resistance. For example, when the antenna is
in vacuum or in a simple lossless unbounded medium P,.. is identically zero and hence the conven-
tional definition R=CP is indistinguishable from our definition (1). On the other hand, in the
case where the ambient medium is a lossless, homogeneous, unbounded gyroelectric medium — the
very case we are presently interested in— P, is not necessarily identically zero and consequently
the operation of finding the irreversible part of P is a crucial step in the calculation.

Our problem, therefore, is to extract from P an explicit expression for P;,, involving the an-
tenna current density J(r) and the dyadic Green’s function of the gyroelectric medium.

3. Time-Reversal Transformation

Since the anisotropy of the gyroelectric medium which surrounds the antenna is produced by
a magnetostatic biasing field, the reversal of time must be accompanied by the reversal of the
biasing field if Maxwell’s equations are to be covariant under the time-reversal transformation.
Formally, the time-reversal transformation may be thought of as a transformation from a ref-
erence frame K with space coordinates x, v, z, time coordinate ¢, and biasing field By, to a reference
frame K’ with the same space coordinates, but with time coordinate ¢', and biasing field B;. In
transforming from K to K’ the space coordinates remain unchanged whereas the time and the
biasing field transform according to the rule

t=>t'=—t, Bo—=Bi=—By (4)

Since the microscopic Maxwell-Lorentz equations are known to be covariant under this trans-
formation, we demand that the macroscopic Maxwell’s equations for a lossless gyroelectric medium
be likewise covariant. Using the convention that primed quantities are referred to K’ and un-
primed ones to K, we display this covariance by stating that in K we have

V X H(r)= J(r) — iwe(B,) - E(r), V - €By) - E(r)=p(r)

V X E(r)=iouH(r), V- Hr)=0 (5)
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and in K" we have
VXH'(r)=]'(r)— iwe(B)) - E'(r), V- €By) - E'(r)=p'(r)
V XE'(r)=iouH'(r), V- H'(r)=0. (6)
It follows from the covariance of these macroscopic Maxwell equations that the field and source
quantities in K are related to those in K’ by the transformations:
E(r)=E*(r), H(r)=—H"*(r), Jr)=—J"*r)
pr)=p"*x),  eBo)=e*(By). (7)
We can verify that the above transformation law for the dielectric tensor is indeed obeyed when
o=— By, by recalling that the dielectric tensor of a lossless gyroelectric medium has the property

E(Bo) =€e*(— By).

The physical significance of these transformations (7) may be more easily appreciated in the
time domain. For example, in the case of the electric vector we have

E'(r, t')=Re E'(r) e = Re E*(r) e'= Re E(r) e i*'=E(r, t) 8)

or
E'(x,—t)=E(, 1) 9)
which shows that the past and the future of an electric field are the same. Similarly the past
and the future of any of the source or field quantities (except for minus signs) are the same. It

is also revealing to consider Poynting’s vector. If by S" and S we denote the complex Poynting
vector in K’ and K, respectively, we have the transformation rule

S' = 2 E'(r) X H'*(r) = — —;—E*(r) X H(r) = — S* (10)

N |

whose real part yields
Re S’ =— Re S. (11)

Thus we see that the real part of Poynting’s vector changes sign under time-reversal.

Up to the present point of our discussion it appears that in a lossless gyroelectric medium the
electromagnetic field and the real part of the complex Poynting’s vector are completely reversible.
To answer the question of where the irreversibility comes from we must remember that the fields
we have been examining are total fields and that Maxwell’s equations actually permit two in-
dependent wave solutions, one representing an outgoing wave K., and the other an incoming wave
Ei,. In the time domain the two independent solutions are the retarded and the advanced wave,
which are related to E, and E;, by

Er(‘t(r, [) = Rt‘ Enm(r) e*iwl
Eoq(r, )=Re Ejp(r) e (12)
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in K, and by

(r) e—ia)t’

E. (r.t)=ReE/

out
Ez;dv(r’ t’) = Re Eiln(r) e_iwﬂ (13)

in K'. Since E,(r,t)=E/(r,t"), it follows from (12) and (13) and similar equations for the
magnetic fields that

Enul(r) =E; *(I‘)

in

E,(r)=E*(r)

out

H,y(r)=— H;n*(r)

H;,(r)=—H_ 5(r). (14)

out

Relations (14) show that an outgoing wave in K transforms into an incoming wave in K’ and vice
versa.

To interpret the result in (14) in terms of Poynting’s vector we denote the complex Poynting
vectors of the outgoing and incoming waves in K by S, and Sy, and in K’ by S/ , and S| , respec-
tively, and note that the transformations

Suue= 5 o) X Hiy (1) =— 3 E(e) X Hl, =— S
S = 5 Bulr) X Bir) =— 5 B X B, (1) =— S5, (15)
lead to
Re(Sou F Sin) = Re(— 8} = S0 ) == Re(Sgy F Sip)- (16)
This equation demonstrates that the combination Re(Sgy— Sin) is irreversible and Re(Sqy+ S;pn)
is reversible under the time reversal transformation (4).

From the complex Poynting’s vector theorem, which in the present case of a lossless gyro-
electric medium has the form

V- (EXH*=—J*-E+iouH - H*—ioE - €B,) - E*, (17)
we get
ReV - (EXH*=—ReJ*-E (18)

which on integration yields

Refn-Sda=— ! RefJ*m-E(r) av (19)

where the volume integration extends throughout the volume occupied by the current and the
surface integral extends over any closed surface with outward normal n, enclosing the current.
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Applying this relation (19) to S,y and S;, we obtain the relations

Re j n- Sy da=— % RCJJ*(I‘) * Eoulr) dV

Refn-Smda=—%&%fJﬂﬂ-EMﬂdV (20)
whose difference and sum yield
Refn “(Sout F Sin) da=— % Refj*(r) “ [Eout(r) F Eiy(r)] dV. (21)
Since by (16) Re(Sou— Sy is irreversible and Re(S,u+ Sy is reversible, we see from (21) that
Re [ 3500 (Boutr) — Eiptr)] ‘ 22)

expresses irreversible power and
Re [ 3°0) - (Bou(e) + Eiptr)] 23)

expresses reversible power. The irreversibility of (22) and the reversibility of (23) can also be
made evident by submitting them to the field transformations of (14) and the current density trans-
formation of (7).

Recalling expression (2) for P and using the algebraic identity

Eout - %(Eoul - Ein) ar (Eoul + Ein) (24)

1
2
we find that

I):_i e f J*(I‘) : |Euul(r)— Ein(r)l dV

— 1 Re [ 30 [Bour)+ Bl v (25)

Thus we split P into its irreversible part (first term on right) and its reversible part (second term
on right).
Consequently we can write

P=P,+ P, (26)
where P;.,. and P, are given by
P == Re [ 37(6) [Eoutr) = Eutr] &V @27
Prov=—1 Re [ 3500 (Bour) + Byt (28)
orlequivalentlyiby
Pir = 3Re f n - (Sou—Si) da (20)
Prov=3Re f n - Sout S da. (30)

To find P;,, we must use either expression (27) or expression (29). These expressions are note-
worthy because they place in evidence the necessity of including the incoming field or the incoming
Poynting’s vector.
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4. Regular Behavior of the Ditference Field

Since we have
P:Pirr+Pre\' (31)

and since P is not free from singularity [Staras, 1964; Weil and Walsh, 1965], the question of how

the possible singularity in P is distributed between the terms P, and P, arises. Clearly, to

answer this query one examines expressions (27) and (28) for P, and P,,. Here we make the

reasonable assumption that the volume integral of J itself is bounded, and therefore the deter-

mining quantities to be examined are the difference field E,,— E;,, and the sum field E ; + E;,.
We know that E.; and E;, satisfy the same differential equation, i.e.,

VXV XEgu— oo € - Eg = iopo) (32)
VXVXEm—Q)Z,LLoE'Em:iwﬂu]. (33)
However, at infinity the boundary condition on E. is different from the boundary condition on
E,,, and therefore E , and E;, cannot be the same function.
Taking the difference of (32) and (33) we obtain the homogeneous equation for the difference
field
VXV X (Eoul_ Ein)_wzﬂo € - (E()ut_Ein):() (34‘)
which holds everywhere. This equation implies that E,— E,, is free from singularity. Using
this result and recalling that E  # E;,, we see from (27) that P, is finite.
On the other hand, taking the sum of (32) and (33) we see that the sum field satisfies the in-
homogeneous equation

V X vx(Eout+Ein)_w2M0€ : (Eout+Ein):2iw:u‘0J (35)

which exhibits the singular behavior of the sum field. Since it is the sum field that carries the
singularity, we see from (28) that the singularity appears in P .

5. Irreversible Power in Terms of the Dyadic Green’s Function

To reduce expression (27) for the irreversible power to a simpler computational form we intro-
duce the dyadic Green’s functions which relate E  and Ej, to the source current density J.
From the linearity of Maxwell’s equations we can write

Eou(r,=Bo)=iope fl‘ out(r, ', = Bo) - J(x") dV” (36)

Ei(r, =Bo)=iwuo f Ci(r, v, =By - J@')dV’ (37)

where I' ,,, and I';, are the dyadic Green’s functions which satisfy
VXV XT yu(Bo)— 02 moe By) - T (= Bo) =ud(r—r’) (38)
V X VXTI in(=By) — 02ue(x Bo) ‘T (= Bo)=ud(r—r’) (39)
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where w=unit dyadic. Although I ;;; and I' ;,, satisfy the same differential equation, they are not
identically equal because they must satisfy different boundary conditions at infinity. Since
e(—By) = €*(By) we find by taking the conjugate complex of (39) that

V XV XTEF Bo) — o’ uo€e(® By) - T (F Bp) =ud(r—r’'). (40)

Comparing (38) with (40) we see that T' ,, (== By) and T [ (+ By) satisfy the same equation. In the
special case where By=0 we know that.I' ;,, =T, and thus we conclude that

r Tn(i BO) = ]:lnut(i BO) (41)
holds for all values of B,.
With the aid of relation (41) we obtain from (36) and (37) the following expression for the
difference field:
Eoul(r» BU) - Em(r BO _Iw/"““f[ rr)ut r, r’ Bl) oul(r r *_B" ] J (r )(” " (4‘2)

Substituting this expression into (27) we see that the irreversible power is given by

1)1,.,.:“’5" Im f JH) - [Toulr, v, Bo) =T X, (v, v/, — Bo)] - Je') dVdV". (43)

To simplify further this relation we note that
ruul(B(l) - oul B(l Re [roul(BU) - nut BO J+ iIm [ I‘nul B(l +I out(— B())J (44)

and accordingly write Py, in the following form

P= “’i‘" Re j JAr) - Im [Ty, v/, Bo)+ T (. v'.— Bo)] - J(x') dVdV'’

+wivolmf_]:’:(r) ‘Re[Tyu(r, ', Bo) —T (e, —Bo) |- Je') dVdV'. (45)

This is the desired expression for the irreversible power. It shows that from a knowledge of J
and I' ,,, we can find Pj,, and from a knowledge of P, we can find in turn the radiation resistance
by the formula R = CP;,.

For the sake of completeness, we also include the expression for the reversible power:

P =2 m [ 34061 Re [Toutr. ', Bo)+ Tt = Bol]- Je') dvidl”

+9% R(JJ‘ J*(l") - Im [I‘uut(l'q I'I» BO)_ P()ut(re I' BO)] J ({V([V/ (46)

6. Dipole Antenna

Let us now consider the case of a dipole antenna in a gyroelectric medium. For a dipole
antenna situated at the origin of the coordinates we have

J(r)=—iwpd(r). (47)
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Substituting this expression into (45) we see that the irreversible power radiated by the dipole is
given by

3
Pirr:w el | U Im [r()ut(0~ 0~ BO)+I‘ (lut(()» 09_ B())] P (4‘8)

which is clearly an even function of the biasing field By as it should be.
If we had used expression (2), as one would do in the conventional method, we would have
obtained

s
P"‘T P Im I‘(,ut(o, 0, B()) P (49)

Evidently expressions (48) and (49) are different. However, in the extreme cases where By=0
(isotropic media) or where By=o0 (uniaxial crystals), the conventional expression (49) becomes
identically equal to our expression (48). Hence, when By=« or when B;=0, it is permissible
to use expression (49) for the calculation of the radiation resistance [Kogelnik, 1960; Kuehl, 1962],
but otherwise it is not. When By has a finite value, expression (49) cannot be used for this purpose
because it does not represent irreversible power. When By is finite one must use expression (48).

7. Conclusions

From the above discussion we can draw the following conclusions. For an antenna in a gyro-
electric medium, the time average power P emitted by the antenna has an irreversible part P;,,
and a reversible part P,.,. The irreversible part of the power does not change sign under the time-
reversal transformation and hence represents the time-average real power that is absorbed by the
sphere at infinity; the reversible part of the power, on the other hand, changes sign under the time-
reversal transformation and accordingly has the nature of reactive power. When the biasing field
By is zero or infinite P,., is identically zero, and there is no difference between P and P;,. How-
ever, for finite values of By there is a profound difference. This means that for finite values of
B, the radiation resistance R, which is a measure of the power absorbed by the sphere at infinity,
must involve only the irreversible part of the power.

Although the resulting electromagnetic field of an antenna in a gyroelectric medium consists
of only the outwardly moving wave, it is expedient to introduce the inwardly moving wave because
the difference of the outgoing and incoming waves yields P;, and their sum yields P.,. More-
over, consideration of the difference and sum fields shows that P, is free from singularity, whereas
P.ey is not.

By means of the dyadic Green’s function the explicit representations of Pj.. and P,., take a
particularly simple form. Indeed, they require only a knowledge of two dyadic Green’s functions,
one of which can be obtained from the other by reversing the sign of the biasing field.

The authors express their thanks to the Air Force Office of Scientific Research of the Office
of Aerospace Research for their support of this research under Contract AF49(638)—1266.
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