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By reversing the usual d irection of appl ication, a co mmon procedure for solv ing integral eq uations 
numericall y is used to obtain the asymptotic P-condition numbe rs of two weU-known tes t matrices. 
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Todd [1]1 has recently sugges ted the matrix AI7 

= (I i-ill, 1 ,s; i, i ,s; n, as an addition to t he well-known 
collection of test matrices [2]. The P-co ndition num
bers of the matrices are used as a measure of their 
difficulty for num e rical purposes. Where the condi
tion numbers are not explicitly known, the asym ptotic 
behavior in 11 is give n. Lehmer's matrix A7 

au = iii i ,s; i 

= iii i < i 

I is exceptional in that the correct order in /J is not 
known_ A si mple id ea will allow us to obtain the 
asymptotic cond ition number of A 17 and the correc t 
order for A 7-

Hilbert 's first method for integral equation s [3] ap
proximates the eige nvalues of the kernel K(x, y), 
o ,s; x, y ,s; 1, by t hose of t he matrix 

If K is bounded and Riemann integrable, then the eigen
values of the matrices tend to those of the integral 
equation as n tends to 00. We reverse this procedure. 
We wish to es timate the behavior of the eigenvalues 
of a set of matrices as n tends to 00 . If we can regard 
them as arising from the application of Hilbert's first 
method to a fixed kernel, then we may hope for an 
asymptotic res ult. 

To estimate the largest eigenvalue of A 17 , let us form 
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] Figures in brac ke ts indica te the literature references at the end of this paper. 

We regard them as arising from the approximation 
of the kernel 

K(x , y)= Ix-yl . 

A simple co mputation gives the largest eigenvalue of 
K as 

A =! Z- 2 
I 0 

where Zo is the unique real root of coth z = z. This 
equation has bee n studied [4] and Zo is approximately 
Zo = 1.9967864. We conclude that the largest eigen
value of A 17 is asymptotically 

It is easy to es timate the accuracy of the approxima
tion using the bounds of [5] but we shall not go into 
this. 

We need the reciprocal of the eigenvalue of AI7 

smalles t in modulus. It is obtained as the largest 
e igen value of the inverse matrix. 

Let us introduce the matrices 

M =- 2A-1 
17 ' 

1, - 1 

N= -\\\ 
-1,2,-1 

-1,1 

1 
and Q wherelqll~qln=qnl.= qnll = n-l 

qij - 0 otherwIse. 
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It is readily verified that 

or 

M+Q=N. 

Q is obviously a positive semidefinite matrix. 
well-known inequality [6, p. 73], 

Bya 

Rutherford [7] has shown that the eigenvalues of N are 

4 cos2 [7T 

2n 
i = 1,2, ... , n. 

and the eigenvector associated with A1(N) is 

. j1T . (j - 1)7T 
x.=sm --sm ---

J n n 
j= 1, ... , n. 

The Rayleigh quotient furnishes a lower buund to 
Al(M). A convenient approximate eigenvector is that 
associated with AI(N). For this vector 

A little algebraic manipulation gives 

Thus 

and we see 

From this 

and finally 

The same methods applied to the kernel 

K(x, y)=x/y 

y/x 

x";y 

y<x 

show that for A 7 , Al = 0(1). The inverse is explicitly 

n 2 

2n-1 

_i(i+1) 
2i+ 1 

o 

i = j, i < n 

i=j=n 

li-jl=1 

li-jl>l. 

Gerschgorin's theorem immediately gives I~J =O(n). 

Todd and Newman comment that P(A7) ~ n. From 
this we conclude that P(A 7) ~ en where c is a constant. 
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