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The use of n equal resistors (a) in series and (b) in parallel provides an n2:1 ratio of

potentially high accuracy.

Such devices are important for extending the use of the national

one-ohm standard to the hundred-ohm, and thence to the 10 000-ohm, level.
Formulas are derived for the error in the ratio, expressed (a) in terms of design tolerance,
and (b) in terms of first-order residual misadjustments which combine to yield the second-

order error of the ratio.

It seems feasible to construct a 1:100 ohm buildup device with a ratio uncertainty of

less than 1 in 108,

The use of n equal resistors (a) in series and (b) in
parallel provides an 7n*:1 ratio of potentially high
accuracy. Such devices are important for extending
the use of the national 1-Q standard to the 100-2, and
thence to the 10 000-2 level.

The first stage of this step-up involves the use of
ten 10-ohm resistors, which must be four-terminal
resistors to avoid large errors due to the connecting
networks.

Hamon ! has described an arrangement of four-
terminal resistors permanently connected in series,
and convertible to a parallel connection by adding
jumpers. In that paper, he shows the use of com-
pensating resistors in the potential leads to eliminate
errors introduced by the added connections.

Compensated lead “fans” may be used for the
potential terminals of the paralleled resistors, for the
current terminals, or for both. The aim of the
present paper is to present a complete analysis of the
general case, and formulas for the errors introduced
by imperfectly compensated fans.

1 B, V. Hamon, A 1002 build-up resistor for the calibration of standard resistors,
J. Sci. Instr. 31, 450-453 (Dec. 1954).

We consider four-terminal resistors connected in
series by means of “tetrahedral” junctions, having
the equivalent circuit shown in figure 1.  Each junc-
tion supplies current and potential leads. 'This array
can be converted to a parallel connection by adding
four “terminal fans,” as in figure 2. For analysis,
the junction resistances can be considered as ab-
sorbed in the fan-conductor resistances. The prob-
lem is to make the four-terminal resistance of the
combination precisely equal to R/n. If the resist-
ances of the various arms of the current fan are
adjusted to make each main resistor (12) carry iden-
tical current, the corresponding voltage drops will
be identical and there will be no circulating current
in the potential fans, and the potential across V,—V,
will be independent of the resistances of the potential
fans, and equal to /R/n. This requires that each
arm of the current fan on the left have the same
resistance, say r, except for the top and bottom arms,
each of which feeds only one main resistor. These
end arms must have the resistance 2r. For the
richt-hand current fan, each arm must have the
same resistance, say 7’. The reciprocity theorem
leads to the conclusion that if we use these com-
pensated fans as potential fans, the four-terminal
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resistance would be R/n, independent of the current-
fan resistances. Since the potential fans can tolerate
larger resistance than can the current fans, the
compensation is usually made in the potential fans;
resistances of several tenths of an ohm can be added
to the arms, allowing adjustment to reasonable
accuracy.

Making either set of fans perfect yields zero error.
This suggests that the overall error is in the nature
of a product of fan errors, and suggests the possibility
of reducing the effect of residual potential fan errors
by making at least a rough adjustment of the current
fan. For analysis, we consider four perfectly com-
pensated fans as a nominal condition, with arbitrary
maladjustments allowed in each arm. In addition
each main resistor is allowed a departure from
nominal.

The complete circuit to be analyzed is shown in
figure 3, where the labels indicate conductance rather
than resistance. Capital letters indicate “average”
values, i.e.,

DN Q=0 0 =8 C,— D8 Ay — D% g, —0"

Considering terminal G as the “eround’” terminal
f=) (=] b

we have a network possessing three external nodes,
and (n-+1) internal nodes. A complete description
of the network requires 3-(n-1) simultaneous
equations, and we must eliminate the last n+-1.

If we impress currents Iy, Iy, I into the external
nodes, and /;, I, . . . I, into the internal nodes,
the voltages on these nodes are implied by the
simultaneous equations:

II:YIIVI+YIIIVII+ ‘i—YIlVL+ +YI7L+1V7L+1

III:YIIIVI+ +YII n+1Vn+1
In+1:Yn+lIVI_I_ +Yn+ln+lvn+l
(1)

These equations are conveniently symbolized by the
matric equation

I=YV (2)

where I and V are column vectors (each having n--4
components), and Y is an (n-+4) X (n+4) square
matrix.

Consider Iy, Iy, and Iy as components of an
“external” current vector, 7, and 7, . .. I, as
components of an “internal” current vector, I
similarly consider ‘“‘external”” and “internal’’unknown
voltage vectors, V, and V. Grouping the terms
appropriately:

1,=aV .48V,

Ii:5V9+7Vi <3)
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Ficure 3

where « is a 33 matrix, 8 is a 3 (n-1) matrix, 8
is its transpose, and v is an (n-+1) X (n-+1) matrix.
In other words, the matrix is partitioned:

a B
z=(_ )v. @
B
Since we are interested in knowing the external

voltage with no impressed internal current, we must
eliminate V; from

I,=aV,+B8V,
0=BV .4V, ()
finding i
I,=(a—By"B)V.
V.=(a—By"'8)"'L.. (6)

This last equation can be written as

Vi 211 212 213 (11
Vi |=) 221 222 22 o | (7)
Vin 231 R32 233 L 1

The required four-terminal resistance is the transfer
resistance (Vy— Viy)/Z; under the condition Iy=
IIIIZO, hence

)

1
R:(S?.l'_'g:;l)E(O, 1,—])5 (O (8)

The problem is to carry out all the indicated
algebraic manipulations, with all resistors subject
to arbitrary tolerances. This will be done in an
appendix, using the following strategy.

First, we carry out the manipulations required
for (a—pBy~'B)~! assuming the nominal values of the
network elements; then, assuming that the de-
partures from nominal are small, find the resulting

. . 1 q .
correction to the nominal R, (:n_G as a series in

powers of the perturbations. This yields a formula
for the fractional error as a sum of terms of the
type gig;; gai, gibi, ete.; ab; cd; The terms in-
volving the ¢; (tolerances in the resistors of the
series-parallel set) are ordinarily negligible com-
pared with the pure measurement-network errors.
These latter give (from eq (A38)):

opet_ G (@b asbs
Error=_——5 (2 Aptan
@ bs @1 b
+L Sy gt b

4 G (ed cd Cndn),
tooro\cntept---ten) ©
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Since Za,=0, etc., this error arises from accidental
correlation between errors of fan connections to
common points. The worst case is where half the
@; have maximum positive error, the other half
having maximum negative error—and where these
pair up with the same situation among the b,.
Normal design would have D=A, B=(C, and
A>>B. Now let the maximum fractional error
in the voltage fans be e¢,; in the current fans, e,.

. . G
The resulting extreme error is 4 — e,e;. Reasonable
= A

estimates are %:10 Q, %:1 mQ, ;=107 ¢,=1073,
yielding a maximum error in the series-parallel
ratio of 4>X107%  Fractional errors of 107° in the
main resistors make the ¢; contributions completely
negligible.

The above computation is for maximum error.
Random pairing of the fan errors gives a much
smaller expected error.

The next problem is to adjust the device after it
has been constructed, and to evaluate the residual
error. We note that if the current fans are perfect,
there will be no voltage across any arm of the
potential fans, hence any voltage across an arm of a
potential fan is a measure of current-fan errors.

The potential fans have relatively high resistance,
so are conveniently ‘“trimmed” on a resistance
bridge. To adjust the current fans, we can connect
a microvoltmeter across each potential fan resistor
in turn. This essentially measures the deviation
of the potentials on the internal nodes, from their
average. The current-fan arms can be filed to
reduce these voltages to approximately zero.

In the analysis, we have treated the tetrahedral
junctions as though their centers were available
terminals. Any adjustment procedure must take
cognizance of the fact that these terminals are
fictitious; any physical connection is separated from
the tetrahedron center by a low resistance. This
could cause errors in direct measurement of current-
fan resistance. The proposed scheme of measuring
potential-fan resistances and voltage drops avoids
this difficulty, since the potential fans are loaded
with additional resistance.

In appendix A, we evaluate these residual adjust-
ment errors quantitatively. We find to first order
that the voltage across the arm B-b; is given by

0L

AT alf

(10)

and similarly the voltage across A--as, for current 1
into terminal (IT) and out of terminal (I1I), is

2 b,

IWs= 5B B

(11)

Comparison with eq (9) yields

Error:n.G{ (44+B)

X W, 3 ) > -
—‘J5+X311/3+X5u AR +A"—+f++l>

H(O+D)Y (XKWt X Wt . .+ X, W) }
(12)

For a test current of 1 A, the fan tolerances
assumed before yield voltages of the order

IX~2X107%V

IW~2X107"V
with
nGA~10°,

Note that the larger voltage is generated by the
current-fan error (under the assumed construction
tolerances); this should make it feasible to adjust
the current fan to the next order of magnitude.

The most sensitive set of measurements for evalu-
ating the residual error is probably the set of residual
adjustment_errors; i.e., the residual potential-fan
resistance differences and voltage drops. The ap-
propriate formula is (from eq (A34)):

Residual error=2G{ X,b,/B-+X:b,/B . . .

+1Yn+1bn+1/]3_ 4Y2C2/(,’Y—— 4‘\7404/(}_ « e — 4\'716"/0}

(13)

where positive .Y, is associated with node 7 positive
with respect to the appropriate potential terminal.

Note that the measured error quantities are first-
order effects in the network tolerances; the computed
residual error is a second-order product of these
terms, so can be reasonably accurately evaluated by
this procedure.

There are, of course, additional errors not attrib-
utable to the current and potential fans. The first
of these arises from the fact that the series resistance
1s not n/@G, but is

) 1 __7L 1 2
B,=2, G+g: G 1+n2g’/G2>

vielding a fractional error of only 107 for g,/G~1075.
Another source of error lies in the imperfections of
the tetrahedral junctions. Under conditions of
suitable design and proper adjustment procedure,
these junctions can be balanced to transfer resist-
ances of less than 10=° Q. In a string of 10-Q
resistors, this is then a potential source of error of
the order of 107°.

It seems feasible, therefore, to construct a 1:100
buildup device with a ratio uncertainty of less than
1in 108
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Appendix A

The submatrices of equation (4) are

—(G+g) - . -

|

20+m+m+A+%+B+%-.J

(A1)

(A2)

0

C+D
0

[é'{‘(l1+41+a3+ cee 0 0 1
“‘*L 0 §—+b1+B+b3+ 0
0 0 CH-c3+-CH-cut- . . J
A ,
—<'§+(lrl> 0 —(A+-as) 0
= B,
’ L—(2+m) 0 —(Bh) 0
0 —(C+c2) 0 —(C+cy)
N A B
[(1+{11+ 5 Tt 5+b —(G+g))
- —(G+g) 2G4+ g1 +-g:+C+e+D+d;
0 —(@+g5)
It is convenient to decompose these matrices into A+ B
sums of nominal values and perturbations: T o
Let 0
B=Bo+P1
0
y=T+v+n+7 (A4) =
where
0
\
—42 0 —-A 0 -4
Bo=y—B2 0 —B 0 —B ...1 (A5
—1 2
0 =il
S: .
— 0 —a3 0
61: _bl 0 —bg 0 P (AG)
L 0 —a 0 —a L 0
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A+B

0 )

0
0

s

2 )

0\
|

= 1)

(A7)

(A8)



("a,+b, 0 0 )
0 Cg+(lg 0
0 0 3+ b 0
=] s , (A9)
q 0 an+1+bn+u
(g —g 00 b
—G GitG2 —Go 0
0 —g GGz —gs
"= : (A10)
gn—1+gn —0n
L 0 —Un Gn )

We write the admittance matrix as the sum of a

nominal value and a perturbation:

Y—(“
By

T+,

Bo

0 B
HE
> B 71ite

This yields
(5+et5 o5 b
2| @b Fratp p | AW
L5 5
s b b
(8 2 3.

These matrices are readily verified by inspection of
the circuit when the elements have their nominal
values.

The matrix Z,involves the term (I'+v,)~! standing
by itself; we shall eventually need this term and
shall use a series expansion for it.

The four-terminal resistance of interest is the
transfer resistance expressed as Vy— Vi for I;=1,
all other input currents being zero:

R=[(0

1—1)© o0..

0]y !

M /1\ ]
0
0
oll

(A16)

=Y, 0 31)- (A11)
B €
Let
FAil — Zo Zi
e ‘(Zl z) -
where
Zy=(a—Bo(T +70) ~'Bo) ™! (A12a)
Zy=—ZBo(T +,) ! (A12b)
2= (D)) ' —(T4v0) 8eZ1.  (Al2c)
Now (I'+7) 7! is not readily found, but the

combination 8,(I'4~,)~" is, from appendix B:

Bo(T+7v0) T'=—[1+2G(E+F)]!
r A A A...
2GEF B B...
proee(s & 52)
AE 0 AE 0 ..\
+<BE BE 0 > & (A13)
0o CF o CF...))
where
E=—1_ p=_"
A+B C+D

[LoJ]
In (A16), we have partitioned the vectors into

“external’” and “internal” vectors, corresponding to
the partitioning of Y.  For the nominal case we find

. 1
0

We are also interested in the transfer resistances that
are measured as voltage drops across the potential-

fan arms:
-1\
()
0

.0)y-tf o

(A17)

X.=[(0—1 0)(1 0

101
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Xo=[(0 0—1)(0 1 0...0)]Y!

All X;=0 for the nominal case.
The perturbation from nominal is found by ex-
panding Y~ in a series (as shown in appendix B for

(T4v0)71):

Y-1=Y;1-Y;? (9 6‘) Ys!
Br e

+Y;1<9 5‘) )1;1(9 B') Yild ... (A19)
By € B1 e

to second order in the perturbation.

— () — - The algebra will be alleviated by noting some
e TG U R special properties of the matrices 8y, v;, and 7.:
(') 101 0..08=0 0 0
T © 1 0 1..)8=0 0 0) (A20)
(A18) | since Za;=Zb;==¢;=0
(1 0 1 0.. .)“/1:((Ir1+b1 0 (1‘34—63 0 . .)
(0 1 0 1.. .)'}’1: (O C2+d2 0 C4+(]4 . )
1T 0 1 0..07v2= (¢ —(g11+92) (g2t gs) -
(0 1 0 1 5 0 .)72: (_.(/1 (g1+g3) —(gg+g3> o .). (A?l)

Note that premultiplication of either v, or+y, by either
1@ o 1 0..)0r (O 1 0 1...), followed by
postmultiplication by either

1Y (0
1
1 0 _
olotl 1 results in a null vector.
oJ o L

Thus from (A12b) and (A13) in conjunction with
(A20) and (A21), we have the very useful relations:

Z,B=0
Z17121:0

ZI'YZZI :0. (A22)

These simplify the multiplications required by eq
(A19):

),_1(0 61)*(Z0 Zl) (0 61)_( 0 2051+Z16)
h [31 € 21 Zz Br € Zzél 2161+Z25

0 M
=" - : (A23)
Z251 AIBI+Z2€
Note that
JIZIZZOﬁIZI_*_ZIGZl:O, ZIJ’?ZO (1\24:)

so that

(%) o, v )
’ Bl € - Zzi"‘[ Z251Z1+2131Z2+Zzézz

(A25)
and finally

e )
R V: P A V- A
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7( .‘[?gl‘[ . Az, (61 1+6~9)) (AQG)
(,3'g€+5161)22:‘1 ete.

Using these expressions in (A19) yields

)
l

G+( 1—1)M/QM< ) (A27)

with no first order correction.
The X, have first order terms:

1

X,=—@1 0 0...)ZJI<0>
0
1

Xo=—(0 1 0...)ZM <0>
0

1

X;=—(@©0 0 1 0.. )ZQA\7<0> (A28)
0

etc.
These can be interpreted as the components of a

vector, X:
1
X=—7,M (0 . (A29)
0
We can now write
, L CNUY .
R =0 0 1—1)MX (A30)
as an alternate expression.
From (A12¢) and (A24) we have
Zs M = (T 4-o) ' M (A31)
so that
1 Al
R=—mt-(0 1—1)M (D) "' (0)- (A32)
0
Now
1 1 2 2
%)
+i 10 1 0..)
G ) ()
G LIH 91+92+~02
G B q G
gatgs_ 25 )
G B (A33)

Neglecting g/@ relative to b/B and ¢/C, we have
.1 2 . 2 . :
R =7171’+7_L b 4\2i+lb2i+l/B_;i > Xoieoi/C (A34)

for evaluation of error in terms of measured residuals.

To express /2 in terms of circuit element tolerances,
we need to express X:

X=—(01 0 0)M(T4y)™!
:—(1 0 0){Z051+Z1(71+72)}(F+70)—1
which becomes
& ?_(1_1_@ _242 (l1+(/1
(S
Bo_0b 0, ) (04w (A3D)

We need (T'+7,)~!; we have

(T +70) '=(I'+GS)"'=T"'—@r-'Sr-!
+GT-'ST-IST— ' — (A36)
Now
(2FE 0 0 0)
0 o0
0 0 k£
g
L 0 QEJ

and the successive terms of (A36) diminish as powers
of GE and GF, which are small compared to unity.

Hence the first term of (A36) is sufficient for our
purposes, for use in (A35):

E 4a1_m 25 _ g2+, ‘
e WO S P ey
2d2 g1 %_(/3‘*‘9’4) > C
(o 0,0, 200880 0. ) (A37)
and
E 2&1_(/_1 201 _gu
nG+ \{ ( B G

+(Ra_ortar) (263 L }
i 202_01+g2> %_grﬁ%)
+n2{< C G

G
+<2c4 932”‘*)(254 9“6:94>+...}~ (A38)
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Appendix B

A power series expansion yields then
: 2 0 0 .0
(T+vo)'=(I'+GS)'=T"1(/4GST1)~! 0 F _
=T1(I—GST '+ G*ST'ST'— . . ) , :
i ) r'=f o 0 E (B5)
=TI !'—@rSr'+G*r-'Sr-iSr-'— . . .. .
(B1) 0 ... 2K
[’~AE 0 —AE 0
The series converges if the norm of ST~ is less than Bl '=| —BL 0 —BE 0 (B6)
1/G. A sufficient condition is 0 —CF 0 —CF
G< min <3f- A+B), t]?) (B2) co —F 00 0
—2F 2F E 0
0 —r 2F —F
Sr-l= : : (B7)
0 0 =1 2F
Premultiplication of the series by g, yields: )
Bo(T—+70) =BT 1 — GBI (ST ™) (') o F
+ @B (ST ) — . ... (B3) - LU
We compute
(—QAIL‘2 2AEF —2AFE?
For convenience, let B THSTY) = —2BE*  2BEF  —2BL
1 1 2CEF —2CF? 2CEF ...
E=arp '=cip (B4) (BS)
and
—4AR*(E+F) 4AEF(E+F) —4AB*(E+F)
Bl "Y(ST~!)?=| —4BE*(E-+F) 4BEF(E+F) —4BE*E+T) (B9)
ACEF(E+F) —4CP*(LE+F) 4CEF(E+F)
Comparison of (B9) with (B8) shows that continuation) without restriction on the size of @.
Substituting (B6) and (B8) into (B12) yields
B (ST )2=2(E+ F)B,I'~1(ST7Y) (B10)
Bo(T+7p) "' =—[1+2G(E+F)]™
so that ,
( A A A.. 1
B (ST-1)-H=2H(E+ F)g,r 8T~ (B11) Yoewrls B 2.

allowing (B3) to be evaluated as

Bo(T+7o) ' =B, '—GBR, L IST !
(1—2G(E+F)+4G*E+F)*— . . .}
e | Tt G ——

1+2G(E+F)

:TB()F_I B()F_ISF‘I. (Bl?)

We note that the result (B12) is valid (by analytic

e e o)

(AE 0 AE 0 Tl
+H{BE 0 BE 0 ... r (B13)
L0 CF o0 CF.. J J

(Paper 69C3-197)

189



	jresv69Cn3p_181
	jresv69Cn3p_182
	jresv69Cn3p_183
	jresv69Cn3p_184
	jresv69Cn3p_185
	jresv69Cn3p_186
	jresv69Cn3p_187
	jresv69Cn3p_188
	jresv69Cn3p_189
	jresv69Cn3p_190

