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Groups of Unimodular Circulants
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(August 12, 1965)

A method to determine a basis of the group of rational integral symmetric positive definite uni-
modular nxn circulants for any n, is presented. This method uses the correspondence between
unimodular circulants and units of the algebraic number field R({), where { is a primitive nth root

of unity.
finitely generated group of units in R({).
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In 1956, M. Newman and O. Taussky [7]' exhibited
a rational integral symmetric positive definite uni-
modular 8 X 8 circulant that was not of the form 44’',
where A is a rational integral 8 X8 circulant and A’
its transpose. The method they used in obtaining the
positive definite circulant can be adapted to find
generators of groups of rational integral symmetric
positive definite unimodular circulants for parti-
cular values of n. However, difficult problems arise
when the method is applied for arbitrary n.

This paper presents an alternate method of deter-
mining generators of these groups through the use of
a correspondence, investigated by O. Taussky [8],
between units of the algebraic number field R({),
where { is a primitive nth root of unity, and unimodular

circulants. The group of units in R({) is abelian and
finitely generated. By restricting the discussion

to certain aperiodic subgroups of this group, results
conveniently compiled in Hecke [2, pp 38—44] can be
used to determine generators of the subgroups. By
the correspondence, then, generators of groups of
rational integral symmetric positive definite uni-
modular nxn circulants are obtained. In addition,

. n
the number of these generators is proved to be [E:I

+1—00(n), where oo(n) is the number of positive
divisors of n. Furthermore, an upper bound for the
number of classes of these circulants is obtained
for arbitrary n, where two of these circulants 4 and
B are in the same class if and only if there is a rational
symmetric unimodular nxn circulant S such that 4

=S'BS.

! Figures in brackets indicate the literature references at the end of this paper.

First, the notation used throughout this paper will
be established. Let P be the nxn permutation matrix

0 1 0 0
0 0 1 0
1 0 0 0

Then P is a full cycle. Since P is normal there exists
a unitary matrix U such that U* P U=D, where
D, is a diagonal matrix and U* is the conjugate trans-
pose of U. Assume  is a primitive nth root of unity.

Then U may be taken as - (g9) for 1<, j<n.
,\/,_l J

It follows that D, = diag (£, %, . . . . {" and the eigen-

values of P are the nth roots of unity.

Let C be an nxn rational integral unimodular cir-
culant given by C=aol+aP+. . .+a, P,
Denote by G the group of all such circulants; G,
the subgroup of symmetric elements of G; and G,
the subgroup of positive definite elements of G.
We will prove that G is a finitely generated abelian
group (Theorem 1). The subgroup G; and G, of G,
then, are also finitely generated and abelian. It
follows that each of the groups G, G,, G» can be
decomposed into the direct product of a periodic
group and an aperiodic group [9, p. 91]. Let R be
the field of rationals and denote by E the finitely
generated multiplicative abelian group of units in
R(Q); E,, the subgroup of real elements of FE; and
E,, the subgroup of totally positive elements of E;.
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That is, E> consists of those elements of E; which are
positive together with all their conjugates. (The nota-
tion and definitions of all groups in this paper are
given in the appendix.)

With the above notation, Dirichlet’s Theorem [2,
p. 124] can be stated as follows:

If the defining polynomial of R({) is p(x), and if
among the roots of p(x) there are ry real and 2r, imagi-
nary ones, then the number of elements of infinite
order in the basis of £ is r=r;+r,—1. There exist
r+1 units {, My, . .., m,, where { is a primitive wth
root of unity, such that any element € of £ has a unique
representation €= {%n$1 . .. n%, where a; are rational
integers for 1 < i < r and ayis a rational integer modulo
w.

Note that the basis elements my, . . .
order can be taken to be real [1, p. 185].

Each group E, E,, and E» can also be decomposed
into a direct product of a periodic group and an
aperiodic group. Let E{ be the largest aperiodic
subgroup of E;. Define H, Hy, and H, as follows:
H is the largest aperiodic subgroup of G; H, is the
subset of elements of H all of whose eigenvalues

belong to E; and H,=H, N Gs.

The following theorem will be of importance. A
sketch of the proof was published as part of a paper
by M. Newman [6]; the proof was suggested by O.
Taussky. The proof is included here because some
of the details in the proof will be used in later proofs.

THEOREM 1. G is a finitely generated abelian group
with respect to matrix multiplication.

PrOOF. It is clear that G is an abelian group with
respect to matrix multiplication. To show that G
is finitely generated, we embed it in a finitely generated
group. Let C=ap/+a,P+. . .+ a,_1P"'=¢P) be
an arbitrary element of G. Since P=UD,U*, then
C=UD.U*, where D.=diag (e({), . . . , €") and U
is the unitary matrix mentioned earlier. But D. can
be written as a product in the following way:

, M of infinite

D.=diag (e(0), 1,. . ., 1)diag(1, &), 1,. .

diag (1, .

R ) I
(D)

where €(@) €E for 1 <j < n (since det D.=det C==1).

With the notation in the above statement of Dirichlet’s
Theorem, each unit €{), 1 <j=<n, has the following
unique representation:

€(g) = Comfum$i . . . i,

Then

diag (1, . . ., 1, €&, 1, ..., )=diag (1, . . ., 1,

o, 1,. .., ) [Jdiagd,. . 1ot 1, L D),
1

where the elements (&), {%i, ni appear in the jth

Let

position on the diagonal for 1 <j < n.
Ayj=U diag (1, . . ., 1,¢ 1,...,1) U*

I-j=Udiag(l7 5 o o g 1, Nis « + o 1) U*,

l=si=r,1<j=<n(ie., the elements { and 7;, appear
in the jth position on the diagonal of A4;, 1=<j=<n).
Then there are finitely many matrices of the form A4;;

such that

c= I
(=0 V1P
Jj=1,. . ..n

A
ij
s T

Il

However, the matrices 4;; need not be circulants.

Consider the group I" generated by the A4;’s defined
above forO0<i<rand 1 <j<n. ltis clear that I'is
finitely generated. Furthermore, ["is abelian because
diagonal matrices commute. Thus I' is a finitely
generated abelian group which contains G as a sub-
group and the theorem is proved.

COROLLARY 1. All eigenvalues of an element of
G(G,,i=1, 2) are elements of E(E;, i=1, 2).

A relationship between G and a certain group of
units will be established for which the following prop-
erties of units in £ are needed.

LEMMA 1. Let ®,(x) be the cyclotomic polynomial of
degree ¢(n) and let v be a primitive n'" root of unity.
Then the sum of the coefficients of a unit q(v)eE can be
changed modulo ®,(1) without changing the unit.

Proor. Let ¢(x) be an integral polynomial such
that ¢(v) is a unit in E. Define a polynomial g(x) as
follows: ¢dx)=q(x)+t®,(x), where ¢ is an integer.
Then gq/{v)=q(v) and g(1)=gq(1)+tP,(1). Since q¢(1)
is the sum of the coefhicients of g(v) the lemma is
proved.

{p if n=p*

LEMMA 2. &, (1)=]|1 otherwise, where p is a prime
and « is a positive integer. |5, p. 160]

Proor. Let u(d) be the Mobius function and let { be
a primitive nth root of unity. Then

l_[ (x_ gr): H (xn/rl_ l)u(d)

(r, n)=1 dln
xn/(i._l wu(d)
T (S a1
d|n S5

The last equality follows because

D (x)=

H x—1D=(x—1)=1forn>1 and o= u(d).

d|n din

Thus, for n >1

(d)
d,(1)= H (I1—= H <§>M = H d—m@

(r, n)=1 d|n d|n

p if n=p°

1 otherwise.
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From Lemma 1 it follows that the representation of a
unit g(v) in E can be uniquely given either by specify-
ing g(n) for some nonprimitive nth root of unity (for
example, n=1) or by specifying the polynomial g(x).

EXAMPLE. A primitive 5th root of unity v satisfies
the relation v*+p3+12+v+1=0. Consider the
distinct polynomials gi(x)=1—x—x* and ga(x) =2+ x>
+ 3. Then

qv)=1—v—v=2+12+ 1= qs(v)
(1) =1— 12— =2+ v+ vi=q1?
@) = i (v?) = q2(1V?)
@(v")=q:(v) = g2(v*)
g =q()=—1, g2(v°) = g2(1)=4.
Let e(x)=ao+aix+. . .+an1x*' be the inte-

gral polynomial such that €((*), 1 <k < n, are eigen-
values of the circulant €P) in G. (Let (=exp

21 . e :
— for definiteness.) From the proof of Theorem 1 it
n

follows that these eigenvalues have a fixed ordering
and, since their representation is fixed by €(x), unique Iy
determine €(P). These eigenvalues occur precisely

once among the numbers €({” "/4), where d runs over the

positive divisors of n, and r runs over those integers
such that 1=r=<d, (r, d)=1. Denote the divisors,
including 1 and n, by d,, , dm, where 1=d, < d.
<...<dn=n and m=an).

Corresponding to each €(x) as defined above there is
an m-tuple (e(L), . . ., €"m)) of units of E. (When n
is a prime p, for example, d,=1, d: (l,,,—p and the
m-tuples have the form (e({), €(1)).) Lel be the set
of all such m-tuples. Define the mapping 6 of G into

F by

0: e(P) —— (e(l™),

€({"m))
and multiplication of elements of % by

€M), . . ., €(lMm) - (8(LD), . . ., 8(Lm))

= (e({™) - &(LM), ., €(m) - &(Lm)).
THEOREM 2. 0 is an isomorphism of G onto #.
ProoF. The mapping 6 is onto. Let €(x) be an
integral polynomial such that €({%eE for each d|n and
define Ay=diag ({mmd, . . ., ("s"?), where k= ¢(d) and
l=rn<rn<...<r=<d are the numbers relatively
prime to d. (That is, the diagonal elements of A4 are
the primitive dth roots of unity.) Form the direct sum

2' Aq. For a suitable permutation matrix Q,

QS AQ' =diag (L, . .

din

L M=D,.

Also

(A(I):diag (e(g"]"/d), R €(€rk"/d))

so that

0 @ e(/\,/)) Q' =diag (€0, . . .. €r")=D
din

and

r[)) () U _G(P eG.

ve (3 «

dln

The mapping 6 is 1-1. Let &(P) and es(P) be ele-
ments of G such that the m-tuples 6(e;(P)) and O(es(P))
are identical elements of #. Then €(P) and e(P)
have the same eigenvalues ordered in the same way,
hence €(P)=exP).

Finally, if €(P) and 8(P) are any two elements in G,
then 0(6( ) - O(8(P))=(e(gh), . . ., €(lm)) - (8(L™N), . . .,
8(&‘1111)) gd 8(" E(C(Inl) g 8({":::))= OelP) - 8([))),
hence 0 preserves multlpli(-atiun.

COROLLARY 2. If 8(P)eG;, i=1, 2, then 6(e(P)) is an
m-tuple of elements of E;, i=1, 2.

PROOF. Assume  €(P)eG,. eP)=¢€P)*

Then

= UD}U*=UD.U* so that D.= D¥*, which implies €(Z"),

1l =k=n,is real.

Assume €(P)eG.. Then D.= D} and D, is positive
definite, hence €((%)ekE», 1 <k < n.

In order that the results on aperiodic groups [2,
pp. 38-44] can be used it is necessary to consider the
restriction of € to an aperiodic subgroup H, nf G de-
fined as follows: H, is the set of elements of G, all
of whose eigenvalues belong to the largest aperiodic

subgroup E{ of E;.

THEOREM 3. If n# p®, where p is a prime and «
is a positive integer, then 6 maps Hy onto the subset
Fi of # consisting of m-tuples (e({%), , €(lm)) of
elements of E{. If n=p“, then 6§ maps H, onto a sub-
set F'{ of ¥y, where ¥| consists of m-tuples of elements of
a subgroup KY of K, defined as follows:

Ef= {e(Q)eE{|e(1) = 1 (mod p)},
where €(x) is an integral polynomial such that €(P) is
a circulant in Hy with eigenvalues €(Z*), 1 <k < n.

Proor. It follows from Corollary 2 that the units
in the m-tuples of F; are real. Also, €{")=¢€(1)=1
since €({") is a real eigenvalue of a unimodular matrix
with integral coefficients and an element of an aperi-
odic group. By Lemma 1, any polynomial €(x) of the
form e€/(x) = e(x)+ t®,(x) and such that €(P) is a cir-
culant in H; has coefficient sum €/(1) = (1) (mod ®,(1)).
The theorem follows from Lemma 2.

Theorems related to the number of basis elements
of the aforementioned groups will now be established.

THEOREM 4. If n=p®, then (F;:F))=p—1.

PRrROOF. Let k£ be an odd primitive root modulo p
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and define the function wak(x) as follows:

_ g
Jl—x" 1 xi‘_xlk(ll—x>’ 1
>A(X) 1—x 1—x X
L(1+x+ Bt

Then par(0)eE 1, where { is a primitive p*th root of unity.
Let mi(x) be the positive square root of pak(x). Then

x=1.

(2=l

— K 5
eE{, forv=¢, 07, . . ., P,
—p

1=k 1
ur(v)=v 2 I

and ur(l)=~k, hence ur(1)y=4k".

Now, let ¢(x) be an integral polynomial such that

q(0), q), .. q(@")eF 1. Then (g(1), p=1. For,
f (q(1), [))=p, then ¢(1)=c-p for some integer c.
Consider the polynomial g(x)=q(x)— ],a (x). Since
g1)=0, (x—1)|gx) and gqx)= c@lla(x)-kr(x)(x-l),
where rx) is a polynomial with rational integral co-
efficients. Then ¢(Q)=r(()({—1) so that =1=1Ig(J
=11r()({—1)=pllr({) where the products are taken
over all primitive p®th roots of unity. But this implies
p|1 which is a contradiction. Thus (¢(1), p)=1 and
there exists an r, 1 <r<p—1, such that g(1)u(1)"
=1 (mod p). Thus qv)- ,LL,AV)’GEI, for this value of r
and for v=1¢, ¢, , ", hence (F,:F))<p—1.

From the above result it follows that F| can be
written as a set theoretic sum with at most
p—1 summands of the form wj - F'{, where ui is de-
fined as wi=(u(Q), . . ., u(lP))eF; for 0 <i<p—2.
But there must be at least p—1 summands. Assume

=2
Fi="S uj - F} and - Fi=

i=0
= =0 wi'eF | and (1) -

Wi - Fi, where 0<¢, s

Then uf - ur(1)=s= k=3
=1 (mod p). This implies (p —1)|(r—s), hence r=s
and (F: F})=p—1 which proves the theorem.

NoTeE. Let F=6(H). Then it is also true that
(F: F)=p—1 since the basis elements of the group £
can be chosen to be real.

The following theorem is one of the principal re-
sults in this paper.

THEOREM 5. The number b(n) of basis elements of
the largest aperiodic subgroup H of G is given by

bn)=S (3 ¢(d )—D—[ ]+1-cro(n>
din
a>2

where oo(n) is the number of positive divisors of n.

ProOOF. Let €(x) be an integral polynomial such
that e(P)eH has eigenvalues €((), . . ., €({") in E. De-
note the image of H under the mapping 6§ by F. Then
F is an aperiodic subgroup of # consisting of m-tuples
of the form

m

fTa

(e(g™), - €({tm) = €%, 1,. . ., 1),

where di, . . ., dy are the positive divisors of n. (Note

. . ... n ,
that {% is a primitive —th root of unity, 1 <

d;

that both (—’;— and d; run through all positive divisors of
]

i<m,and

n.)

Let d > 2 be a divisor of n. The defining polynomial
of a primitive dth root of unity v is ®4x). This poly-
nomial has ¢(d) complex roots and no real ones. By
Dirichlet’s theorem there are 3 ¢(d)— 1 basis elements
of infinite order in the group of units in R(v). (The
group is trivial when d=1 or 2.) A basis of the aperi-
odic group F, then, consists of 3( % ¢(d)— 1) elements,
where the summation is over all positive divisors d of n
greater than 2, and the first equality is proved.

The second equality can be proved by considering
two cases.

(i) n is odd. Then
S o)~ D)=} Seld) -

(go(n)—1)=3 (n—1) oo(n)

+1= l:g:!+ 1— ao(n).

Then

(il) n is even.

2(% (d)—1)=12 2cp(/) (go(n)—2)

N

(n—2)—aon)+2= B] +1—aon).

By a direct application of Theorem 5 it follows that

b(p)=
that b( 21)) =2-b(p)=p—3.
odd, then b(2n)=2-b(n).

The following table gives the values of b(n) for 1
<n < 16.

=3
——, where p is a prime greater than 2, and

More generally, if n is

n 123 45 6 7 89 10 11 12 13 14 15 16

bn) 0 0 0 01 0 21 2 2 4 1 5 4 4 4

Assume fi, . . ., f, is a basis of F. That is, fi,
1 <i=<n,is an m-tuple of units of £ as defined above.
Then bases for Fi(F{) and F;= 6(H,) of the following
form can be found [2]:

ﬂl)zﬂll f'2"12' ' ‘ﬁlr

= f72c22. o flar

= ferr

and
ﬂz)zﬂx)m émuz . -ﬂ”""
= Aoz foner
o= fore
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respectively, where |kiikss . . . kyo|=(F:Fy)or (F:F{)
and |lidlss . . . 1|=(Fi:Fs) or (F{:F,). These
bases are not necessarily unique but when one is
known it is possible to determine bases for H, H,,
and H, by the correspondence in Theorem 2. Then
=b(n). Furthermore it will be shown in Theorem 8

that an upper bound for the value of [1111s2 . . . 1,4,
that is, for (H,: H) is 2".
As examples, consider the cases n=>5 and 7. The

case n=>5 has been worked out by O. Taussky [8] by a
different method.

(I) n=5. Let { be a primitive 5th root of unity.
From Theorem 5, b(5)=1=r. Fueter [1, p. 186]
showed that €({)=¢*+ ¢* is a fundamental unit of E of
infinite order, hence (e({), €(1))=/f; can be chosen as
a basis of F. From Theorem 4, (F:F{)=4 so that
fP=f4=(e(0)*, e(1)*), where e()*=6+ 4L+ >+ +4
=3+(— 2@2—2?-}-@4 (Note that, since €1)=2, the
smallest exponent & such that 28 =1 (mod 5), is k=4.)
The group of nonzero residues modulo p is cyclic so
that f{V can be taken as a basis of F| and the circu-
lant C=[3, 1, —2, —2, 1] is a basis of H,. But C is
positive definite so that for the case n=5, H,= H..
Furthermore, C=[1, 0, —1, —1, 0] which implies
that there is only one class of symmetric positive def-
inite unimodular 5 X5 circulants with respect to con-
gruence over rational integral circulants.

(2) n=7. Let { be a primitive 7th root of unity.
From Theorem 5, b(7)=2=r. Fueter [1, p. 186]
showed that €{)=1-+{+ % and &) =1+ + {* are
fundamental umts of E of infinite order, hence (e({),

1))=/f1 and (8(2), 8(1))=f:> can be (h()b( :n as a basis
of F. From Theorem 4, (F:F[)=6 so that
fo=pn - e
and
ﬁ’l): f"\)‘zz‘
where ’llcll * k22) =6 form a basis of F|. Since §1)=3

it follows that ks> must satisfy 32 =1 (mod 7), hence
k2»=6 and fU=/f% is a basis element of F'|. Also,
n—==1""Tlet k=1 Since e(l)=3" it follows that
k12 must Satlsfy 3-3k2=1 (mod 7), hence k=5 and
fIV=f"-f5is a second basis element of F,. Now

FO=113-+102{+ 962+ 1108 + 110£* + 96> + 102¢°
=0— 27— 80+ 60+ 61— 85— 2[5,

since €(1) - 8(1)>=36=1+104 - 7, and

SWO=141 496+ 7132+ 12703+ 1270+ 715+ 968
=37 = Gl— SN2 4 2/ W= THE =,

1+104.7.

since 8(1)6=36=

Thus the circulants

Ch=0, =2, =8, G, &, =&, =%

Co=I8T, =t =88k, 28, 265, =3k, =]

can be taken as a basis of H,.
In a similar manner it can be shown that

FE=F% and =30
form a basis of Fs so that

D= (2=1[289, — 64, — 260, 180, 180, — 260, — 64]

D,=C,=[37,—8,—33, 23, 23, — 33, — 8]

form a basis of Hs. A more convenient choice of
basis would be
S 2
D;=C} -

,'=03,0,—2,1,1,—2, 0]

D;= C.=[37,—8,—33, 23, 23, —33, — 8].

In the latter case,

D;:|_17 07 1707 07 17 0J2

D;=[-3,1,3,—-2,—-2,3, 1F

so that there is only one class of symmetric positive
definite unimodular 7 X7 circulants with respect to
congruence over rational integral circulants.

Number of Classes of Circulants. M. Kneser [3,
p. 250] lists the class number of p()sitive definite
quadratic forms in n variables for 1 <n < 16 and with
determinant 1. The number of classes of circulants
in H, is less than or equal to this class number for each
n. In particular, it is shown that there is only one
class H, for n=<7. M. Newman and O. Taussky [7]
showed there are two classes for n=28. In private
communications M. Kneser proved there is one class
for n=9; M. Newman proved there are two classes
for n=12; and E. C. Dade and O. Taussky found one
class for all prime p <100 except p=29. The num-
ber of classes for other values of n is not known but
an upper bound can be obtained.

THEOREM 8. (H;:H,) <2, where r is the number of
basis elements of H,.

Proor: Let Hy be the set of all elements C of H,
such that C =1I; that is C=A4'A where A is an nxn
unimodular rational integral circulant. Then

(i) If CeHl, then C%eH, (since C2=C"IC).

(ii). Ho is a subgroup of Hi.

(ii1) (H;: Ho) is the number of classes of circulants of
H,, where congruence is over the unimodular rational
integral circulants.

By Theorem 5, the number of basis elements of H, is

r=[g]+l—m)(n). Ifc, .. .,

C, are basis elements
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of H,, then because of (i) and (ii) any element C of
H, can be written in the form

C=Ch-C% . .. ChCy

where CyeH, and 0;=0 or 1 for 1 <i<r. This im-
plies that the order of H,/H, is 2% where s <r, hence
2" is an upper bound for the class number in (iii). But
the number of circulants of H; with respect to integral
congruence is not greater than the number of classes
with respect to congruence over circulants, so that 2r
is actually an upper bound for this class number.
Thus (H;:H,) < 2" and since H, is a subgroup of H»
it follows that (H,: Hs) < 2".
Appendix

The following list includes the notation and defini-
tions of all sets referred to in the paper.

Set  Definition

G = All rational integral unimodular nxn circulants.
G, =Symmetric elements of .

G, =Positive definite elements of G;.

E = All units in R({).

E,=Real elements of E.

E>="Totally positive elements of E;.

E! =Largest aperiodic subgroup of E;.

Elrr: {€(€)6E1’|€(1) =] (mod [))}

H = Largest aperiodic subgroup of G.

H,=Elements of H all of whose eigenvalues are ele-
ments of E/.

Hz:Hl ﬂ Gz.

F= 06G)={(el™), . . ., el™m)|d,

positive divisors of n; €(Qek'}.

., dn are

F=6(H).
F{=0(H,), when n # p,={(€{{®), . . ., e({m))|e(c%)

ek, 1<i<m}.

F'=6(H;), when n=p* ={(e({?),
le(td)eE), 1 < i< m}.

o G(gdm))

Fz = H(Hg)
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