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Tn thi s paper a new theory for' the ca lculatio n'tJ f the radia tion res istance of antennas in gy roelectri c 
media is presented. / fhi s new theo ry:ensures the irrevers ibility and finiteness of the radiation 
resis ta nce. 

1. Introduction 

In rece nt years ma ny inves tiga tors [e.g., Staras, 1964; Weil and Walsh, 1965] have contributed 
significantly to th e problem of calculating the radiation resis tance of a dipole a ntenn a imm ersed 
in an electri cally ani so tropic homogeneo us medium whose a ni so tropy is du e to a magnetos tati c 
biasi ng field Bo. However, the me thod they have used to calc ulate the radiation res is ta nce - th e 
so-called conve ntional me thod- leads in general to an infinite value for the radiation resistance, 
a nd on thi s account th e method and the result it yields are open to quest ion. Some have inter­
preted thi s infinity as a type of reso nance in the medium , while others have attributed it to the 
infinites imal s ize of the 'source. It is our contention that the diffi culty is of a-more'bas ic 'nature and 
is du e not simply to the size of the so urce but to the method of calc ulation. In this paper we s how 
that whe n the radiation resistance is calculated in acco rd with the laws of reversibility and irre , 
versibility, the radiation resi3tance turns out to have a physically reasonab le value. Sin ce radia­
tion res is tance is on the sa me footing as circ uit resistance in the sense that they both are meas ures 
of irrevers ible power, we require that only the irreversible part of th e power be used in calc ulating 
radiation res istance . 

Our point of departure is the conventional expression for the time-average power p, Using 
combinations of outgoing and inco ming fi elds we split P into its irreversible part P irr and its re­
versible part Pre" s uc h that P = P irr + Prev and show that Pirr is free from singularity whereas Prev 
is not. Thu s, for the radiation resis tance R we obtain R = CPirr where C is a constant. Thi s res ult 
obeys the required co ndition s of finit eness and irreversibility. Previous inves tigators have used 
the expression R = CP = C(Pirr + Pre,,) and therein lies the source of their difficulty because thi s 
expression , due to the prese nce of P rev , violates not only the required irreversi bility but also the 
condition of finite ness. We present a ge neral formula for the irreversible power radiated by an 
arbitrary current di stribution varying harmonically in time. We show that this formula reduces 
to the conventional result when Bo = 0 (isotropic media) or when Bo = co (u ni axial media). 

To construct an expression for the irreversible part of the power emitted by a so urce we recall 
that in the case of an accelerating point electron in vacuum the combination of half the retarded 
minus half the advanced field is free from singularity, [Dirac, 1938], and corresponds to the irrever­
sible power radiated by the electron [Schwinger, 1949]. We extend thi s idea of takin g a combina, 
tion field to the case of a monochromatic source radiating into a loss less, homogeneous , gyroelec­
tric medium. 
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2. Formulation of the Problem 

The radiation resistance R of an antenna is defined by the relation 

R =CP i r r (1) 

where C is the reciprocal of the squared amplitude II* of the current Re /e - iwt feeding the antenna 
and Pin is the irreversible part of the time-average real power P emi tted by the antenna. Accord­
ingly, the problem of calc ulating radiation resistance amounts to the problem of calculating from a 
knowle dge of the a ntenna current density Re J(r)e- iwt the irreversible part of P. 

It is well known that the power P is give n by 

P =-~ Re J J *(r ) . Eout(r)dV (2) 

where the integration extends throughout the volume occ upied by the antenna curren t and E out 

denotes the electric vector of the outgoing wave generated by the antenna. However, it has not 
been recognized that P generally has not only an irreversible part Pirr but also a reversible part 
P rev as displayed by the relation 

(3) 

Indeed, the ques tion of reversibility and irreversibility has never before been rai sed in thi s connec­
tion. This is perhaps due to the fact that the dual nature of P may be overlooked in certain special 
c ases without affecting the value of the radiation resis tance. For example, when the antenna is 
in vac uum or in a s imple lossless unbounded medium P rev is ide ntically zero a nd he nce the conven­
tional de finition R = CP is indi stinguishable from our definition (1). On the other hand, in the 
case where the ambient medium is a lossless, homogeneo us, unbounded gyroelectric medium - the 
very case we are presently interes ted in - P rev is not necessarily identically zero and consequently 
the operation of finding the irreversible part of P is a crucial step in the calculation. 

Our proble m, therefore, is to extract from P an explicit expression for Pirr involving th e an­
tenna current de nsity J(r) and the dyadic Green's fun ction of the gyroelec tric medium. 

3. Time-Reversal Transformation 

Since the anisotropy of the gyroelectric medium which surrounds the antenna is produced by 
a magne tostatic biasing field , the reversal of time must be accompanied by the reversal of the 
biasing fi eld if Maxwell's equations are to be covariant under the time-reversal transformation. 
Formally, the time-reversal transformation may be thought of as a tra nsformation from a ref­
erence frame K with space coordinates x, y, z, time coordinate t , and biasing field B o, to a reference 
frame K' with the same space coordinates, but with time coordinate t', and biasing fi eld B~_ In 

transforming from K to K ' the space coordinates re main unchanged whereas the time and the 
biasing field transform according to the rule 

t~t'=-t, Bo~ B~ =- Bo ' (4) 

Since the microscopic Maxwell-Lorentz equations are known to be covariant under this trans­
formation, we demand that the macroscopic Maxwell's equations for a lossless gyroelectric medium 
be likewise covariant. Using the conve ntion that primed quantities are referred to K' and un­
primed ones to K, we display this covariance by stating that in K we have 

'V X H (r) = J(r) - iWE(Bo) . E (r) , 'V . E(Bo) . E (r ) = p(r) 

'V X E(r) = iWJLoH(r) , 'V . H (r ) = 0 (5) 
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and in K' we have 

\7 X H'(r)= J' (r )- iWE(B~) . E '(r ), \7 . E(B~)· E '(r ) = p' (r) 

\7 X E'(r ) = iW/LoH' (r ), \7 . H '(r) = O. (6) 

It follows from the covarian ce of these macrosco pic Maxwell equations that the field and source 
quantities in K are rela ted to those in K' by the tran sformations: 

E (r) = E' *(r) , H(r) =- H '*(r) , J(r) = -J'*(r) 

p(r) = p' *(r), (7) 

We can verify that the above transformation law for the dielec tri c te nsor is indeed obeyed when 
B~=- Bo, by recalling th at the dielectric tensor of a lossless gyroelectric medium has the property 

E(Bo) = E*(- Bo). 

The physical signifi cance of these transformations (7) may be more easily appreciated in the 
time doma in. For example, in the case of the elec tri c vecto r we have 

E'(r, t') = R e E '(r) e- iwt' = R e E*(r) eiwt = R e E(r) e- iwl= E(r, t) (8) 

or 

E '(r , - t) = E(r, t ) (9) 

which shows th at the past and the future of an elec tri c field are th e same. Similarly the pas t 
and the future of any of the source or field quantities (except for minus signs) a re the same. It 
is also revealing to consider Poynting's vector. If by S' and S we de note the complex P oynting 
vector in K' a nd K, respectively , we have the tran sformation rule 

S' = 1. E'(r) X H' *(r) =- .!E*(r) X H(r) =- S* 
2 2 (10) 

whose real part yields 

Re S' =- Re S. (11) 

Thus we see that the real part of Poynting's vec tor chan ges sign under time-reversal. 
Up to the present point of our di scussion it appears that in a lossless gyroelectric medium the 

electromagnetic fi eld and the real part of th e co mplex Poynting's vector are co mple tely reversible. 
To answer the ques tion of whe re the irre versibility co mes from we must reme mbe r that the field s 
we have been exa mining are total field s and that Maxwell's equati ons actually permit two in­
dep end ent wave solutions, one representing an outgo ing wave E out. and th e other an in co ming wave 
E in . In th e tim e domain the two indepe nde nt solution s are the re tarded and the advanced wave, 
whi ch are related to E out and E in by 

Erct(r, t) = Re E out(r) e- iwt 

(12) 

1315 

-- - - --------



in K, and by 

(13) 

in K I. Since Eret(r , t) = E~dJr, t '), it follows from (12) and (13) and similar equations for the 
magnetic fields that 

(14) 

Relations (14) show that an outgoing wave in K transform s into an inco ming wave in K' and vice 
versa. 

To interpret the result in (14) in terms of Poynting's vector we denote the complex Poynting 

vectors of the outgoing and incoming waves in K by SOUl and Sin, and in K' by S~ut and S~n' respec· 
tively, and note that the transformations 

S - !E () H * ( )-- !E'*() H' _-S'* out - 2 out r X out r - 2 in r X in - in 

S - !E () H*( )-- !E'*() 1-1' ( )_-S'* in - 2 iri r X in r - 2 out r X a-"oUI r - out (15) 

lead to 

(16) 

This equation demonstrates that the combination Re(Sout - Sin) is irreversible and Re(SOUI + Sin) 
is reversible under the time reversal transformation (4). 

From the complex Poynting's vector theorem, which in the present case of a lossless gyro­
electric medium has the form 

'V . (E X H*)=- J * . E + iWlLoH· H * - iwE . E(Bo)· E t, (17) 

we get 

Re'V . (E X H*)=- Re J * . E (18) 

which on integration yields 

Re J n' Sda=- 4 Re J J *(r) . E(r) dV (19) 

where the volume integration extends throughout the volume occupied by the current and the 
surface integral extends over any closed surface with outward normal n, enclosing the current. 
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Applying this relation (19) to Sout and Sin we obtain the relations 

Re J n' Sout da =- ~ Re J J *(r) . E out(r ) dV 

R e J n . Sin da = - ~: Re J J*(r) . Ein(r) dV 

whose difference and sum yield 

Since by (16) Re(Sout - Sin) is irreversible and Re(Sout + Sin) is reversible, we see from (21) that 

Re J J *(r) . [Eout(r) - Ein(r)] dV , 

expresses irre ver s ible power a nd 

Re J J *(r ) . [Eout(r) + Ein(r )] dV 

(20) 

(21) 

(22) 

(23) 

expresses rever sible power. The irrever sibility of (22) a nd the reversibility of (23) ca n also be 
made e vide nt by submitting the m to the fi eld tra nsformati ons of (14) a nd the curre nt de nsity tra ns­
fo rm ation of (7). 

Recallin g ex press ion (2) for P a nd usin g the aJgebraic ide ntit y 

we find th a t 

P=-~ Re J J *(r ) . [Eout( l') - Ein(r )] dV 

- ~ Re J J *(r ) . [Eout(r ) + Ein(r )] dV. 

(24) 

(25) 

Thu s we split P into its irreversible part (firs t term on right) a nd its reve rs ible part (second term 
on ri ght). 

Co nseque ntly we can write 

where P in and P rev are given by 

or eq ui vale ntl y by 

P in = - ~ Re J J *(r ) . [Eout(r ) - E in(r)] dV 

Prev = - ~ Re J J *(r ) . [Eout(r ) + Ein(r)] dV 

P irr = ~ Re J n . (Sout - S in) cia 

Prev = ~Re J n . (Sout + S in) cia. 

(26) 

(27) 

(28) 

(29) 

(30) 

To find Pin we mu st use either expression (27) or expression (29). T hese ex pressions are note­
worth y because they place in evide nce the necessity of includin g the incoming fi eld or the in co ming 
P oynting's vec tor. 
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4. Regular Behavior of the Difference Field 

Since we have 

p = P irr + P rev (31) 

and since P is not free from si ngularit y [Staras, 1964; Weil and Walsh, 1965], the question of how 
the possi ble singularity in P is distributed between the terms Pirr and P rev arises. Clearly, to 
answer this query one examines expressions (27) and (28) for Pirr and P rev' Here we make the 
reasonable ass umption that the volume integral of J itself is bounded , and therefore the deter­
mining quantities to be examined are the difference field E out - E in , and the sum field E out + E in • 

We know that E out and E in satisfy the same differential equation, i.e., 

(32) 

(33) 

However , at infinity the boundary condition on E out is different from the boundary condition on 
E in , and therefore E out and E in cannot be the same function. 

Taking the difference of (32) and (33) we obtain the homogeneous equation for the difference 
field 

(34) 

which holds everywhere. This equation implies that E out - E in is free from singularity. Using 
thi s res ult and recalling that E out 0/= E in, we see from (27) that Pirr is finit e. 

On the other hand, taking the sum of (32) and (33) we see that the sum fi eld sati sfi es the in· 
homogeneous equation 

(35) 

which exhibits the singular behavior of the sum field. Since it is the s um field that carries the 
singularit y, we see from (28) that the singularity appears in P rev' 

5. Irreversible Power in Terms of the Dyadic Green's Function 

To reduce expression (27) for the irreversible power to a simpler computational form we intro' 
duce the dyadic Green's fun ctions which relate E out and E in to the source c urrent density J. 

From the lin earity of Maxwell's equations we can write 

E out(r, ± B o) = iW{Lo f r out(r , r ', ± Bo)' J (r') dV' (36) 

(37) 

where r out and r in are the dyadic Green's functions which satisfy 

'V X 'V X r out(± Bo)- w2 {LoE(± B o) . r out(± Bo) = uo(r - r ') (38) 

(39) 
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where u= unit dyadic . Although I' out and I' in s ati s fy th e sam e diffe re nti a l equation, they a re not 
identi cally equal because the y mu s t sati sfy different boundary condition s a t infinit y. Sin ce 
f(- Bo) = f*(Bo) we find by tak ing the co nju ga te co mplex of (39) th at 

(40) 

Comparing (38) with (40) we see that I' OUI(± Bo) and I' i'~(+ Bo) sati sfy th e same e quation. In the 

special case wh ere Bo = 0 we kn ow that I' out = I'~" and thus we conclude that 

I' ~r;,(+ Bo) = I' Olll(± Bo) (41) 

hold s for all values of Bo. 
With the a id of rela ti on (41) we obtain from (36) and (37) the following ex pression for the 

diffe rence fi e ld: 

E 01l1(I', B o) - Ein(r , Bo) = iW{Lo J [I'out(r, 1" , Bo) - I' ~~I (1' , 1" , - Bo)] . J( .. ')dV'. (42) 

S ubstituting thi s ex press ion int o (27) we see that the irreve rs ible powe r is g ive n by 

Pin' = w:o 1m J J *(r ) . [I' Olll(r, 1" , Bo) - I' :;~I (I" I" , - Bo)] . J(r ') dV dV' . (43) 

To simplify further thi s rela ti on we not e tha t 

r olll(Bo) - I' :;~I(- B o) = Re [I' olll(Bo) - r OUI(- B o)] + i 1m [rolll(Bo) + I' OUI(- B o)] (44) 

and accordingly writ e Pin in th e followin g form 

P in,= w:o Re J J *(1') . 1m [I' Olll( r , 1" , B o) + I' Olll(r, 1" , - B o) ] . J (r ') dVdV ' 

+ w:o 1m J J *(1') . Re[I' ollt( r , 1" , B o) - I' Olll(r,r ', - Bo)] . J (1" ) dVdV'. (45) 

Thi s is the desired expression for th e irreve rs ibl e power. It shows that from a knowle dge of J 
and I' oul we can find Pin', and from a knowledge of Pin we can find in turn the radiation resis tance 
by th e formula R = CP in,. 

For the sake of comple teness , we also include the express ion for th e reversible power: 

P rev = w:o 1m J J *(1') . Re [I' Olll(r , 1" , Bo) + I' Olll(r , 1" , - Bo)] . J (r ') dVdV' 

+ w:o Re J J *(1') . 1m [I' oUI( r , 1" , Bo) - I' Olll(r , 1" , - Bo)] . J (1") dVdV' . (46) 

6. Dipole Antenna 

Let us now cons ider the case of a dipole antenna in a gy roe lec tri c medium. For a dipol e 
ant e nna situ ated at the origin of the coordinates we have 

J (r)=- iwp8 (r ). (47) 
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Substituting this expression into (45) we see that the irreversible power radiated by the dipole is 
given by 

W3/.4J 
Pirr =-4- P . 1m [r out(O , 0, Bo)+r out(O, O,- Bo)]' p (48) 

whic h is clearly an even function of the biasing field Bo as it s hould be. 
If we had used expression (2), as one would do in the conventional method, we would have 

obtained 

W 3 p.,o 
P = -2- p' 1m r out(O, 0, Bo)' p. (49) 

Evidently expressions (48) and (49) are different. However, in the extreme cases where Bo = ° 
(isotropic media) or where Bo = 00 (uniaxial crystals), the conventional expression (49) becomes 
identically equal to our expression (48). Hence, when Bo = 00 or when Bo = 0, it is permissible 
to use expression (49) for the calculation of the radiation resi s tance [Kogelnik , 1960; Kuehl, 1962], 
but otherwise it is not. When Bo has a finite value, expression (49) cannot be used for this purpose 
because it does not represent irreversible power. When Bo is finit e one must use expression (48). 

7. Conclusions 

From the above discussion we can draw the following conclusions. For an antenna in a gyro· 
electric medium, the time average power P e mitted by the antenna has an irreversible part Pi .... 
and a reversible part Prevo The irreversible part of the power does not change sign under the time­
reversal transformation and hence represents the time-average real power that is absorbed by the 
sphere at infinity; the reversible part of the power, on the other hand , changes sign under the time­
reversal transformation and accordingly has the nature of reactive power. When the biasing field 
Bo is zero or infinite Prey is identically zero, and there is no differe nce between P and Pirro How­
ever, for finite values of Bo there is a profound difference. This means that for finite values of 

Bo the radiation resistance R, which is a measure of the power absorbed by the sphere at infinity, 
must involve only the irreversible part of the power. 

Although the resulting electromagnetic field of an antenna in a gyroelectric medi urn consis ts 
of only the outwardly moving wave, it is expedient to introduce the inwardly moving wave because 
the difference of the outgoing and incoming waves yields Pir!' and their sum yields p .. ev . More­
over, consideration of the difference and sum field s shows that Pirr is free from singularity, whereas 
Prey is not. 

By means of the dyadic Green's function the explicit representations of Pirr and P rev take a 
parti cularly simple form. Indeed, th ey require only a knowledge of two dyadic Green's functions, 
one of which can be obtained from the other by reversing the s ign of the biasing field. 

The authors express their thanks to the Air Force Office of Scientific Research of the Office 
of Aerospace Research for their s upport of thi s research under Contract AF49(638)-1266. 
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