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Magnetic Field Over a Large Volume
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The magnetic field anywhere inside a long solenoid with two symmetrically placed auxiliary
windings is expressed in terms of zonal harmonics. Formulas are given that enable one to
compute the size and position of the auxiliary windings that make the field most uniform
at points in the neighborhood of the center of the solenoid.

Inquiries from workers in the field of nuclear resonance have indicated their need of a
region of uniform magnetic field of considerable volume. The field at any point in a solenoid
an be calculated with an accuracy consistent with one’s knowledge of its geometry and current
but the uniformity of field inside ideal coils of reasonable length is not sufficient over the volume
required to develop a satisfactory nuclear resonance signal at the 10 G level.

The following analysis shows how the variable part of the field near the center of a solenoid
an be nearly compensated by two symmetrically placed auxiliary windings. This method of
compensation has been suggested and used by others ! but a detailed analysis does not appear
to have been published.

The solenoid is treated as a current sheet made up of N turns of tape winding per unit
length. The tape carries the current /, and the space between the turns of tape is assumed to be
zero. The two equal and symmetrically placed auxiliary coils as shown in figure 1 with traces
at 7y, 7, and 77, T, are treated as current filaments carrying the current /; each, where
I,=N,I and N is a disposable constant. The winding channels of the two auxiliary coils must
sach have linear dimensions of its axial section, say b and d, such that b%*/ai and d?/ai are so
small compared with unity as to be negligible to the precision desired in the magnetic field.
The radius a, of each auxiliary coil and its axial position are to be determined so as to make
the magnetic field most uniform near the origin. The equivalent filament that carries the
current /; will have a trace that may be taken as the geometric center 7, of the axial section
of the winding channel.

The points 7} and 7 are traces of a current filament of radius @,=r, sin 6, in the plane
x,=ry cos 0. With spherical coordinates 7, 6, ¢ and cylindrical coordinates z, p, ¢ the only com-
ponent of the vector potential is A(r, ) =A,(r, 6) and this is independent of the longitude ¢.
The spherical components of the magnetic field are

1

H(r, 0):7’ sin

D, [A(r, 0) sin 6]

Hy(r,0)="" D [rA(r,0)].

From these the cylindrical components are found by
H,= 11, cos 6—Hjysin 6
H,=H, sin 0+ I cos 6.
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The vector potential at P(r, 8) due to a cgs unit circular current with trace at 7,(r, 8,) is
given by

. . ® "P’ (cos )P, (cosb,) .
—9 2 17 n n 1 .
A(r,0) =27 sin fsin’ 6, nS?i '“1) A(nt1) if 0<r<r;
. r\" 1P, (cos )P, (cosh,) . >
=27 sin @ sin? 4, E ‘, ) i) if r>ry,

where P,(u) is Legendre’s polynomial and P, (u) denotes (%Pn(u).

The effect of the two symmetrically placed equal filaments each with current 7, is found
from the first of these expansions, by superposition and noticing that in reckoning the effect of
the filament on the left, the term P, (cos 6,) must be replaced by P,, (cos (7—6,)) =P, (—cos 6,)
= (—1)"T'P, (cos 6,).

The vector potential at P(r, ) of both current filaments is therefore

. . o =1 P, (cos 0)P;,  (cos 6;)
AD (. )= 0 sin 6 ﬁ) 2n—1 2n—1 1 <<
AW (r, 0)=4x 1, sin 0 sin? 6, n§= 1) (rl m@n—1) when 0<r<n,

which applies therefore at points inside the solenoid near the origin.

By use of % [(1—u?)P,(u)]=—v(v+1)P,(u) it is found that the field components are

sm 0,

2n—1
H®=4rx 7‘( ) P, (cos 0)P;,_, (cos 6,);

H;"=—4rl, sin® 6,

sin 6 °° ( )2" P,y (cos 0)Ps,_, (cos 01)'
=N 2n—1

To obtain from these the expressions for the cylindrical components H, and H, it is neces-
sary to make use of the two relations

(1—u?) P, (uw) +vuP,(u)=vP,_,(u)
and
uP,(u) —vP,(0)=P,_,(u).
‘We find
471, sinZﬂ

© 2\ 27
(7, ()= 1+> ;(%) P, (cos 0)P;, ., (cos 01)]
it

n=1
1
—4xl, sin® 6, sin 6 i (ﬁ 2Pl (cos 0) Py, ., (cos 01)'f )
7y 2n-+1

HO(r, )=

s n=1

The vector potential of the current /7 (egs units) in the current sheet with N turns per cm
is found by integration to be

) 1 2 P 1 (cos 0)Ps, (cos a):l
(s) . il
AS (r, 0)=4xNIr sin 6 [ cos a—sin? « HE 1;( > o @n+1)@2nL2)

at a point P(r, 6) inside the current sheet.
From this we find

2n
H® (r, )=4xN1 I:cos a—sin? aZ( > Pay (cos H)P"" cos “):ﬂ

n=1

and (2)

2n
H® (r, §)=4xNI sin? a sin § Z act (C(;Sn?;iii— (IL)OS )
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For the case where the filament currents and solenoidal current circulate in the same
sense around the z axis we place N,/=17, in eq (1) and add eq (2).
The resultant magnetic field inside the solenoid has the components

o\ 2n P a D4 TOQ
H,.(r,0)=4nxNT {('os a+Cy sin® a—sin? o Z 7Y Pon (€08 6)Pay (c08 o) (l >} (3a)

n=1 \C 2n
) P, (cos 0)P5, (cos a)
Hp(r,0)=4xNT sin’® « sin 4 HZ_‘, ( ) 2n(2n+1) < —W’z” (3b)
where
N, sin? 4,
Co “Nr,sin?a (4a)
([ - 2" M_ s b
2,,—( Py (c0s B) k0P (=1l 2o 8 o 0 0 (4b)
Also we may place here for reference
R (@)=311 )
4
RAGE ,’)71 (7u?*—3)
Pylu) =2 (513 —1) L (5)
]"(711)~ (‘71111—1411 +1)
7
For brevity, also let
)\E% u=cos a, and u;=cos 6, (6)

where all three are positive (since 6, refers to the filament on the right in fig. 1).

The variable part of /7, is the series in (3a). If the first two terms corresponding to n=1
and n=2 are made to vanish, then the first two terms in the series (3b) for /1, will also vanish.
Therefore the approximately uniform resultant field near the origin will be in the axial direction.

The two equations (,=C, and (,=(C, are

s ¥ (0 B ) (7)
) 0
21 (u1 ) eN(1—u?)
and
NPi(u)  Ny(1—ui) ()
7 T ¢
4P(u;) eN(1—u?)
4o
T T(r,8)
1 -
LGURE ‘al secli . | <
Ficure 1. Arxial section of current sheet. | Elio) —
T
c=the semi-diagonal of the section. | r 2" &»/ ¢ |
a=the semi-aperture of its end-circle viewed from O. //G —~ 8, | &
N=number of turns per cm (tape-winding). | = /\ | l >
I=the current cirgll:niug. _ 1 0 | X
The points (71, Th (and) 7";, T";) are traces of the compensating | |
filaments. | |
t [ )
! |
i 1
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Dividing the members of eq (7) by the corresponding members of eq (8) gives

2P2(u)P (uy)

N =) Pi(u)
or, in view of eq (5),
L (ui—1/3)*—4/63
‘**3\/ 502 —3/7) (@—1/5) ®

which must be real. We consider only the case of a relatively long solenoid in which
U=cos o >y3=0.6547 or 0<a<49°6’. In order that X be real it is necessary that the value
of u,(=cos 6,) to be found shall be such that
(ui—1/3)>—4/63
(v3—1/5)

The zeros of the numerator of this fraction are

(1)

= " )=0.5853
3\" "

L (1—ﬁ> 0.08136.
3 i

Since in eq (9), %, occurs in even powers only let

>0,

and

Z=2. (10)

Equation (9) may be written

(1)

ﬁ_k_g\/(z—o 5853) (2—0.08136)
¢ 52 —3) (2—0.20)

If the value of z to be found makes X\ real, this will correspond to the case that was
adopted above in placing /,=-4 N,/ so the current filaments circulate around the z axis in
the same sense as the current / in the solenoid. If values of z are found that make \ imagi-
nary, ‘a solution of the problem may still be found corresponding to 7;,=—N,I, which is
equivalent to reversing the sign of C; so that N\ will then be real. If X as given by eq (11) is
inserted in eq (7), and the relations of eq (5) employed, then

eN(1—u?) Py(u) N
2N,

(1~2)P;(u1)=% (1—z)(2—0.20) =

_ 3eN(1—u?)u [ (2—0.5853) (z=—0.08136) /2

2N, 5(u2—3) (—0.20) 2]

Squaring eq (12) gives the following equation to determine z (which also applies to the
case in which \ is imaginary):

(1—2)*(2—0.20)"= B[ (z—0.5853) ( —0.08136) (13)

where
N YR (1) |
o 3( ) <N1> (u?—2)® (13a)

Hence B is a positive constant if u* >3 (or « < 49°6’). The numerical solution of eq (13)
may be found without difficulty when B is given, that is, when the constants ¢, N, N;, and
U=Cos a are given.
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If we let
[(z—0.5853) (2—0.08136)]*/5

and
T [Zea=T" (15)
: N,
equation (13) is equivalent to
M(2—0.20)=F(z) where z=cos? 6;. (16)

The roots of this equation between zero and one are the abscissas of the points of inter-
section of the curve y=/F(z) and the straight line y=»M(z—0.20). The curve F(z) could be
plotted once for all, since the constants a and ¢ of the solenoid enter only in the positive slope
M of the straight line. The general nature of the curve y=7/(z) is indicated in figure 2. A
fairly accurate plot of /(z) and M(z—0.20) versus z is helpful in getting a starting point for
an accurate evaluation of the roots by successive approximation. If 7, is a root, the corre-
sponding value of 7, is, by eq (12),

s (1Y 5N, Y =
=(2) [(,Nu‘(l_",_,)](1‘/0(4 0.20) (17)

which must be positive. There will be two roots of eq (16): Z; in the interval 0.5853< 2, <1,
Z, in the interval 0.08136<7,<0.20. The latter is inadmissible when /,= -+ N, /.

152 T X T 1

T T T T T 1

0.6

Fraure 2. The curves y=F(z) and y=M(z—1/5) y 0.4
plotted as a function of z.

R |
8 0.9 1.0

The root 7, gives the only value for cos® 6, permitted when the currents in the filament
circulate around the z-axis in the same sense as the solenoidal current /. If in the opposite
sense, Z, would be indicated. When the solenoid and the value of the constant N, are arbitrarily
chosen, this solution gives the best radius and position of the two current filaments in order to
produce a uniform field in a sphere with center at 0. When the first two terms are thus annulled
in the series of eqs (3a) and (3b), the next term (n=3) will indicate the principal remaining
nonuniformity of field near the center by comparison with the constant term (cos a -} sin® a)
in eq (3a).

The foregoing analysis has been applied to the compensation of a solenoid designated as
NBS 58080. The constants of this solenoid at 25 °C are N=9.99915 turns per cm, ¢=51.9138;
cm, and cos «=0.963064. For several assumed values of N; the constants of the required
auxiliary windings have been found and listed in table 1. For each value of N;, the relative
contribution of the compensating windings to the field at the center of the solenoid is shown
in the column headed () sin® a/cos a. With the terms n=1 and 2 removed from eqs (3a) and
(3b), the value of r, at which the term n=3 reaches one part per million (ppm) relative to the
constant term (cos a+ () sin® &) in (3a) will be found in the table under “compensated radius.”
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TaBLe 1. Constants of auxiliary windings for solenoid NBS
58080

Condition: I1=-+ NI

Cosin? a ‘ (‘omp

| z 1 \ 1 ‘ 71€0S 6 \ r18in 6 [————| radius
\ ‘ | ‘ Cos a i
| | | i | | |
| | | cm cm cm | cm
49 1 0.9946 | 0.7903 | 0.9423 48.91 43.5 ‘ 22.4 ‘ 0.022 7.5
16 . 6356 . 693 . 6938 36. 02 30.0 20.0 | .014 5.8
1 . 2097 . 602 . 2805 14. 56 ‘ 11.3 ‘ 9.2 | . 003 3.1
0.25 . 1204 . 592 L1767 9.17 | Tl | 5.9 .001 283
| | |

TasLE 2. Constants of auxiliary windings for solenoid NBS
58080

Condition: Iy =—N,L

Cosin? e | Comp.

Zy n €0S 61 | r18in 6y |——
|
|

|
\
l

N M radius
| \ CoS a
P | R | | SR | S | N | S S | E——

‘ l cm cm cm ! cm

—49 0.9946 | 0.1139 | 0.8017 | 41.6 14.05 | 39.2 | —0.108 5.4
—16 L6356 | . 1006 L5823 | 30.2 9. 59 28.7 ‘ —. 059 4.6
—1 . 2097 . 0852 . 2438 12.7 | 3.69 12.1 | —.0075 2.7

—0.25 . 1204 . 0829 . 1547 8.03| 231| 7.7 1 —. 0029 2.0

Corresponding values for the condition /,=—N,I have been found and are listed in table 2.

There appears to be nothing in favor of the latter case, unless the relatively close spacing of
the auxiliary windings is especially appropriate to an experiment. To give an idea of the
expected improvement over the uncompensated solenoid, we calculate the term n=1 in the
series of 1, (eq (2)) relative to the constant term cos «, and find that it reaches 1 ppm at
r=0.16 c¢m.

We assume in what follows that the solenoid construction is accurate to 1 ppm. When
deciding upon a design, one has to consider the accuracy required in the construction of the
auxiliary coils in order to realize a given accuracy in the combination. If an accuracy of, say,
1 ppm is desired and an experiment requires a uniform region whose volume has a radius of
7.5 cm the required accuracy in the compensating coils (N,=49) is about 1 part in 20,000, a
rather severe requirement. On the other hand, a uniform region with 2 c¢m radius (N,=0.25)
:an be had for an accuracy of only 1 part in 1,000 in the construction of the auxiliary windings.
Obviously it does not pay to compensate over a region larger than necessary.

(Paper 69C1-185)
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