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By reversing the usual direction of application, a common procedure for solving integral equations
numerically is used to obtain the asymptotic P-condition numbers of two well-known test matrices.
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Todd [1]' has recently suggested the matrix A;;
=(li—j|), 1 < i,j < n, as an addition to the well-known
collection of test matrices [2]. The P-condition num-
bers of the matrices are used as a measure of their
difficulty for numerical purposes. Where the condi-
tion numbers are not explicitly known, the asymptotic
behavior in n is given. Lehmer’s matrix A4,

ajj = l/] ISy

=jli ji<i
is exceptional in that the correct order in n is not
known. A simple idea will allow us to obtain the
asymptotic condition number of 4,; and the correct
order for A4;.

Hilbert’s first method for integral equations [3] ap-
proximates the eigenvalues of the kernel K(x, y),
0<x,y=<1,bythose of the matrix

(6o ))

If K is bounded and Riemann integrable, then the eigen-
values of the matrices tend to those of the integral
equation as n tends to . We reverse this procedure.
We wish to estimate the behavior of the eigenvalues
of a set of matrices as n tends to ©. If we can regard
them as arising from the application of Hilbert’s first
method to a fixed kernel, then we may hope for an
asymptotic result.

To estimate the largest eigenvalue of 4, let us form
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We regard them as arising from the approximation
of the kernel
Kx, y)=|x—y|.

A simple computation gives the largest eigenvalue of

K as

where z, is the unique real root of coth z=z. This
equation has been studied [4] and z, is approximately
z,=1.9967864. We conclude that the largest eigen-
value of A, is asymptotically

1 ¥ ¢
N5

It is easy to estimate the accuracy of the approxima-
tion using the bounds of [5] but we shall not go into
this.

We need the reciprocal of the eigenvalue of A .
smallest in modulus. It is obtained as the largest
eigenvalue of the inverse matrix.

Let us introduce the matrices

M=-—2A;7‘,
=1 )
=1, 2, =1l
SR
=1l &, =1
—1,1
and Q where [q,,=¢,,=q,, :q"":T}T

q;= 0 otherwise.
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It is readily verified that
AF=3Q—N)
or
M+Q=N.

Q is obviously a positive semidefinite matrix. By a

well-known inequality [6, p. 73],
N(N)=NM+ Q)= N (M).

Rutherford [7] has shown that the eigenvalues of N are

L .
4 cos? — i=1,2,.. ., n.
2n

and the eigenvector associated with A (V) is

L . (—=Dm .
x.:smj——smu j=1,. . ., n
J n n
The Rayleigh quotient furnishes a lower bound to
M(M). A convenient approximate eigenvector is that
associated with Ay(V). For this vector

2
e
A little algebraic manipulation gives
8 sin2 T
Ar(M) = Ni(N) A =DM
Thus
Ae(M) < Mi(M) < \i(N)

and we see

}\1(/‘4) =S 7\1(N) =F 0(ﬂ_4

From this

= 2 T 4
2 cos 2n+0(n )

An(A17)
and finally

; T
P(A17) ~ z5?n? cos? o

The same methods applied to the kernel

K(x, y)=x/y x<y

ylx y<x

show that for A7, A;=0(1). The inverse is explicitly
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ar—1 0
n? .

2n—1 e

_ii+1) L

i1 =l

0 li—j| >1.
. . . . 1
Gerschgorin’s theorem immediately gives v =0(n).

From
7) ~ cn where c i1s a constant.

Todd and Newman comment that P(A4;)=n
this we conclude that P(4
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