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Precision Method for Evaluating Primary Aberrations
of Lenses With a Twyman Interferometer

James B. Saunders

(May 21, 1965)

A simplified procedure for separate evaluation of the three primary aberrations of lenses with the

Twyman lens testing interferometer is described.

of reference points that give best results.
in the literature.

Each of the aberration coefficients is found to be a
function of observations at only four points on the lens.

Equations are given for the optimum choice

These equations are applied to data previously reported
The results indicate that this procedure is sufficiently precise to reveal high order

aberrations in a lens that was assumed to be practically free from such aberrations.
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1. Introduction

The formula for optical path difference in the
Twyman lens testing interferometer, used by Pro-
fessor Kingslake, contains seven parameters. [t
would seem that data from seven reference points
would be necessary for evaluating any one of the
parameters. By judiciously choosing the location of
the reference points each of the primary monochro-
matic aberrations may be evaluated from data taken
at only four points. It will be shown that the results
obtained from four points, with a given lens, are of the
same order of accuracy as those previously obtained,
by least squares, from 44 points. This represents a
very large reduction in computations.

Each of the primary monochromatic aberrations is
separately evaluated. The results indicate that the
sensitivity of the Twyman interferometer is sufficient,
not only to measure the aberration coefficients ac-
curately, but also to measure changes in these aber-
rations with changes in the aperture of the lens.

The discovery that four properly chosen points are
adequate for evaluation of each aberration coefficient
with the Twyman interferometer was the result of an
anologous discovery that two points are adequate for
the same measurements with the Kosters prism inter-
ferometer.

2. Fundamental Equations

The terminology previously used by Kingslake ' will
be used in this paper. The data which he obtained

with a simple lens ? will be used for demonstration of

the procedures described here. This lens was as-
sumed to be practically free from higher order aber-
rations over the aperture used for obtaining results.

1R. Kingslake, The interferometer patterns due to the primary aberrations, Trans. Opt.
Soc. 27, 94 (1925-6).
2 R. Kingslake, The analysis of an interferogram, Trans. Opt. Soc. 28, 1 (1926-7).

The formula for optical path difference is
A(x®+ y%)2 + By(x? + y?) + C(x2 + 3y?)
+D2+y)+Ey+Fx+G=p (1)
where 4, B, and C represent, respectively, coefficients
of spherical aberration, coma, and astigmatism.

These coefficients are related to the aberration con-
stants, ai, a», and a3, by the equations,

Longitudinal (primary)
spherical aberration

4<A =di— Szﬁ
___coma (2)
fB/h=ay= “oh
distance between focal lines
2f2C/h2=a3= oh?

where s is half the aperture of the lens, A is the image
distance from the optic axis and fis the distance from
the image to the back surface of the lens. The xy-
rectangular coordinate system, used in eq (1), is chosen
so that the xyplane is in the principal plane of the
lens —with the y-axis in the meridional plane. The
origin is on the optic axis of the lens. The coeflicients,
D, E, F, and G relate to adjustments of the interferom-
eter. The order of interference is G, at the origin
(on the axis of the lens), and is p at any point (x, y).

Figure 1 shows a photograph of the interferogram
used by Kingslake in footnote 2. This interferogram
contains the effects of any and all aberrations that
are associated with this lens when it is used in the
manner described. If this interferogram should con-
tain higher order aberrations, eq (1) could not repre-
sent the fringes. The parameters, A, B, and C would
be found to vary with the aperture of the lens; whereas,
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FIGURE 1. [Interference fringes of a simple ophthalmic lens as seen

in a Twyman lens testing interferometer.
The inscribed circle represents the “useful aperture of the lens.” This area was pre-
viously assumed to be practically free from higher order aberrations.  The (+) and (—) signs,
about the margin, represent regions of positive and negative orders of interference.

if the lens is free from higher order aberrations these
parameters would be independent of lens aperture
and, therefore, also independent of the location of the
chosen reference points.

The family of curves in figure 2 represents the inter-
ferogram of a lens that is absolutely free from higher

order aberrations. These curves (fringes) are com-
puted from eq (1) and represent the area inside the
circle in figure 1. The values for the parameters are
those obtained by Kingslake (see footnote 2). Each
curve corresponds to an integral order of interference
(integral value for p).

3. Choice of Reference Points

Data from a family of at least four reference points
are required to obtain a unique value for each of the
aberration coefficients, 4, B, and C in eq (1). The
relative distribution of these points (fig. 3) can be so
chosen that when the observed data (values for «x, v,
and p) at four points are substituted for their counter-
parts in eq (1), the resultant four equations will permit
the elimination of all parameters except the one de-
sired. There are many different arrangements of
these four reference points that will permit solutions
of the aberration parameters. Preliminary study
showed that, in each case, one such arrangement of
points could be found that yields optimum accuracy.
Therefore, only one arrangement of points will be
given here for evaluating each of the three aberration
parameters. These arrangements are those which
give optimum accuracy.

-~

FIGURE 2. Graphical representation of computed fringes inside
the circle of figure 1.
These curves were computed from the optical path difference formula (eq (1)) for a lens
that contains only primary aberrations.
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4. Astigmatism

If we draw a circle of radius r, with its center at
the origin, in figure 3, it will intersect the coordinate
axes at (r, 0) (0, r), (—r, 0), and (0, —r). If we choose
these four points in the interferogram of figure 1, we
may evaluate the parameter C from data observed at
these points.

The observed data are the orders of interference,
p, and the coordinates, x and y, at the four reference
points. The data, labeled (x1, y1, p1), (x2, y2. p2),
(x3, v3, ps), and (x4, ys, ps), may be considered as the
coordinates in a three dimension rectangular coordi-
nate system. We get optimum accuracy when the
following relationships exist between the x and y
coordinates:

On substituting these values in eq (1), successively
for the four points, we obtain the following four
equations:

A+ PCHPRD +iF +G=p,
PA+PB+3rC+ 12D +rE +G=p,
A+ PC+rD —iF +G=p, ©
PA—rB+3rC+ 1D —rE  +G=p,

If we add the first equation in 3 to the third and the
second to the fourth, we obtain,

24r*+2Cr+2Dr*+2G=p,+ps
' 4)

By subtracting the first member equation of 4 from
the second member we obtain

4Cr*=pz~+ps—p1—ps. ©)

Values for x and vy, along the two axes, are given by
Kingslake for integral values of p. These values are
represented graphically in figure 4. The values for
the p’s in table 1 are interpolated from figure 4. When
the p’s, that correspond to any chosen value for r,
are substituted in eq (5) we obtain corresponding values
for C. These values are given in column 6, table 1.
The probable error in C is given in column 7 as AC,
and is based on the assumption that the probable
error in a single observation is the same as that ob-
tained by Kingslake. The probable error, AP, of a
single observation was found to be 0.013\. Values
for C are plotted in figure 5 as ordinates for corre-
sponding values of r as abscissas. The magnitude of
the probable error, AC, is represented by the length
of arrows attached to the corresponding points. Ob-
viously, the most precise value for C is obtained by
using large values for r.
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TABLE 1. Value for astigmatism, C, and probable error, AC, (in
wavelength) for different lens apertures (in millimeters)
Radius Orders of interference Coefhicient of
vector astigmatism
r P P2 Ps P+ (6 AC
1 —0.48 =0!63 0.48 0.68 1.250 0.650
2 —.96 = Il1f7 .96 1532 0.938 .163
3 —1.43 =461 1.46 2.04 1.111 072
4 —1.89 = 1107 1.97 2.74 1.078 041
5 =S 2A55 =2:20 2.47 3.41 1.090 .026
6 =280 =208 2.98 1.04 1.097 .018
7 =3525! =VLI 3.52 1.60 1.112 .013
8 =L =1L 4.06 5.08 1.133 .010
9 =415 =159 4.58 5.45 1.142 .008
10 —4.61 =053 o3 5.74 1.173 .007
11 —5.13 + .48 5.60 5.86 1.200 .005

Since the fringes in figure 2 are precisely repre-
sented by eq (1), the values of the corresponding
parameters should be independent of the choice of
reference points. The value for C (labeled Cy in fig. 5)
obtained from any family of four reference points in
figure 2 will be the same as that found by Kingslake
because this value was used for computing these
curves. The corresponding probable error in Cy
(i.e., ACy) given by Kingslake is also indicated in figure
5 to illustrate the relative probable error for results
obtained from four favorably chosen reference points
and from 44 reference points treated statistically by
the Method of Least Squares. Since the coeflicient,
C, varies with r (i.e., from one family of reference
points to another) eq (1) obviously does not apply to
the fringe pattern of figure 1. The lens that produced
this set of fringes is obviously afflicted with higher
order aberrations.
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FIGURE 5. Values of the coefficient of astigmatism, C, versus semi-
aperture, t, of the lens.
The vertical arrows represent computed probable errors in C. The horizontal dashed
line represents the value for C obtained from figure 2 and given in footnote 2.

5. Coma

Coma cannot be evaluated from a family of reference
points that are all equally distant from the origin, as
is the case for astigmatism. However, if we choose a
family of four points on the y-axis (fig. 3) made up of
two pairs such that the two points of each pair are
equally distant from the origin but of opposite sign,
then we can obtain an equation for B as a function
of the coordinates of these four points. If the ordi-
nates of the inner pair of points are one half the value
of those for the outer points and the outer points are
near the margin of the lens the resultant value for B
will be the most precise value obtainable from any
family of four points. The marginal point should be
far enough from the margin to permit an accurate
evaluation of the corresponding order of interference.

The observed x, ¥, p-coordinates for the four points
are (X2, Y2, p2)’ (x5, Y5, Ps), (XG, Y6, ps)a and (.X4, Y4, p4)’
where

x2=2x5=x6=2x4=0
y2=2y5:—2y6:—y4=r
We may substitute the coordinates for each of these
four points into eq (1) and obtain four equations, from
which we may obtain the following formula for B:
3I3B: 2(p2 — P4 F 2p6_ 2p5)
If we compute values for B that correspond to dif-

ferent values of r (i.e., for different apertures of the
lens) we obtain the results shown in figure 6. The
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Figure 6. Values of the coefficients of coma, B (on the left) and
spherical aberration, A (on the right) versus the semiaperture,
1, of the lens.

The vertical arrows represent computed probable errors. The horizontal, dashed lines

represent values obtained from figure 2 and given in footnote 2.
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probable error, AB, of B (based on the same assump-
tions used for obtaining A C, above) is indicated by the
vertical arrows attached to the corresponding points.
The value of B, computed from figure 2, (indicated
as By in fig. 5), is constant for all families of reference
points. This value for Bx is the same as that given
by Kingslake for the same lens.

6. Spherical Aberration

Spherical aberration cannot be evaluated from a
family of reference points that are equally distant
from the origin, as is the case for astigmatism; nor
can it be evaluated from a family of four points on the
y-axis, as is the case for coma. However, if we choose
a family of four points on the x-axis, made up of two
pairs such that the two points of each pair are equally
distant from some convenient point, xo (see fig. 3)
but in opposite directions from x,, then we can obtain
an equation for 4 as a function of the coordinates of
these four points alone. Also, if the distance from
xo to each of the inner pair of points (x; and xg) are
one-half the value of those for the outer points (x;
and xy), and the outermost point, x;, is near the mar-
gin of the lens, the resultant value for 4 will be the
most precise value obtainable from any such family
of points.

The x, y, p-coordinates of the four points are (xi,
Y1, Pl)’ (X7, Y7, 1)7)7 (xﬁﬁ Y8, [)8)3 and (x9’ Yo, p!'))a Where

X1:(B/S)X7:4X():_8.XB=_2.X9= r,

N=y1=%=y8=¥=0

This family of points has the same relationship to
xo as the family of points in eq (5) has to the origin
(optic axis).

On successively substituting the coordinates of
these four points into eq (1) we obtain four equations
from which we may obtain the following formula for 4:

81A4r*=128[p1 — py+ 2(ps — p7)]-

Values for A, computed for different values of r (i.e.,
for different apertures) are shown in figure 6, together
with the corresponding probable errors, AA. The
value for A, computed from figure 2 (indicated as Ax
in fig. 6), is constant for all values of r. The value
Ak is that given by Kingslake for the same lens.

7. Conclusions

The method for obtaining the coefficients of primary,
monochromatic aberrations, described here, requires
a very small amount of calculations. A 10-in. slide
rule is adequate for most work.

The coefhcients of all three of the aberrations are
found to vary with the aperture of the lens. This in-
dicated that the method is sufficiently precise to eval-
uate even higher orders of aberrations provided the
necessary formula for optical path difference is
available.

(Paper 69C4—205)
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