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Steady-State Heat Conduction in an Exposed
Exterior Column of Rectangular Cross Section
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(February 3, 1965)

This paper presents a mathematical analysis of two-dimensional steady-state heat
conduction in a solid of rectangular cross section, two parallel surfaces of which are exposed
to separate temperature environments with respective surface heat transfer coefficients.
For the other two parallel surfaces, the temperature environment and surface heat transfer
coefficients are assumed to vary as a function of position on these surfaces. A particular
application of this analysis has been to determine the temperature distribution in a trans-
verse cross section of exposed conerete columns.

1. Introduction

Modern architectural treatment of exterior columns of high-rise buildings involves the
use of columns exposed to temperature extremes on the outside face and relatively constant
temperatures on the interior. The temperature extremes give rise to dimensional changes in
the column which can best be determined from temperature distribution in the column. In
connection with a request from the Federal Housing Administration, an investigation was
made for determining the temperature distributions in an exposed exterior column.

This paper presents a mathematical analysis of two-dimensional steady-state heat con-
duction in an exposed exterior column which may be represented by a solid of rectangular
cross section, two parallel surfaces of which are exposed to separate temperature environments
with respective surface heat transfer coefficients. For the other two parallel surfaces, the
temperature environment and surface heat transfer coefficient are assumed to vary as a function
of transverse position on these surfaces.

An analysis for general application is presented, along with the statement and numerical
results for four specific problems.

2. Analysis for General Problem

Because the heat-transfer problem in a rectangular solid may have a more general applica-
tion than that cited in the previous section, the following analysis is based on boundary con-
.ditions, arbitrary in nature, which may be adapted to specific applications. Section 3 presents
the assumed boundary conditions for heat transfer in an exposed exterior column.

For steady-state, two-dimensional heat conduction in a rectangular homogeneous solid
with no flow of heat in the direction of the third dimension, it is assumed that the rate of heat
flow at each of the four boundary surfaces is proportional to the temperature difference be-
tween the temperature of the surface and that of the ambient adjacent to the surface. The
proportionality factor may be prescribed as a function of the distance along the surface. A
.convenient placement of coordinate axes for the type of problem to be considered is as shown
in figure 1, where the boundary conditions at the four surfaces, z= 4/, and y= +a, are shown
adjacent to the surfaces.
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The temperature potentials V' and V(z) are the temperature differences between the
temperatures of the ambient adjacent to various surface positions and that of the ambient
adjacent to z=[; the temperature potential » is the temperature difference between a tempera-
ture in the solid and that of the ambient adjacent to 2=/. The proportionality constants
H, and H, represent the coefficients of heat transfer between the surface and the ambient at
the surfaces z=—1[, and x=[, respectively. For the purposes of this paper the variable heat
transfer coefficient H(x) and temperature potential V(z) are considered to be piece-wise con-
tinuous on —[ <z <l, where H(z)=H,;(z) and V(z)=V,(z) are continuous on z,_; <z <z, and
1=1,2,3, . .. m; x=—I, and z,=l.

The partial differential equation for steady-state heat conduction in a homogeneous solid
in a rectangular coordinate system is

o™ | %
2w o (1)
A solution of (1) satisfying the boundary conditions at =[ and 2= —[ (fig. 1) is
V™ hit+het2hihs +WZ=1 cosh B,a/l 2)

where due to the similar conditions on y= +a, it is assumed that gy—j:o on the center line y=0.

Symbols used in (2) are:

K=thermal conductivity of the solid

i =JEAI

ho=H /K

A,=-coefficients to be determined from boundary conditions on y=a

where 3, are positive roots of (8*—hihs) sin 28—B(h,+hs) cos 28=0.
Substitution of boundary conditions on y=a gives m equations

z lH(@) [H@) [V(z) hthh(1—2/1) .
;AnR(ﬂnw/Z) [Bn tanh ﬁna’/l+ K - K V h1+h2+2hlh2 ? ('3)

Multiplying each equation by R(8,xz/l) and integrating from z=—1 to z=I, yields

[ Bucta tanh oot [ RGGua/) RBuallydot 33 Au [ H ) BBt/ RBiaft)d |

n=1

A V@) hthabu(1—a/l)
—Kéﬁi_lH(z)R(m/l)x 174 h1—|—h2+2h1h2]dx‘ )
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Using the orthogonal and other related properties of R(B,2/l) as derived in the appendix, (4)
may be put in the form of simultaneous equations

BnAn"*’AZil On,);AI;:Dn, nzl, 2, e (5)

k#n
where

B, =8, tanh g/l [ l, R Bl + 5 3 f " H@) R B.al)ds
J- =ldzig

= KZ o | HE R, R @)

o KZ Lz | V(T) hhﬁiﬁfﬁzh%)ﬁ] X H(x) R(B,x/l)d.

Of particular interest is the mean temperature in the solid, »,, given by

”mfhlv 1 aﬁ
VMQGZ f—l J:) dedx

Um_ hy(1-+hy) A, tanh B,a/l[B, sin 28, +h,(1—cos 28.)]. 6)
V }11+h2+2h hz n 62

3. Temperature Distribution in Exposed Concrete Columns

An interesting specific case for solution of (2) is to consider a transverse section of a rec-
tangular concrete column. Here a portion of the boundary surface is exposed to outside weather
conditions or design temperature, another portion of the surface is exposed to the ambient
temperature maintained within the building, and another portion of the surface is in contact
with the walls of the building. A cross section of the column, and an abutting wall in the region
b<"x<d, is shown in the lower portion of figure 2. The z=/ face of the column is assumed to be
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the outside face exposed to the outside design temperature which is assumed to be the zero or
datum plane temperature from which all other temperature potentials are reckoned; the face
r=—/[1is assumed to be exposed to the indoor temperature potential V.

The upper portion of figure 2 shows the assumed variation of H(z) and V(z) along the
surfaces y=4a. H(z) is assumed constant at /7, in the region —[<z<b; decreases linearly
from H, to zero in going from b to ¢; increases linearly from zero to f1, in going from ¢ to d;
and is constant at f, in the region d <zx<[l. V(r)is assumed constant at V from —[ to ¢;
and is zero from ¢ to I. In the region of the abutting wall, b<x<_d, the heat transfer between
the wall and the column was assumed to be dependent on the inside and outside temperatures
in their region of influence and the surface coefficients decreasing linearly to zero at z=c.

dv

(=2
~KZ—F, (C—_—b> 0—V)  b<z<e,y=a

—K %/:[]e <;—_—z> v c<x<ld, y=a.

Expressions for D, B,, and O, ; necessary for substitution in (5) are given in the appendix
(A13, A14, A15). The solution of (5) for A, and its substitution in (2) gives the temperature
distribution for values of 2 and 1.

Numerical solutions were obtained, using a digital computer, for a 36 in. X 14 in. concrete
column for four positions of the abutting wall, based on a 100 deg F temperature difference
between the inside and outside. Numerical values used, and assumed as constants, were

Thermal conduectivity, K=1.0 Btu/hr ft deg F
Inside heat transfer coefficient, //,=0.5 Btu/hr ft* deg F
Outside heat transfer coefficient, /,=6.0 Btu/hr ft*> deg F
Width of column, 2a=14 in.=7/6 ft
Thickness of column, 2/=36 in.=3 ft
Thickness of wall, d—b=8 in.=2/3 ft
Also it was assumed that d—e=c—b.

The inside surfaces of the column were assumed to be separated from the inside of the
building by suitable interior finish, giving a nominal value for H, of 0.5 Btu/hr ft* deg F. The
value H,=6.0 Btu/hr ft* deg ' was based on an outside wind velocity of 15 mph.
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Ficure 3. Temperature potential destributions in 36-in. by 14-in. concrete columns for four positions of the
abutting walls, based on a 100-deg temperature difference between the inside and outside and the constants
cited in the text.
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Figure 3 shows temperature potential isotherms plotted within the column cross section
for four positions of the abutting wall. Mean temperatures were computed from (6). Fig-
ure 4 shows mean temperatures over the width of the columns plotted against distance meas-
ured from the inside surface of the column. Positions of the abutting wall are shown for
clarity.

Temperatures in degrees Fahrenheit can be expressed in terms of the temperature potentials,
v, of figure 3 by means of the relation

ty oFZ{e‘*’ (l/] 00) (tu"_tc)
where ¢, is the inside air temperature, and ¢, is the outside air temperature, in degrees

Fahrenheit.
4. Discussion

The analysis of section 2 assumes similar boundary conditions on the surfaces, y= +a.
For the consideration of a more general case where these conditions are not similar, it is con-
venient to make a translation of the z—axis of ficure 1 to the lower side and rewrite the sum-
mation term in (2)

I:A” cosh ,y/l+E, cosh B, <2“l_y>:| R(Bz/l)

cosh B,2a/l

Substitution of boundary conditions at y=0 and y=2a will give two sets of simultaneous
equations similar to (5), both containing the coefficients A, and #,. Solution for A, and
E, may be obtained by iteration; for example, let /£,=0 in one set and solve for A4,, substi-
tute A, in the second set and solve for /,, which is substituted in the first set. This process
may be continued until A, and %, are invariant.
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The assumption was made that a sufficiently good approximation to the solution of the
infinite set of equations (5) in the infinitely many unknowns A4, could be obtained by solving
the first forty equations for A, n=1, 2, ..., 40. Solution of the first twenty equations for
A, n=1,2..., 20 gave results which differed from that for forty A, by less than 0.1 °F. It
therefore appeared that convergence of the approximating sequence of 4,’s to the true solution
of (5) was sufficiently rapid to justify our assumption.

A computer program in Fortran IV language is available for the problem as set forth in
section 3. Data input to this program allows any possible variation in the numerical values
for the thermal conductivity, surface coefficients, and dimensions.

4. Appendix. Orthogonal and Other Related Properties of R(3,2/1)
To satisfy the boundary condition in (2) at x=I[, 8, must be the roots of
(82— hyhs) sin 28— B(hy+hs) cos 28=0. (A1)

Without proof in this paper, the roots 8, will be assumed real and positive. Proof of the real
nature of these roots is similar to that for roots of an expression given in Carslaw and Jaeger.
It then becomes expedient to develop the orthogonal properties of

R(B,x/l)=8, cos B,(1+z/l)+h, sin B,(1+x/l) (A2)

where —[<_2<_l. Several expressions useful for later developments are cited below:

o B(hathe)?
S’ 2= L (D) (&
2 oq_ (BP—hha)®
Ll  (a y w E) (A44)
RZ(ﬁxﬂ):BZ;h?ﬁ?ghf cos 26(1+2/1)+-hif sin 28(1-+/1). (A5)
Rl R(Baf) =21 T 1) (A6)
Ly(2)=(B.B:—h3) cos ¢ (1+4x/l) +-I¢ sin ¢ (1+-2/1)
La(2) = (BuBe-12) cosy (14-a/1)—hap sing (1-+a/l)
¢:Bn+ﬂk; ¢:Bn_3k
My()— f R(ﬁnxmdx:,}- [, sin B3 (14+-2/1)—hy cos Bu(1-+a/D)] (A7)

No(z)— f BB/ de— D L LB i g, (1 40y "0 cos 28, 14a7)  (A8)

2 48n
Po(a)= f L«w)dx:ﬁ; [(BuBe—12) sin $(1-+2/1)—up cos $(1+2/1)] (A9)
Qo) = [ Latw)da=1 [8,8412) sin p(1+-2/1) +hup cos p(14-4[0)]. (A10)

I Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids, 2d ed., p. 114 (Oxford University Press, London, 1959).
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By use of (A3) and (A4), it can be shown that Py(l) + Qo) =Po(—1)+Qy(—1)=0; i.e., the
1
integralf R(B,z/l)R(Byx/l)dx=0, showing that R(B8,z/l) and R(Bx/l) are orthogonal to each
=7
other in the interval —(< 2<_[. Also, using (A3) and (A4),

(Br4-h3) (Br4-h3+he)
(Bath3)

, l
No(h)=3

—No(—D)=§ Bihi+h).

Assuming H;(z) and V,(x) to be polynomials in x, then the recurrence

M, (z)— f 27 R/ l)dw =2 M, _,(z)— f M,_(z)dz (A11)

and similar relationships for N,(z), P,(x) and @,(r) may be established for determining 7,
D,, and €, , in (5). Assuming a resulting polynomial of the form S+ 7Tz Uz* in the solution
for 1), the indefinite integral becomes

20

5 J[O(x)-l—é—i (T4+2U0z)R(B.x/l). (A12)

The solution for D, for the specific case illustrated in figure 2 takes the form

f(S+ Tz+4-Uz?) R(Bua[l)dz= <S+ To-Ux?—

o ]llhg 4 i ~ m ; )
Dimjte > f " (St Tt U R @) ds
where
81:1+h1 lehl/l U =0

=
S;=e¢S:/(c—b) To=(cT,—Sy)/(c—b) U,=—T/(c—b)
S3=—¢8,/(d—c) Ts=(Ss—cTy)/(d—c) U;=T,/(d—c)
S4:—(1+h2) T4:/12/l U4:().

The function in the region —/<_z< [ is a linear, piecewise continuous function for which
the integrals go to zero at the integration limits z=—[ and z=[, and elsewhere at the other
limits only the coefficients of /?/8; in (A12) need be considered,

Z}IqhQ

D= ot 2haly)

[2 {Uz“'lo(.b)"’ (Us—Uy) My(e)—U3M,(d) }

+ T+ T2—2U:0) B (B,b/1) — (T's— T3—2U ) R (Bud/1)
+{T3—T2+2¢(U,—Us) } R(Bac/l)].  (AL3)

By a similar analysis

B,__(8, tanh B,a/l+hs) (87 4-h) (87 +hi+he) + (8, tanh B.a/l+hy) (B,+h3) (B, +Fi+h)
l 2(87+h3)

1 ol 2 2
t35: | sy (R~ Buclt) ) —

ol (BBl — R B.0/D) ) |

_|_

B2+-h3) [ hi(c+b)  he(d+e)
. [ s ] (A14)

Ot ol [Ld)—Ln(e) | Ied)—La(©], Ml [Eal)—Lu(b) | Lae)—La(b)]
z‘2<d—c>[ # T ]+2<c—b>[ & T 7 ]("“5)

(Paper 69C2-194)
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