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The volume common to two cylinders of radii r , ::; r2 with axes intersecting at angle 
{3 is found to be r~v (k) /sin (3, where k = rl /r2 and v(k) may be evaluated (1) as t h e hypergeo­
metric series 

(2) as t he combination of complete elliptic integrals (8/3) [(1 + k2)E (k ) - (1- k2) K (k») or 
(3) as the cumulative integral 

8 .C kE(k)dk. 

A table of v(k) to 8 decimals over the ran gc 0 ::; k (0.01 ) ::; 1.00, including 0;' modified second 
central d ifferences, is presented. This volume integral was useful in interpret ing a gamma­
ray albedo experiment involving a collimated source and a collimated detector, and may also 
be applicable to crossed-beam experim ents. Two series useful for k close to unity are pro­
vided, one of wh ich involves differencing against t he series 

1. Introduction 

In crossed-b eam experiments [1 ] 1 using the high­
intensity accelerators now becoming available, the 
"geometrical target," or volume common to the two 
colliding beams, is a useful parameter for interpreting 
the measured data. An evalu ation of this volume in 
terms of an infmite series was recently exhumed for 
possible application to an x-ray free-air ionization 
chamber having a Gylindrical sensitive volume inter­
sected by a pencil of x rays [2]. This evaluation 
had been used in t he analysis of a gamma-ray beam 
back-scattering experiment [3] for making a theoreti­
cal estimate of the single-scattered component of 
the radiation "seen" by a collimated detector. 

for this region, derived from the right-angle ellipt ic­
integral solu tion [4, 5, 6], is more complicated but 
also more rapidly convergent. 

Evalu ations of the volume common to two circular 
cylinders of unequal radii with axes intersecting 
at right angles [4, 5, 6], and of equal radii with axes 
intersecting at an arbitrary angle [7], have frequen tly 
been offered as calculus textbook exercises. How­
ever, a combined treatment does not seem to appear 
in the technical literature in a form convenient for 
easy application to practical problems. The follow­
ing r esults provide formulas, a table, and a graph 
for such applications. 

The series used in [3] is here corrected, expressed 
in terms of binomial coeffi cients, and identified as a 
hypergeometric series. For nearly equal cylinder 
radii, convergence can be accelerated by use of the 
difference-series technique [8]. An alternative series 

1 Figures in brackets indicate t he literature references at tbe end of this paper. 

2 . Volume Integral 

The integral for the common volume of two 
cylinders of r adii 1'1':::; 1'2 with axes intersecting at 
angle {3 (see fig. 1) is found as follows. The cross 
section parallel to the cylinder axes, at a distance 
x from them, is a parallelogram of height 2(1'~_ X2) 1/2 
and base 2(1'~- x2)1 /2!sin {3. Hence the volume inte­
gral is 

V(1' 1'2 (3) = '2(1'2_ X2)1 /2 . 1:- dx ST 2 (1,2 x2) 1/2 

I" -71 2 SIn {3 (1 a) 

(1b) 

3 . Common Volume When r l = r2 

For equal cylinder radii 1'1 = 1'2= 1', the integral in 
(Ib) reduces to the familiar result [7] 

(2) 

(3) 
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FIGURE 1. Three-view sketch of the common volume of cylinders 

wtth radii r l and 1'2 axially intersecting at angle {3. 

The area of the shaded parallelogram parallel to the plane of the axes in the lower 
left view comprises the integrand in eq (la) and is integrated over the range 
-Tl~x5rl shown in the other two v iews. 

4. Common Volume When r 1 ::;r2 

4.1. Series Solution 

The factor (1'~-x2)1 /2 in the integral in (1b) may 
be expanded as a power series [9, ~. 2, eq 5.3] 
in x/1'2, since x::;1'l::;rZ' The volume mtegral then 
becomes 

which mtj,y be integrated term by term. 
The resulting series solution is 

7 ( 1· 3 . 5 )2 (1'1) 10 
-10 2·4·6 ·8 r; - ... } 

=_._"'_2 ~ 2 2 ....!. 4_ 3 '" (1.) ( 1. ) (1' ) 2n 
sm (3 n=1 n n-l 1'2 

(5) 

This same result may be obtained by casting the 
integral in (1b) in the form 

V(1'l ' 1'2 , (3) = (1'Usin (3)4 (~)2 

( I ( 2 )1 /2 
X Jo t - I / 2(I _ t )1/2 1 -~ t dt, (6)-

where t=x2/1'i, which is now recognizable as the 
integral representation of the hypergeometric series 
[10] 

V(1'l, 1'2 , (3) = (rVsin (3)271" (~y2 FI ( -4' ~; 2;~) (7) 

identifiable with (5). 
Since (5) is somewhat slowly convergent when 

1'l~1'2 , under some circumstances it may be advan­
tageous to difference this series against a 1/71"­
series (16) discussed in the appendix, giving 

471"1'~ { 4 '" (t) ( t ) [ (1'1)2"J} V (1' l, 1'2 , (3) =-;--(3 -3 - L; 1 1- - . 
SIn 71" n=1 n n- 1'2 

(8) 

The convergence rate of the series-term in (8) is 
not improved over that of (5). However, for 
1'1~1'2 this sum is small compared to the constant 
term 4/371", identifiable with the equal-radii solut ion 
(3), hence resulting in higher precision of V(1'l , 
1'2, (3) for the same number of terms. An alterna­
tive series solution for this region is given at the 
end of the following section. 

4.2. Elliptic Integral Solution 

An alternative solution of the integral in (lb) may 
be obtained as a combination of complete elliptic 
integrals [11] of the first and second kinds, K(k) 
and E(k). Applying formulas (219.11) and (361.03) 
from Byrd and Friedman [12] the result is found to 
be 2 

where 
k =1't/1'2. 

Except for the angle factor l /sin (3 this result is 
the st andard textbook solution [5, 6] for cylinders 
intersecting at right angles. Also, the formulation 
in (9) is related to the indefulite integral [12, eq 
(611.01)] 

.r kE(k)dk=~ [(1 + F )E(k)-(l-P)K(k)]. (10) 

2 This integral is part of the "0 factor" used for interpreting gas scattering ex­
periments in which a circular-aperture detector views a gas target transversed 
by a cylindrical beam. In this context this elliptic integral solut ion has been 
given by E. A. Silverstein, N ucl. Instr. and Meth. 4, 53 (1959) and by D. F . 
Herring and K . W . Jones, Nuc!. Instr. and M eth. 30, 88 (1964). 
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A par tial ch eck on (9) is obtained by expanding 
E (lc) . and K (lc) as power series in k according to 
refer en ce [9], eqs (773. 1) itnd (774.1 ) . Combining 
like powers of k and substi tuting b ack rJT2 for k the 
r esulting series is iden t ical wit h (5) . An addition al 
check is provided by th e identity of eqs (9) and (3) 
in th e limit as lc - tl . Also, eq (9) can b e ob tain ed 
from (7) by use of the ten th Gauss r ecur sion formula 
on page 9 of reference [10]. 

F or lc close to unity, a series which con verges m ore 
rapidly than (8) m ay now be derived by substitu ting 

) in (9) the series in equations (773.3) and (774.3) in 
refer en ce [9] for K (lc) and E (lc). The first few terms 
of this series are 

.. . } (11) 

where lc, 2= 1- lc2= 1- (Tl /r2) 2. Using only the terms 
given in (11) the sum for 1'1 /1'2= 0.90, withou t th e 
factor (rUsin f3) , gives 4.49991 482 as compitred 
with the exact valu e of 4.4999 1288 . . . , and th e 
con vergen ce improves as 1'1 /1'2 goe toward unity. 
The series in (11) m ay be ob tained in general form , 
if desired , by use of the appropriate t ransformation 
[13] on t h e hypergeometric series given in (7). 

5 . Numerical Results 

In table 1, the dimensionless fac tor 

sin 13 
v(lc ) = - 3- V(r" 1'2, 13), 

1'2 

= 47r ~ (!) ( 1 ) lc2n , 
n= l n n - l 

(12a) 

(12b ) 

(12c) 

= 8.r lcE (lc)dlc, (12d) 

= i [ (1 + Jc2 )E (k) -(l - Jc2 )K (lc )], (l2e) 

wher e lc = 1'lh is tabulat ed to 8 decimal places for 
o ::; lc (O.Ol ) ::; 1.00, com puted using (12e) and K (k) 
and E(lc) from [11 ]. H ence, for m a ny practical 
application s, the common volume of t 'NO cylinder 
with r adii 1\ ::; 1'2 and axe intersecting a t angle 13 
may b e co mpu ted as 

1'~ Vh, 1'2, (3) =---=------r.; v(k ) 
sm fJ 

(13) 

m which values of v(lc) are in terpolat ed from table 1. 

TABLE 1. V ah es of v(k) , defined in eq (1 2a- e), over the range 
O:S; k (O. Ol ) :s; 1.00, valid to the 8D given 

M odi fi ed sccone\ central differences o~ are provided for interpolation using 
auxiliary tables . 

k v(k) o! /1 k v (I;) o~ 

0. 00 0.0000 0000 + 12 5665 

.0 1 0.0006 2831 12 5656 0,5 1 I. 5792 3625 +9 8789 
, 02 0,0025 13 15 12 5627 ,52 1. 6394 2033 9 7607 
,03 0,0056 5423 J2 5580 ,53 1.7005 8043 9 6391 
,04 0,0100 5 109 J2 55 t4 ,54 I. 7627 0439 9 5142 
, 05 0,0\57 0305 12 5429 ,55 1. 8257 7969 9 3854 

,06 0,0226 0928 12 5325 ,56 1. 8897 934 6 9 2530 
,07 0,0:J07 6874 1. 2 5203 ,57 1. 9547 3247 9 1167 
, 08 0,0401 80 19 J2 5061 ,58 2, 0205 8308 8 9766 
, 09 0, 0508 4222 J2 4900 ,59 2, 087J :J 128 8 8323 
, 10 0, 0627 532 1 12 4720 ,60 2, 1549 6262 8 6837 

. 11 0,0759 1 138 12 4520 ,6 1 2,2234 6226 8 5308 

. ] 2 0,0903 147 1 J2 4302 ,62 2,2928 1190 8 3734 
, 13 0, 1059 6 104 J2 4065 ,63 2,:J630 0478 8 211 2 
, 14 0, 1228 4797 12 3807 ,64 2, 4340 J570 8 0441 
, 15 0, 1409 7294 J2 3530 ,65 2,5058 3093 7 8719 

, 16 0, 1603 33 1.6 12 3234 ,66 2.5784 3325 7 6943 
,17 0. J809 2569 12 29 17 , 67 2, 6518 0490 7 5113 
, 18 0,2027 47J5 12 258 1 , 68 2,12.,9 2757 7 3222 
, 19 0,2257 9478 12 22"24 ,69 2,8007 8235 7 1272 
,2O 0,2500 6441 12 1848 , 7O 2,8763 4974 6 9258 

,2 1 0,2755 5248 12 1451 ,71 2, 9526 0957 6 7174 
, 22 0, 3022 5502 12 1034 , 72 3.0295 4102 6 5020 
, 23 0,3301. 6786 12 0595 ,73 3, 1071 2253 6 2791 
,24 0, 3592 8660 12 0136 ,74 3, 1853 3179 6 0481 
,25 0, 3896 0667 11 9656 , 75 3,2641 4571 5 8086 

,26 0, 4211 2326 11 9154 ,76 3,3435 4031 5 5600 
,27 0, 453 31 :J5 11 8632 , 77 3, 4234 9073 5 30 16 
,28 0, 4877 2572 11 8087 , 78 3, 5039 71 11 5 0328 
, 29 0,5228 0092 11 7520 , 79 3,5849 5457 4 7527 
,30 0,5590 5 129 11 6932 ,80 3,6664 1308 4 4605 

,3 1 0,596<1 7093 11 6320 ,8 1 3,7483 1740 4 1550 
, 32 0,6350 5373 11 5686 ,82 3,8306 3696 3 8350 
, 33 0,6747 9:J36 11 5029 ,83 3, 9 133 3972 3 4992 
,34 0, 7156 832:J 11 4348 ,84 3, 9963 9206 3 1456 
,35 0,7577 1654 11 3644 .85 4,0797 5861 2 7725 

,36 0,8008 8626 II 291 5 ,86 4, 1634 0199 2 3774 
, 37 0,845 1 8508 I I 2163 ,87 4,2472 8265 1 9574 
, :J8 0.8906 0549 11 138" ,88 4,33 1. :J 5853 1 5089 
, 39 0.9:J7l 3970 11 0582 ,89 4, 41 55 8469 1 0276 
, 40 0,9847 7969 10 9753 ,9O 4, 4999 1288 + 5075 

, 41 1. 0335 1716 10 8899 , 9J 4.5842 9096 - 586 
, 42 1. 0833 4356 10 8017 , 92 4, 6686 62 13 6811 
. 43 I. J342 5009 10 7108 ,93 4.7529 6390 I 3730 
. 44 1. 1862 2764 10 6171 , 94 4,8371 2665 2 1554 
. 45 1. 2392 6686 10 5207 ,95 4, 9210 7158 3 0581 

, 46 1. 2933 5809 1O 4213 ,96 5, 0047 0740 4 1308 
, 47 I. 3484 914 1 10 3191 , 97 5, 0879 2495 5 4606 
, 48 1. 4046 5657 10 2J37 ,98 5, 1705 8678 -7 1824 
, 49 1. 46 18 4304 10 1053 , 99 5.2525 0293 - - - -
,50 1. 5200 3999 + 9 9937 1. 00 5, 3333 3333 - ---

M odified second central differ ences 0;, are included 
for interpolation by E verett's formula 

where p is the in terpolation fraction of th e interval of 
tabula tion !J.k , and O;',i' O;n,i+ J are the m odified second 
difl'er ences a t the tabular p oints i and i + 1 and were 
evaluated from the second and four th differences 
according to 
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Everett's coefficients E2(P) and F2(P) are available 
in standard tables [14, 15] and are identical with 
Lagrangian interpolation coefficients A~l and A~ 
[16, table 25.1]. 

The general behavior of v(k ) is shown by the curve 
in figure 2 . Values of v(k) can be taken directly 
from this curve for use in rough calculations where 
only two- or three-figure accuracy is required. 

v (k ) 

0. 2 0 .4 0. 6 0 . 8 1. 0 
k=r,/ r2 

FIGURE 2. Graph of v(k) ohowing the general behavior of the 
function and suitable for rough calculations. 

6 . Appendix. Two Series for 1/7T 

The series evaluation (5) for V(1'l ,1'd3) contains a 
factor of 7T and the formula (3) for VeT, (3 ) does not. 
Thus, for 1'1 = 1'2 = 1', the right-hand side of (5) can 
be equated to the right-hand side of (3) to form 

(15) 

from which 

5( 1.3)2 -8 2·4·6 - ... (16) 

This series can now be used to form the difference­
series in eq (8). 

An additional1 /7T-series, which also does not appear 
in standard compilations of series [17], can be ob­
tained by combining (16) with a series discussed by 
Bromwich [18], [17, eq 274] 

__ ~ 2 4 "' (1.)2 
7T n=1 n-1 

( 1)2 ( 1 )2 ( 1. 3 )2 
= 1+ 2" + 2.4 + 2.4.6 + ... 

to form 

_+_=~"2 "2 + "2 4 4 
00 ( 1 ) [( 1) ( 1 )] 

371" 71" n = 1 n-1 n n-1· 

Using the addi tion theorem 

the result is 

16 ", ( 1. ) (l!.) 371"=~ n~l ~ 

3 13·1 1 3·1·1 = 1· - + - · - + _ ._-
2 2 2·4 2·4 2·4·6 

1·3 3·1·1·3 
+2,4.6'2,4.6.8 

(17) 

(18) 

(19) 

+ 1,3·5 3 . 1 ' 1 . 3 ·5 + (20) 
2,4,6 . 8 ' 2 ·4· 6 . 8 ' 10 "., 

The author thanks E. Hayward for suggesting 
the problem, and P. Lamperti and L. W, B. Jolley 
for their stimulating interest in the cylinder inter­
section and 1/71" series, respectively. The author is 
also indebted to F. W. J. Olver, 1. A. Stegun, L. F. 
Epstein, and A. Fletcher for suggestions and com­
ments, and especially to Mrs. Ruth Oapuano for 
computing table 1. 
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