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Groups of Unimodular Circulants 

Richard H. Austing 

(A ugust 12, 1965) 

A me thod to determine a basis of the group of rational integral sy mmetri c posi ti ve definite uni· 
modular IlXII c irculants for any II. is presented . Th is method uses tllP co rrespondence between 
unin.vdular eirculants and units of the algebraic number field R(D, where ~ is a primitive nth root 
of unity. Know n resu lt s are used to obta in gene rato rs of ce rtain ape riodic subgroups of the abe li an, 
finitely generated gro up of un it s in RU;l. The co rres ponde nce, then , ~) ruduces the desired bas is eJe-

ments. The number of bas is elements for each II is proved to be r ~ J + 1- o-,,(n), where o-o(n) is the 

numbe)" uf posi ti ve diviso rs of n . In addition, an upper bound for t~1e number of congruence c lasses 
of these circulant s is obta ined , where co ngrue nce is re lative to rationa l symmetri c unimodular Ilxn 
circulant s. 

Key Word s: Algebraic numbers, c irculant matrices, abe li an g roups. 

In 1956, M. Newman and O. Taussky [7]' exhibited 
a rational integral symmetri c positive defin ite uni­
modular 8 X 8 circulant that was not of the form AA', 
where A is a rational integral 8 X 8 circulant and A' 
its trans pose. The method they used in obtaining the 
positive definite ciJ'culant can be adapted to find 
generators of groups of rational integral symme tri c 
positive definite unimodular circulants for parti­
c ular values of n. However, difficult problems arise 
when the method is applied for arbitrary n. 

This paper presents an alLernate method of deter­
mining generators of these groups through the use of 
a correspondence, inves tigated by O. Taussky r8]. 
between units of the algebraic number field R m, 
where ~ is a primitive nth root of unity, and unimodular 
circulants. The group of units in R(l;,) is abelian and 
finitely generated. By restricting the discussion 
to certain aperiodic subgroups of this group, results 
convenien tly compiled in Hecke [2 , pp 38-44] can be 
used to determine generators of the subgroups. By 
the correspondence, then, generators of groups of 
rational integral symmetric positive definite uni­
modular nxn circulants are obtained. In addition, 

the number of these generators is proved to be [~] 
+ 1- O"o(n), where O"o(n) is the number of positive 
divisors of n. Furthermore , an upper bound for the 
number of classes of these circulants is obtained 
for arbitrary n, where two of these circulants A and 
B are in the same class if and only if there is a rational 
symmetric unimodular nxn c irculant 5 such that A 
=5'B5. 

1 Fig:urf's in bracke ts indicate the litera ture n·ferelH.:e:; at the end qf this paper. 

First, the notation used throughout this paper will 
be established. Let P be the nxn permutation matrix 

o 1 o 

o o 1 

1 o o o 

Then P is a full cycle. Since P is normal there exists 
a unitary matrix U such that U* P U = Dp ' where 
D" is a diagonal matrix and U* is the conjugate trans­
pose of U. Assume ~ is a primitive nth root of unity. 

Then U may be taken as ~ (Sii) for 1 ~ i , j ~ n. 

It follows that D,, = diag (~, ~2, . • • ,~") and the eige n­
values of P are the nth roots of unity. 

Let C be an nxn rational integral unimodular cir­
culant given by C=aoI+a,P+ .. . +an._,pn- '. 
Denote by C the group of all such circ ulants; G" 
the subgroup of symmetric elements of G; and G2 , 

the subgroup of positive definite elements of C,. 
We will prove that C is a finitely generated abelian 
group (Theorem 1). The subgroup G, and G2 of G, 
then , are also finitely generated and abelian. It 
follows that each of the groups C, G" G2 can be 
decomposed into the direct product of a periodic 
group and an aperiodic group [9, p. 91]. Let R be 
the field of rationals and denote by E the finitely 
generated multiplicative abelian group of units in 
R(~); E 1, the subgroup of real elements of E; and 
E 2 , the subgroup of totally positive elements of E,. 
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That is, E2 consists of those elements of EI which are 
positive toge th er with all their conjugates. (The nota­
tion and definitions of all groups in thi s paper are 
given in the appendix.) 

With the above notation, Dirichlet's Theorem [2, 
p. 124] can be stated as follows: 

If the defining polynomial of RW is p(x), and if 
among the roots of p(x) there are rl real and 2r2 imagi­
nary ones, then the number of elements of infinite 
order in the basis of E is 1'= 1'] + 1'2 -1. There exist 
1'+ 1 units ~, 171, ... , 17,', where ~ is a primitive wth 
root of unity, such that any element E of E has a unique 
representati on E = ~a017\'l . .. 17~", where ai are rational 
integers for 1 ~ i ~ rand ao is a rational integer modulo 
w. 

Note that the basis elements 171, ... , 17 1' of infinite 
order can be taken to be real [1, p. 185]. 

Each group E, E I , and E2 can also be decomposed 
into a direct product of a periodic group and an 
aperiodic group. Let E; be the largest aperiodic 
subgroup of E I • Denne H, HI, and H2 as follows: 
H is the largest aperiodic subgroup of C; HI is the 
subset of e lements of H all of whose eigenvalues 
belong to E;; and H2 = HI n C2_ 

The following theorem will be of importance. A 
sketch of the proof was published as part of a paper 
by M. Newman [6]; the proof was suggested by O. 
Taussky. The proof is included here because some 
of the details in the proof will be used in later proofs. 

THEOREM 1. Gis afinitely generated abelian group 
with respect to matrix multiplication. 

PROOF. It is clear that Cis an abelian group with 
respect to matrix multiplication . To show that C 
is finitely generated, we embed it in a finitely generated 
group. Let C = aof + alP + . . _ + all _IP" - I = E(P) be 
an arbitrary element of C. Since P= UDpU*, then 
C= UDcU*, where Dc= diag (E(~), ... , E(~n)) and U 
is the unitary matrix mentioned earlier. But Dc can 
be written as a product in the following way: 

Dc=diag (E(~), 1, ... ,1) diag(1, E(??), 1, .. 
diag (1, . 

,1) .. . 
. , E(S")) 

where EW) EE for 1 ~ j ,.;;; n (since del Dc = det C = ± 1). 

With the notation in the above statement of Dirichlet's 
Theorem, each unit E(sj), 1 ~ j::S; n, has the following 
unique represen tation: 

Then 

diag (1, . , 1, E(~), 1, .. . , 1) = diag (1, ... , 1, 
I' 

, 1) Il diag (1, ... , 1, 17fij, 1, ... , 1), 
; - 1 

where the elements E(sj), ~(/Oj, 171'ij appear in th e jth 

position on the diagonal for 1 ~ j ~ n. Let 

AOj= U diag (1, __ . , 1, ~, 1, _ .. ,1) U* 

Aij= U diag (1, ... , 1, 17i, ... , 1) U*, 

1 ~ i ~ r, 1 ~ j ~ n (i.e_, the elements ~ and 17;, appear 
in the jth position on the diagonal of Aij, 1 ~j ~ /1 ). 
Then there are finitely many matrices of the form Aij 
such that 

C = II A"" .. I). 
I) 

i=O. 1 .. ... l' 

j =1. . " n 

However, the matrices Aij need not be circulants. 
Consider the group r generated by the Aij's defined 

above for 0 ~ i ~ rand 1 ~j ~ n. It is clear that r is 
finitely generated. Furthermore, r is abelian because 
diagonal matrices commute. Thus r is a finitely 
generated abelian group which contains G as a sub­
group and the theorem is proved. 

COROLLARY 1. All eigenvalues of an element of 
G(G;, j = 1, 2) are elements of E(Ej, i = 1, 2). 

A relationship between C and a certain group of 
units will be es tablished for which the following prop­
erties of units in E are needed. 

LEMMA 1. Let <1>n(x) be the cyclotomic polynomial 0/ 
degree cp(n) and let v be a primitive nIh root of unity. 
Then the sum of the coefficients of a unit q(v)EE can be 
changed modulo <1>nO) without changing the unit. 

PROOF. Let q(x) be an integral polynomial such 
that q(v) is a unit in E. Define a polynomial q,(x) as 
follows: q,(x) = q(x) + t<l>II(X), where t is an integer. 
Then q/v) = q(v) and q,(I) = q(l) + t<1>II(I). Since q(l ) 
is the sum of the coefficients of q(v) the lemma is 
proved. 

{ p if n= pO: 
LEMMA 2. <1>n(l) = 1 otherwise, where p is a prime 

and (l' is a positive integer. [5 , p. 160] 
PROOF. Let fL(d) be the Miibius function and let ~ be 

a primitive nth root of unity. Then 

<1>1I(X) = II (x- ~'') = II (X" /d -1)J.t(d) 
(1',11) = 1 d ill 

_ (XIII" - l)f.L(d) -II x-I ,n>1. 
di ll 

The last equality follow s because 

IT (X-l)f.L(d)= (x-l)O' = 1 for n > 1 and u= ') fL(d). 
d ill ~ 

Thus, for n > 1 

<1>11(1)= IT (l- s'')=IT (~)f.L(d~IT d- f.L«t) 
(I', n)= 1 d in d i ll 

{
p if n=p" 

- 1 otherwise. 
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From Lemma 1 it follows that the representation of a 
unit q(v) in E can be uniquely given either by specify­
ing q(YJ) for some nonprimitive nth root of unity (for 
example, YJ = 1) or by specifying the polynomial q(x). 

EXAMPLE. A primitive 5th root of unity v sati s fi es 
the relation v4 + v:l + v2 + V + 1 = O. Consider the 
distinct polynomial s ql (x ) = 1- x - X4 and qAx) = 2 + x 2 

+x3• Then 

ql(v) = I -v - v4 = 2 + v2 + v:3 = qAv) 

ql (V2 ) = 1- v2 - v3 = 2 + v + v4 = q2(V2 ) 

ql (v:J) = ql(V2 ) = q2(V3) 

ql(V4 ) = ql(v) = q2(V4 ) 

QI(v5)= ql(l) =- I, q2(v5)= Q2(I )= 4. 

Let E(x)=ao+alx+ . . . +a,, _lx" - 1 be th e inte ­
gral polynomi a l suc h that E(~k), 1 <s; k <S; n, are eigen­
values of the circulant E(P) in G. (Let ~ = exp 

27Ti for defi niteness.) From the proof of Th eore m 1 it 
n 

follow s that these eigenvalu es have a fixed ordering 
and, sin ce their representat ion is fixed by E(X), uniquel y 
determin e E(P ). T hese eige nvalu es occur preci se ly 

once among the numbers E(~r /lid), where d runs over the 

positive di visors of n , and r runs over those integers 
such that 1 <S; r <S; d, (r, d) = 1. De note the divi sors, 
includin g 1 and n, by d l , ... , dm, where 1 = d l < d 2 

< . .. < dm = n and m =uo(n). 
Corresponding to each E(X) as defined above there is 

an m-tuple (E(~"I), . .. , E(~dll/)) of units of E. (W he n n 
is a prime p , for example, dl = I, d2 = dll/ = p and the 
m-tuples have the form (Em, E(l)) .) Let :;;-- be the se t 
of all such m-tuples. De fin e th e mapp in g 0 of G into 
$Tby 

.and multiplication of ele me nts of $T by 

THEOREM 2. 0 is an isomorphism of G onto $T. 
PROOF. The mapping 0 is onto. Let E(X) be an 

integral polynomial such that E(~d)EE for each din and 
define All = diag ( ~r' IIl/Il, ... , ~rkll / Il), where k = cp(el) and 
1 = rl < r2 < .. . < r" <S; d are the numbers relatively 
prime to d. (That is , the diagonal elements of All are 
the primitive dth roots of unity.) Form the direct sum 
)' Ad. For a suitable permutation matrix Q, 
JIn. 

Q)' AdQ'=diag (~, . .. , ~ ")= D". 
~ 

Also 

so that 

and 

UQ (2:' E(Ar,)) Q' U* = E(P )EG. 
d i ll 

The mapping 0 is 1- 1. Let EI (P ) and EAP ) be ele­
ments of G such that th e m-tuples O(EI(P)) and O(E2(P)) 
are identical elements of $T. The n EI (P ) and EAP) 
have the same eigenvalues ordered in the sam e way, 
hence EI(P ) = E2(P). 

Finally,if dP) and oW) are any two eleme nts in G, 
then O(E(P)) , O(o(P)) = (E(~dl) , .. . , EWIIl ))' (o(,rt l ), . . . , 
o(~dm))= (E(~dl )' O(dl ), ... , E(~dm) ' O(~dm))=O(E(P)· o(P)), 

he nce 0 preserves multiplication. 
COROLLARY 2. If O(P)EGj, i = 1,2, then O(E(P)) is an 

m -tufJle of elements 0/ E i , i = 1, 2. 
PROOF. Assume E(P)EGI. Then E(P ) = E(P )* 

= UD~U* = UDcU* so that Dc= D~, whi ch im plies E(~ "), 
1 <S; k <S; n , is real. 

Assume E(P)EGz. The n Dc= D~ and Dc is positive 
definite, hence E(~h')EEz, 1 <S; k <S; n . 

In order that the result s on aperi odi c groups [2, 
pp. 38- 44] can be used it is necessar y to co ns ider the 
restriction of 0 to an aperiodic subgroup HI of G de­
fined as follows: HI is the se t of ele me nts of GI all 
of whose eigenvalues belong to the largest aper iodic 
subgro up E; of E I • 

THEOREM 3. Un #- p", where p is a prime and (l' 

is a positive integer , th en 0 nWfJS H I onto the subset 
F I of ff consisting of m-tuples (E(~dl), . .. , E(~dm)) of 

elements of E;. If n = p", then 0 maps HI onto a sub­
set F; ofF I , where F; consists of m-tuples of elem ents of 
a subgroup E'( ofEI defined as follows: 

where E(X) is an integral polynomial such that E(P ) is 
a circulant in HI with eigenvalues E(~I<), 1 ~ k <S; n. 

PROOF. It follows from Corollary 2 that th e units 
in the m-tuples of Flare real. Also , E(~n) = E(I) = 1 
since E(~n) is a real eigenvalue of a unimodular matrix 
with integral coefficients and an element of an aperi­
odic group. By Lemma 1, any polynomial lOb) of the 
form Et(X) = E(X) + t1>n(X) and such that EI(P ) is a ci r­
culant in HI has coefficient sum E,(I) == (1) (mod 1>11(1)). 
The theorem follows from Lemma 2. 

Theorems related to the number of basis eleme nts 
of the aforementioned groups will now be es tabli shed. 

THEOREM 4. Ifn = p", then (F I :F;)= p-l. 

PROOF. Let k be an odd primitive root modulo p 
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and define the function /-L2k(X) as follows: 

J1-Xk.1-X-k=XI_k(1-Xh')2 x# 1 
( ) _ 1- x 1- X-I 1- x ' 

/-L2k X -
I 
l(l + x+ . .. + xk-1)Z, x= 1. 

Then /-L2k({,)EE 1, where (, is a primitive path root of unity. 
Let /-Lk(X) be the positive square root of /-L2I.'(x). Then 

[.ok I-vh" 
/-Lk(V)=V 2 '-l--EE;, for v={" (,P, 

-v 

and /-LIJl) = k, hence /-Lk(l)'" = k". 

a-I . . ",p , 

Now, let q(x) be an integral polynomial such that 
(q({,), q({,P) , ... , q({,P"»EF I. Then (q(I), p) = 1. For, 
if (q(l), p) = p, then q(l) = C' P for some integer c. 
Consider the polynomial g(x) = q(x) - c-Ppa(x). Since 
g(l) = 0, (x -l)ig(x) and q(x) = C-Ppa(X) + r(x)(x -1), 
where r(x) is a polynomial with rational integral co· 
efficients. Then q({,) = r(r,)({, -1) so that ± 1 = Ilq({,) 
= IIr({,)({, -1) = pIlr({,) where the products are taken 
over all primitive path roots of unity. But this implies 
pi1 which is a contradiction. Thus (q(l), p)= 1 and 
there exists an r, 1 ~ r ~ p-l, such that q(I)/-Lk(lY 
== 1 (mod p). Thus q(v) ' gh·(V)'"EE';, for this value of r 
andforv={,,{,P, ... , (,pa,hence(FI:F;)~p-1. 

From the above result it follows that Fl can be 
written as a set theoretic sum with at most 
p -1 summands of the form fL~ . . F;, where /-L~ is de· 
fined as fL~.=(fLk({,)i, ... , fL,J{,p)i)EFl for 0 ~ i ~p-2. 
But there must be at least p -1 summands. Assume 

p -2 

FI = L fLt·· F; and /-Lt,. . . F; = fLt· . F;, where 0 ~ t, s 
i=O 

~ P - 2. Then fLi· . fLi/EF; and /-Lk(l), . fLk(l)-s = kl - s 

==1 (mod p). This implies (p-l)i(r-s), hence r=s 
and (FI: F;) ~ p -1 which proves the theorem. 

NOTE. Let F = (J(H). Then it is also true that 
(F: F;) = p -1 since the basis elements of the group E 
can be chosen to be real. 

The following theorem is one of the principal re­
sults in this paper. 

THEOREM 5. The number b(n) of basis elements of 
the largest aperiodic subgroup H of G is given by 

b(n)= ~ (t <p(d) -1) = [¥] + 1- uo(n), 

d>2 

where uo(n) is the number of positive divisors of n. 

PROOF. Let E(X) be an integral polynomial such 
that E(P)EH has eigenvalues E({,), ... , E({,n) in E. De­
note the image of H under the mapping (J by F. Then 
F is an aperiodic subgroup of ff consisting of m-tuples 
of the form 

m 
(E({,dl), ... , E({,d m» = IT (1,. ., 1, E({,dJ), 1, ... ,1), 

j=1 

where d1,.. ., dm are the positive divisors of n. (Note 

that (,di is a primitive -fJ;th root of unity, 1 ~ i ~ m, and 

n 
that both di and di run through all positive divisors of 

n.) 
Let d> 2 be a divisor of n. The defining polynomial 

of a primitive dth root of unity v is -Pix). This poly­
nomial has <p(d) complex roots and no real ones. By 
Dirichlet's theorem there are ~ <p(d) - 1 basis elements 
of infinite order in the group of units in R(v). (The 
group is trivial when d= 1 or 2.) A basis of the aperi­
odic group F, then, consists of ~(~ <p(d) -1) elements, 
where the summation is over all positive divisors d of n 
greater than 2, and the first equality is proved. 

The second equality can be proved by considering 
two cases. 

(i) n is odd. Then 

L (~<p(d) -1) = ~ L<p(d) - (uo(n) -1) = ~ (n -1)uo(n) 

+ 1 = [~] + l-uo(n). 

(ii) n IS even. Then 

L (~<p(d) -1) =! L <p(d) - (uo(n) - 2) 

= ~(n - 2) - uo(n) + 2 = [~] + 1- uo(n). 

By a direct application of Theorem 5 it follows that 
p-3 

b(P)=-2-' where p is a prime greater than 2, and 

that b(2p) = 2· b(p) = p - 3. More generally, if n is 
odd, then b(2n) = 2 . ben). 

The following table gives the values of ben) for 1 
~ n ~ 16. 

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

b(n) 0 0 0 0 1 0 2 224 5 444 

Assume j;,. ., f· is a basis of F. That is, ;;, 
1 ~ i ~ n, is an m-tuple of units of E as defined above. 
Then bases for FI(F {) and F2 = (J(H2 ) of the following 
form can be found [2]: 

. n)= fill ~12 . 

A!) = 1';.22 . 

j}J)= 
r 

and 

. f;.lr 

. f~2r 

fk rr 
r 

fl2) = fl!)1J 1 

fF)= 

fi2)= .. 

j}1)1 12 

jjl)122 
2 

AJ)'lr 
• J}: 

j) 1)12r . /' 

11.) )Irr 
J,; , 
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respectively,where Ikllk22 ... krrl=(F:F,)or(F:F;) 
and II 1,b ... II'I·I=(F,:F2) or (F(:Fz). T hese 
bases are not necessarily unique b ut whe n one is 
known it is possible to determine bases for H, H" 
and H2 by the corl'espondence in Theorem 2. The n 
r= b(n) . Furthermore it will be shown in Theorem 8 
that an upper bound [or the value o[ I It , bz .. . 1/1·1 , 
that is, for (HI: Hz) is 2r. 

As examples, consider the cases n = 5 and 7. The 
case n= 5 has been worked out by O. Taussky [8] by a 
differe nt method. 

(1) n = 5. Le t S be a primitive 5th root of unity. 
From Theorem 5, b(5) = 1 = r. Fueter [1, p. 186] 
showed that Em = S2 + S3 is a fundamental uni t of E of 
infinite Ol'der, hence (Em, E(I)) = /1 can be chosen as 
a basi s of F. From Theorem 4, (F:F :) =4 so that 
fVl=/1=(Em4 , E(I)4), where E(S)4=6+4s+sZ+S3+4s4 
=3+s-2s2 _2s:I+S4. (Note that, since E(l)=2, the 
smallest exponent k such that 2'" :;= 1 (mod 5), is k = 4.) 
The group of nonze ro res idues modulo p is cyclic so 
that fl'l can be taken as a basis of F( and the ci rcu· 
lant C= [3, 1, - 2, - 2, 1] is a basis of H, . But C is 
positive definite so that for the case n=5, H, = Hz. 
Furthermore, C= [1 , 0, -1, -1, 0]2 which implies 
that there is only one class of symmetric posi ti ve def­
inite unimodular 5 X 5 ci rc ulants with respect to co n­
gruence over rational integral c irculants. 

(2) n= 7. Let S be a primitive 7th root of unity. 
From Theorem 5, b(7)'= 2 = r . Fueter [1 , p. 186] 
showed that E(S) = 1 + S + Sli and 8m = 1 + S3 + 1:4 are 
fundamental units of E of infinite order, he nce (Em, 
E(I))=/, a nd (8m, 8(I)) =/z can be c hose n as a basis 
of F. From Theorem 4, (F:F:)=6 so that 

and 

where Ik l , . kd =6 form a basis of F;. Since 8(1)=3 
it follows that k22 must satisfy 3"'22 :;= 1 (mod 7), he nce 
k Z2 = 6 and f?1l = n is a basis element of F;. Also, 
kll = ± 1. Let kll = 1. Since E(I) = 3 it follows that 
kl2 must satisfy 3 . 3""2 :;= 1 (mod -7), hence klz ~-S aud 
111)=/· fl is a second basis element of F;. Now 

1\1)= 113 + 102s + 96s2 + 110S3 + 1101:4 + 96s5 + 102s6 

= 9- 2s - 8s2 + 6s3 + 6s4 - 8s5 - 2S6 , 

since E(l) . 8(1)5 = 36 = 1 + 104 . 7, and 

/~l)= 141 + 96s + 7ls2 + 127s3 + 127S4 + 7ls5 + 96s6 

= 37 - 8s - 33s2 + 23s3+ 23s4- 33s5 - 8s6 , 

since 8(1)6 = 36 = 1 + 104.7. 

Thus the circ ulants 

C, =[9, -2, -8,6,6, -8, -2] 

C2 = [37, -8, -33,23,23, -33, -8] 

can be taken as a basis of H, . 
In a si milar manner it can be shown that 

form a basis of Fz so that 

D, = q = [289, - 64, - 260, 180, 180, - 260, - 64] 

D2 =CZ = [37, -8, -33,23, 23, -33, - 8] 

fo rm a basis of H2 • A more convenien t c hoice of 
basis would be 

D; =C; ' C2' = [3,0, -2,1 ,1, -2,0] 

D~= C2=[37, -8, -33,23, 23, -33, -8]. 

In the latter case, 

D; = [-I, 0, 1, 0 , 0,1,0]2 

D~ = l-3 , 1,3, -2, -2,3,1)2 

so that there is only one class of symmetric posItIVe 
defin ite unimodula r 7 X 7 c irculants with respect to 
co ngruence over rational integral circ ulants. 

Number 0/ Classes 0/ Circulants. M. Kneser [3, 
p. 250] lists the class numbe r of positive de finit e 
quadratic forms in n variables for 1 ~ n ~ 16 and with 
de te rminant 1. The numbe r of classes of circulan ts 
in Hz is less than or equal to thi s class number for eac h 
n. In particular, it is shown that there is only one 
class Hz for n ~ 7. M. Newman and O. Taussky [7] 
showed there are two classes for n = 8. In pri vate 
co mmunications M. Kneser proved there is one class 
for n = 9; M. Newman proved there are two classes 
for n= 12; and E. C. Dad e and O. Tauss ky found one 
class for all prime p < 100 except p = 29. The n u m­
ber of classes for other values of n is not known but 
an upper bound can be obtained. 

THEOREM 8. (HI:Hz) ~ 21', where l' is the number 0/ 
basis elements o/H,. 

PROOF: Let Ho be the set of all elements C of H, 
such that C :;=1; that is C=A'A where A is an ,~nxn 
unimodular rational integral circulant. The n 

(i) 1£ CEH1 , then C2EHo (since C2 = C'IC). 
(iil Ho is a, subgroup of H,. 
(iii) (HI: Ho) is the number of classes of circ ulantsl of 

HI, where congruence is over the unimod'ular ration al 
integral circulants. 

By Theorem 5, the number of basis ele ments of H I is 

r=[~]+I-(T()(n) . HC" .. . , c"arebasiselements 
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of HI, then because of (i) and (ii) any element C of 
HI can be written in the form 

where CoEHo and (}i = 0 or 1 for 1 :S; i :S; r. This im­
plies that the order of H Ii H 0 is 28 where s :S; r, hence 
2" is an upper bound for the class number in (iii). But 
the number of circulants of HI with respect to integral 
congruence is not greater than the number of classes 
with respect to congruence over circulants, so that 2" 
is actually an upper bound for this class number. 
Thus (HI :Ho) :S; 2" and since Ho is a subgroup of Hz 
it follows that (H I: Hz) :S; 2". 

Appendix 

The following list includes the notation and defini­
tions of all sets referred to in the paper. 

Set Definition 

C = All rational integral unimodular nx n circulants. 

C I = Symmetric elements of C. 

Cz = Positive definite elements of C I . 

E=All units in R(~). 

EI = Real elements of E. 

Ez = Totally positive elements of E I • 

Ei = Largest aperiodic subgroup of E I • 

H = Largest aperiodic subgroup of C. 

HI = Elements of H all of whose eigenvalues are ele­
ments of E;. 

g; = (}(C) = {(E(~dl), ... , E(~dl1l)) l dl' ... , dill are 
positive divisors of n ; E(~)EE} . 

F= (}(H). 

F;=(}(H1),when n¥pa , ={(E(~dl) , ... , E(~dm))IE(~di) 

EEi, 1 :S; i :S; m}. 

F'=(}(HI), when n=p",={(E(~dl) • ... , E(~dm)) 
I E( ~di)EE ;" 1 :S; i :S; m}. 
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