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The use of n equal resistors (a) in series and (b) in para llel provides a n n2 : 1 ratio of 
potentially high acc uracy. Such devices are importan t for extending t he use of t he national 
one-ohm standard to t he hundred-ohm, and thence to the 10 ODD-ohm, level. 

Formulas are derived for t he error in t he ratio, expressed (a) in t erms of de ign tolera nce, 
and (b) in terms of first-order residual misadj ustments which combine to yield the second
order error of t he ratio. 

It seems feasible to construct a 1: 100 ohm bu ild up device with a ratio un certa inty of 
less than. 1 in 108. 

The use of n equal resistors (a) in series and (b) in 
parallel provides an n2 : 1 ratio of potentially high 
accuracy. Such devices are important for extending 
the use of the nationall-Q standard to the 100-Q, and 
thence to the 10 OOO-Q level. 

The first stage of this s tep-up invol\Tes the use of 
ten 10-ohm resistors, which must be four-terminal 
resistors to avoid large errors due to the connecting 
networks. 

H amon 1 has described an arrangement of four
terminal resistors permftnently connected in series, 
and convertible to a parallel connection by adding 
jumpers. In t hat paper, he shows the use of com
pensating resis tors in the poten tiftlleads to eliminate 
errors introduced by t he added connections. 

Compensated lead "fans" mfty be used for the 
potential terminals of the paralleled resistors, for the 
current terminals, or for both. The aim of the 
present paper is to pres en t a complete analysis of the 
general case, and formula s for the errors introduced 
by imperfectly compensated fans. 

1 B. V . H amon , A 100f) build-up resistor for the calibration of stalldard resistors, 
J. Sci. Instr. 31, 450-453 (Dec. 1954) . 

We consider four-termin ftl resistors connected in 
series by means of "tetrahedr al" junctions, having 
the equivalent circuit shown in fio'ure 1. Each junc
tion supplies curren t and potential leads. This array 
can be cOlwer ted to a parallel connection by adding 
four "terminal fans, " as in figure 2. For analysis, 
t he junction resistances can be considered as ab
sorbed in the fall-conductor resistances. The prob
lem is to Jnttke the four-terminal resistance of the 
combination precisely equal to Nln. If the resist
ances of the various arms of the current fan are 
adjust.ed to make each main resistor (R ) carry iden
tical current, the corresponding ,-oltage drops will 
be iden tical and there will be DO circulating current 
in the potential fans, and t he potential across 111- 112 

will be independent or the resistances of the potential 
IcLUs, and equctl to IR/n. This requires that each 
arm of the current [an on the left ha,' e t he same 
resistance, say r, except for the top and bottom arms, 
each of which feeds only one main resistor. These 
end arms must have the resistance 21'. For the 
right-hand current fan, each arm must have the 
same resistance, say r' . The reciprocity theorem 
leads to the conclusion that if we use these com
pensated fans as potential fans, the four-terminal 

FIGURE 1 
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FIG URE 2 

resistance would be B in, independent of the current
fan resistances. Since the potential fans can tolerate 
larger resistance than can the CUlTent fans, the 
compensation is usually made in t he potential fans; 
resistances of several tenths of an ohm can be added 
to the arms, allowing adj ustment to reasonable 
accuracy. 

M aking either set of fans perfect yields zero error. 
This suggests that the overall error is in the nature 
of a product of fan errors, and suggests the possibility 
of reducing the effect of residual potential fan errors 
by making at least a rough adjustment of the current 
fan. For analysis, we consider four perfectly com
pensated fans as a nominal condition, with arbitrary 
maladjustments allowed in each arm. In addition 
each main resistor is allowed a departure from 
nominal. 

The complete circuit to be analyzed is shown in 
figure 3, where the labels indicate conductance rather 
than resistance. Capital letters indicate "average" 
values, i.e., 

Considering terminal G as the "ground" terminal, 
we have a network possessing three external nodes, 
and (n+ 1) internal nodes. A complete description 
of the network requires 3 + (n+ 1) simultaneous 
equations, and we must eliminate the last n+ 1. 

If we impress currents Ir, In , IIll into the external 
nodes, and II , 12 .. . I n+1 into the intern al nodes, 
the voltages on these nodes are implied by the 
simultaneous equations: 

(1) 

These equations are conveniently symbolized by the 
matric equation 

I = YV (2) 

where I and V are column vectors (each having n + 4 
components), and Y is an (n+ 4) X (n+4) square 
matrix. 

Consider I r, In, and IIll as components of an 
"external" current vector, I e, and I I .. . I n+1 as 
components of an " internal" current vector, I i; 
similarly consider "external" and "internal"unknown 
voltage vectors, V . and V i. Grouping the terms 
appropriately: 

I .=a V.+f1Vi 

Ii=~V.+'YVi (3) 
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where a is a 3 X 3 matrix, /3 is a 3 X (n + l) matrix, ~ 
is its transpose, and I' is an (n + l) X (n + l ) matrix. 
In other words, the matrix is partitioned: 

1=(; ~) V. (4) 

Since we are interested in knowing the external 
voltage with no impressed internal current, we must 
eliminate Vi from 

finding 

I e=a V.+!3Vi 

O= SVe+rVi 

l e=(a-/3'Y-1h)Ve 

Ve= (a-/3'Y- 1h)-lI e. 

This last eqnation can be written as 

ZI2 Z13] 
Z22 Z23 

Z32 Z33 

(5) 

(6) 

(7) 

The required four-terminall'esistance is the transfer 
resistance (Vu- VIII) ! lr under the condition Iu= 
Im= O, hence 

The problem is to caITY out all the indicated 
algebraic manipulations, wiLh all resis tors subj ect 
to arbitrary tolerances. This will be done in an 
appendix, using the followin g strategy. 

First , we carry out the manipulations required 
for (a - /31' -I ~) - I assuming the nominal values of the 
network elements; then, assuming that the de
partures from nominal are small, find the resulting 

correction to the nominal Ro ( = n~) as a series in 

powers of the perturbations. This yields a formula 
for the fractional error as a sum of terms of the 
type gig j; giai, gibi, etc.; aibi, cidi. The terms in
volving the gi (tolerances in the resis tors of the 
series-parallel set) are ordinarily negligible com
pared with the pure measurement-network errors. 
These latter give (from eq (A38 )): 

Error=~ A!B (2 ~ ~+ ~ ~ 
+a5 bs+ +2 a n+ l bn+1) 

AB ... A B 

+i ~ (91 riJ.+C4 d4+ +cn dn) . (9) 
n O+ D 0 D OD ... 0 D 
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Since ~ai= O , etc., this error arises from accidental 
correlation between errors of fan connections to 
common points. The worst case is where half the 
ai have maximum positive error, the other half 
having maximum negative error- and where these 
pair up with the same situation among the bi . 

Normal design would have D= A, B =C, and 
A> >B. Now let the maximum fractional error 
in the voltage fans be E v; in the current fans, Ei. 

The resulting extreme error is 4 ~ EvEi' Reasonable 

estimates are ~= 10 Q, ~= 1 mQ, Ei= 10- t, Ev= 10- 3, 

yielding a maximum error in the series-parallel 
ratio of 4 X 10- 8 . Fractional errors of 10- 5 in the 
main resistors make the gi contributions completely 
negligible. 

The above computation is for maximum error. 
Random pairing of the fan errors gives a much 
smaller expected error. 

The next problem is to adjust the device after it 
has been constructed, and to evaluate the residual 
error. We note that if the current fans are perfect, 
there will be no voltage across any arm of the 
potential fans , hence any voltage across an arm of a 
potential fan is a measure of current-fan errors. 

The potential fans have relatively high resistance, 
so are conveniently "trimmed" on a resistance 
bridge. To adjust the current fans, we can connect 
a microvoltmeter across each potential fan resis tor 
in turn. This essentially measures the deviation 
of the potentials on the internal nodes, from their 
average. The current-fan arms can be filed to 
reduce these voltages to approximately zero . 

In the analysis, we have treated the tetrahedral 
junctions as though their centers were available 
terminals. Any adj ustmen t procedure must take 
cognizance of the fact that these terminals are 
fictitious; any physical connection is separated from 
the tetrahedron center by a low resistance. This 
could cause errors in direct measurement of current
fan resistance. The proposed scheme of measuring 
potential-fan resis tances and voltage drops avoids 
this difficulty, since the potential fans are loaded 
with additional resistance. 

In appendix A, we evaluate these residual adjust
ment errors quantitatively. We find to fu'st order 
that the voltage across the arm B + b3 is given by 

IX 2 a3 I~ 
3 n (A + B ) A , (10) 

and similarly the voltage across A + a3, for current I 
into terminal (II) and out of terminal (III) , is 

(11) 

Comparison with eq (9) yields 

r 
Error= nGt (A + B ) 

(X~WI+X3W3+X5W5+ ' .. + Xn+~Vll+ l) 

+ (C+ D) (X2W2+ X 4W 4+ . .. + X nWn) }. 

(12) 

For a test current of 1 A, the fan tolerances 
assumed before yield voltages of the order 

with 

IX,,2 X 10-5V 

IW",2 X 10-7V 

nGA"'103• 

Note that the larger voltage is generated by the 
current-fan error (under the assumed construction 
tolerances); this should make it feasible to adjust 
the current fan to the next order of magnitude. 

The most sensitive set of measurements for evalu
ating the residual error is probably the set of residual 
adjustment errors; i.e. , the residual potential-fan 
resistance differences and voltage drops. The ap
propriate formula is (from eq (A34)): 

Residual error = 2G{ X 1bdB + X 3b3/B .. 

+ X n+lb n+I/B - X 2C2/C- X 4C4 /C- ... - X ncn/C } 

(13 ) 

where positive X i is associated with node i positive 
with respect to th e appropriate potential terminal. 

Note tha t the measured error q uan ti ties are first
order effects in the network tolerances; the computed 
residual error is a second-order product of these 
terms, so can be reasonably accurately evaluated by 
this procedure. 

There are, of course, additional errors not attrib
utable to the current and potential fan s. The first 
of these arises from the fact that the series resistance 
is not n/G, but is 

yielding a fractional error of only 10- 10 for gt/G", 10- 5 • 

Another source of error lies in the imperfections of 
the tetrahedral i unctions. Under conditions of 
suitable design and proper adjustment procedure, 
these j unctions can be balanced to transfer resist
ances of less than 10-8 Q. In a string of 10-Q 
resis tors, this is then a potential source of error of 
the order of 10- 9• 

It seems feasible, therefore, to construct a 1: 100 Q 
buildup device with a ratio uncertainty of less than 
1 in 108• 
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Appendix A 

The submatrices of equation (4) are 

It. is cOilYellicnt to 

o 
B 
2+ bl + B + ba+ ... 

o 

0 

0 

-(C+ C2) 

~ I 
C+C2+C+C4+ . . . J 

- (A + aa) 0 

-(B + ba) 0 

0 -(C+ C4) 

2G+ 01 +02+ C+C2+ D+ d2 

-(G+ 02) 

dccompose thesc m"tl'ices into A + B 
s ums of nomill<,l valucs and perturbat io ll s : 2 

Let 0 
(3 = (30 + (31 

0 
'Y = r + 'Yo + 'Yl + Y2 (A4) r = 

where 

l 0 

r-A/2 0 -A 0 -A 

0 - B 0 - B (A5) ... 

-(A+ a,) " " "1 
-(BH,) " " "J 

0 .. . 

0 0 

C+D 0 

0 A + B 

'Yo = GS 
(3o = l - : /2 

-C 0 -C 0 "J ... r-: -1 0 0 

2 - 1 0 

0 -1 2 -1 

S = 

r-a1 0 - aa 0 

""J 0 - ba 0 (A6) l - 1 
(31 = l - ob1 .. . 

-C2 0 -C4 0 
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2 

- 1 

0 

0 

0 

A + B 
2 

o 
o 
o 

-:J 

(AI) 

(A2) 

(A3) 

(A7) 

(A S) 



"JT' 
0 0 

c2+d2 0 

0 aa+ ba 

l 0 

r g, 
-gl 0 0 

- gl gl + gz -gz 0 

0 -gz g2+ ga -ga 

1'2= 

l 0 

o 
o 
o 

a n+ l+ bn+1 

0 

0 

0 

gn- I+ gn ~g'J 
- gn gn 

(A9) 

(A 10) 

This yields 

1 
Zo=

n 

l 

.!.+~ 
G D 

2 
D 

l ~ 

l+~ 
G D 

~+.!.+.?. B G D i 1 
2 
D 

2 
D 

2 
D 

2 
D 

~+.?.J C'D 

1 2 1 a+J5·· · 

1 2 
a+J5··· . 

2 J D··· 

(A14) 

(A15) 

These matrices are readily verified by inspection of 
the circuit when the elements have their nominal 
values. 

We write the admittance matrix as the sum of a 
nominal value and a perturbation: 

The matrix Z2 involves the term (r + 'Yo)-1 s tanding 
by itself; we shall eventually need this term and 
shall use a series expansion for it. 

The four-terminal resistance of interest is the 
transfer resistance expressed as Vn - VIII for 1r= 1, 
all other input currents being zero: 

Let 

where 

Zo = (a- {30 (r + 'YO) -l~O) -1 

ZI = - Zo{30(r + 'YO)-1 

(All) 

(A12) 

(A 12a) 

lH(O 1-1)(0 0 ... 01Y- ' r~l · 

ll~ J 

(A16) 

(A12b) In (A16) , we have partitioned the vectors into 
"external" and " internal" vectors, corresponding to 
the partitioning of Y. For the nominal case we find 

(A12c) 

Now (r + 'Yo)-1 is not readily found, but the 
combination (3o(r + 'Yo) - 1 is, from appendix B: R"~ (O 1-1) Z. G)~nlG" (A17) 

(3o(r + 'Yo) -1 = - [1 + 2G(E+ F ) ]-1 

( ( A A A ... ) 12GEF B B B .. . 
\.. C C C .. . 

(E 0 AE 
o .. ) ~ 

+ BoE 0 BE o ... 
CF 0 CF ... ) 

where 
1 1 E=--, F=--· - A + B -C+ D 

(A13) 

We are also interested in the transfer resistances that 
are measured as voltage drops across the potential
fan arms: 

X 1=[(0- 1 0) (1 0 0 . . . O) ]y- I 
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rm 
X 2 = [(0 0-1) (0 1 0 .. . 0)] y -l [Ol 

~J 

G) 
X,~[(O-l 0) (0 0 1 0 •.. O)]Y -' [j 

(A18) 

(1 0 1 O .•• hl=(CLl + b1 

(0 1 0 1 ... hl= (0 

All X ,=O for the nominal case. 
The perturbation from nominal is found by ex

panding y-l in a series (as shown in appendix B for 
(r + 'Yo)-I) : 

to second order in the perturbation. 
Th e algebra will b e alleviated by noting some 

special properties of the matrices fh, 'YJ, and 'Y2: 

(1 0 1 0 . . ' ) ~1 =(0 0 0) 

(0 1 0 1 .. ') ~1 =(0 0 0) (A20) 

0 a3+ b3 0 · .. ) 

c2+d2 0 c4+ d4 · . . ) 

(1 0 1 0 ... h 2= (gl -(gl+ g2) (g2+ g3) · . . ) 

(0 1 0 1 ... h2= (-gl (gl + g2) -(g2+g3) · .. ) . (A21) 

Note that premul tiplication of either 'Yl or'Y2 by either 
(1 0 1 0 ... ) or (0 1 0 1 . . . ), followed by 
postmuit.iplication by either 

1 0 

0 1 

1 0 

0 
or 

1 
results in a null vector. 

Thus from (A12b) and (A13) in conjunction with 
(A20) and (A21), we have the very useful relations: 

Zl'YIZl=O 

Zl'Y2Z1= O. (A22) 

These sim plify the multiplications required by eq 
(A19 ) : 

(A23) 

Note that 

MZ1= Z0{31Z1 + Z 1EZl= O, 

so that 

and finally 

l vlZ. ) 

Z2~IZI + ZI{31Z2+ Z2EZ2 

(A25) 
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( MZ?& MZ2(~lZ l+ E Z2) ) . - (A26) 
- (ZZ E+ ZJ!'11)z2M etc. 

Using these expr essions in (A1 9) yields 

R~ ":'+(0 l - l )MZ,M G) (A27) 

with no first order correction. 
The X i have first order terms: 

X,~- (1 0 0 .. . )Z,M(D 

'1) X,~-(O 1 0 .. . )Z,M ( : 

X,~ -(O 0 1 0 .. . )Z,M (D (A28) 

etc. 
These can be interpreted as the componr,n ts of a 

vector, X: 

(A2 9) 

R=~-(O l - l )MX (A30) 
nG 

as an alternate expression. 
From (A12c ) and (A24) we have 

(A31 ) 

so that 

(A32) 

Now 

g2tg3- 2~3 , . . -} (A33) 

J'\eglecting giG relatjve to biB and c/ O, ,,-e have 

for evaluat ion of error in terms of measured residuals. 

To express R in terms of circuit element tolerances, 
we need to express X: 

X=- (1 0 O)M (r + 'Yo)-l 

=- (1 0 O){ Zo!31 + Zhl+ 'YZ) }( r + 'Yo)-l 

which becomes 

X=! (2a l _~, _ 2d2+g1+g1, 

nAG D G 

~3_g2tg3, .. . ) (r + 'Yo) - l. (A35) 

(r + 'Yo)-l == (r + GS) -I = r - 1-Gr - 1 Sr - 1 

+ G2r - 1Sr - 1Sr - l - • • • • (A 36) 
Now 

2E 0 0 o 
0 F 0 
0 0 E 

r - I = 

o 2E 

and t he successive terms of (A 36) diminish as powers 
of GE and GF, which ar e small compared to unity. 
Hence the first term of (A 36) is sufficien t for our 
purposes, for use in (A35): 

y == ~ (4a 1 _ 2g1 , 0 2a3_g2+g3 , 0 ) 
A nAG ' A G ... 

-f (o, 2~2 _g1tg2, 0, '1/_ g3t g4 , 0 ... ) (A 37) 

and 

R == n1G+ ~{ 2 (2~1_~) (2~1_~) 
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+C~3_g2~ g3) C~3_g2t g3)+ . . . } 

+fz{ (22-gltg2) C;2_gl t gZ) 

+(2~_g3~g4)C~4_gd(/4)+ .. . } . (A38) 



Appendix B 

A power series expansioll yields 

( r + 'Yo)-I= (r + GS)-I = r - 1(1 + GS r - I) - 1 

= r -I(1-GSr - I+ G2Sr- 1Sr- l- .. . ) 

= r -I -Gr-1Sr - l+ G2r - 1Sr- 18r- l- .... 

(Bl) 

.. The series co nverges if the norm of S r - I is less than 
I 1/G. A sufficient co ndition is 

. (,'2 r + D) G< mlll 4 (A+ B), - 2- . 

Premul tiplicn, tion of t he series by (30 yields: 

(3o( r + 'Yo) - 1 = (3or - 1 - G(3or- 1 (Sr - I) 

(B2) 

+ G2.8o r - 1(Sr- 1)2 - . . . . (B 3) 

For convenience, let 

and 

E = - ]-· - , F = _ l _ 
A + B - O+ D 

(B4) 

then 
2E 0 0 

0 F 0 "l 1' - 1= 0 0 E 

2EJ 0 

r-AE 0 - AE 0 

] (301' - 1= - BE 0 - BE 0 ... 

l 0 - CF 0 - rF 

- F 0 0 r 2E 
- 2E 2F - E 0 n - F 2E - F sr-1-1 0 - 0 0 - E 2F J l 0 

"Ve co mpuLe 

f-2AE2 

(301' - I (Sr - I ) = - 2BE2 

l 20EF 

2AEF -2AE2 

2BEF - 2BE2 

- 20P 20EF 

[
- 4AE2(E+ F) 

.801' - I(Sr - 1)2= - 4BE2(E+ F) 

40EF(E+ F) 

4AEF(E+ F) - 4AE2(E + F) 

4BEF(E+ F) -4BE2(E + F) .. 'J. ... 

40EF(E+ F) 

(B5) 

(B6) 

(B7) 

.. 'J ... 

(BS) 

(B9) 

Comparison of (B9) with (BS) shows that continuation) without restriction on Lhe size of G. 
Substitut ing (B6) and (BS) in to (B] 2) ~~icld s 

(3o( r + 'Yo) - 1 =-[1 + 2G(E+ F ) ]- 1 
so that 

(3or- I(Sr- 1)k+1=2k(E + F )k(3or - ISr - 1 (Bl1) 

allowing (B 3) to be evaluated as 

(30 (r + 1'0) -1 = (3or - 1- G(3or -I Sr- 1 

{1- 2G(E+ F )+ 4G2(E+ F )2- . . . } 

G 
= (3o r - 1 1+ 2G(E+ F ) (301' - 1S1' - 1• (B 12) 

We no te t hat the r esult (B12) is valid (by analytic 
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r fA 
~ 2GEF lB 
I 0 , 
[AE 0 

+ B: 
0 

OF 

A A .. ·l 
B B" J 0 0 ... 

AE o .. ·ll 
BE o . . J I" (B13) 

0 CF . . . j 

(P aper 69C3-1 97) 
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