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A Random Walk Model of Chain Polymer
Adsorption at a Surface.

II. Effect of Correlation Between Neighboring Steps
Robert J. Rubin
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A random walk lattice model of adsorption of an isolated polymer chain at a solution surface is
investigated. The model is a modification of a snmple cubic lattice in which there is a correlation
between successive steps. The direction of each step is at right angles to the direction of the preceding
step (all bond angles are 90°). One-dimensional ¢ haracterlstus ()f the monomer unit distribution are
determined analytically in the limit of long polymer chains neglecting the self-excluded volume. The
mean number of monomer units ddsnrbed in the surface ldyer v(0, 'V) is determined assuming that one
end of the polymtr chain lies in the surface layer, where N is the mean number of monomer units in
the chain and 6 is the adsorption energy of each monomer unit in the surface layer measured in units
of kT". In addition, the mean distance of the free end of the chain from the surface layer z(6, N) is de-
termined. The properties of this correlated step model are qualitatively similar to the properties which
have been found in uncorrelated step models. In particular, there is a critical value of the adsorption
energy 6. such that for > 6., v(6, N) is proportional to N. Numerical values of N-'»(@, N) and z(6, N)
are presented for > 6.=1In (V5-1).

Key Words: Chain polymer, adsorption, random walk, lattice model, short range correlation,
critical ene rgy, partition function, generating function.

1. Introduction

We have recently studied a variety of random walk lattice models of polymer chain adsorption
at a solution surface [1]." At the same time F. McCrackin [2] has completed a Monte Carlo inves-
tigation of still another lattice model of polymer chain adsorption at a solution surface in which
he treats the effect of the self-excluded volume of the polymer chain. The lattice model treated
by McCrackin is a simple cubic lattice in which the direction of each step must be at right angles
to the direction of the preceding step. Thus there is a correlation between neighboring steps in
his model. The purpose of this paper is twofold: (1) To generalize the methods developed in I in
order to treat a lattice model with correlation between neighboring steps, and (2) to determine some
of the moments of the monomer unit distribution which will serve as reference values for the ex-
cluded volume computations of McCrackin.

The averages which are calculated are N='v(6, N), the average fraction of monomer units ad-
sorbed in the solution surface, and z(6, N), the mean distance of one end of the chain from the
surface when the other end is in the surface. The parameter /V is the number of monomer units
in the chain, and 0 is the energy of adsorption of a monomer unit measured in units of k7. The
lattice model and recurrence equations for the associated generalized random walk are described
in section 2. The recurrence equations are solved formally in section 3 by the method of generating
functions; and formulas for N-'v(0, N) and z(6, N) are obtained in terms of the generating function
solution. It is shown in section 4 that there is a critical value of the adsorption energy 6.=In (V5-1)
such that for 6 > 6. the molecule exists in an adsorbed state. In particular, for 6 > 6. the fraction
N-'»(0, N) is independent of N and greater than zero in the limit N— . The numerical results
presented in section 4 for N='v(6, N) and z(6, N) cover only the adsorbed state of the chain molecule
(6 > 6.) and apply to the case in which the first two monomer units of one end of the chain lie in
the solution surface. There are no qualitative differences between the lattice model investigated
in this paper and the simpler lattice models studied in I.

! Figures in brackets indicate the literature references at the end of this paper.
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2. Lattice Model and Recurrence Equations

We consider a simple-cubic lattice model of the solution-surface system in which the solution
surface corresponds to the x-y lattice plane through the point z=0. Successive lattice planes
through z=1, 2, . . . represent the solution phase of the system. Polymer chain configurations
in the solution correspond to paths generated in a random walk on the lattice between nearest-
neighbor sites subject to the restriction that the direction of each step must be at right angles to
the direction of the preceding step. The physical presence of the surface is introduced by con-
sidering only random walks [3, 4] which never enter the lattice plane through z=—1. 1f a polymer
chain is very far from the solution surface, all random walk configurations of a given length are
equally likely. However, we are primarily interested in the influence of an adsorbing solution
surface on the average conformation of a polymer chain. In our lattice model, all random walk
paths of N steps with n steps lying in the surface layer have the same a priori probability. Relative
to a random walk configuration of /V steps with n—1 steps lying in the surface, the a priori proba-
bility of a walk with n steps in the surface layer is greater by the factor e? where 6 =¢€/kT and €
is the adsorption energy of a monomer unit.

For convenience, we use a random walk terminology. Consider the problem of computing,
for a random walk in which the first two steps lie in the surface layer, the unnormalized or relative
probability that at the Nth step the random walker is located at lattice point (my, my, m.), where
m.= 0. There are actually three different relative probabilities P(m,, my, m.; N+ 1), Py(m,,
my, my; N+ 1), and P.(my, my, m.; N+1) associated with the three different directions from which
the random walker arrives at (m,, my,, m;). These three relative probabilities are related to the
relative probabilities at the Nth step by the relations

Pr(’ﬂra my, mz; N+ 1)2(1/4)(E;+E5)[Py(mx, my, mz; N)+ P.(m,, My, Mz; N, m,=1 (1)
Pymz, my, mz; N+ 1)=1/4)(E} + E;)[Pe(ms, my, mz; N)+ Po(mg, my, mz; N)], m, =1 2)

Pz(mx’ My, Mg; Ve 1):(1/4)(E; +E;)[Px(mx» My, me; N+ Py(m.t’ My, Mz ]V)], m,= 1 3)

and
Pa(ma, my, 03 N+ 1)=& A/A(EL+ EDP(mez, my, 0; N)+ Po(mz, my, 0; N)] (4)
Py(mz, my, 0; N+ 1)= e®(14)(E + E[Pr(mz, my, 0; N)+ P(mz, my, 0; N)] (5)
Py(mz, my, 0; N+1)=e®(/DEL[Pr(me, my, 0; N)+ Py(mz, my, 0; N)] (6)

where E% is an operator which is defined by the relation

E%ZPj(mg, my, m.; N)= Pj(my*=1, my, m.; N). (7)

The operators E5 and E7 have similar definitions. Equations (1) to (3) describe the relations
between the relative probabilities at the N+ 1th and the Nth steps outside the surface layer. The
factor €? in eqs (4) to (6) accounts for the fact that relative to those configurations where m, =1 at
the N+ 1th step, the relative probabilities for those configurations where m.=0 at the N+ 1th
step are greater by the factor e’. The absence of E7 in eq (6) is related to the fact that the random
walker enters the z=0 layer from only one direction.

We are interested in deriving from the solution of eqgs (1) to (6) the values of z(6, N) the mean
distance from the surface at the Nth step and (6, N) the mean number of steps in the surface
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layer. The definitions of these quantities are

0 N (2L _4d
10, M) = (55006, ) Q6. N) =4 In Q(6, N) @
and
£ % = 3
2(0, N)= 2 2 2 msz(er, my, Mg, N)/Q(O, N) 9)
Myp=—o0 My=—x my=0 j=1
where
£ £ % 3
0(09 N): 2 2 E E Pj(m.l‘a my, my; N) (10)
Myp=—o0 My=—0 m,=0 j=1

plays the role of a partition function. The subscript j=1, 2, 3 denotes respectively, x, y, and z.
It was noted in I and it follows from the structure of the recurrence equations that if one starts
a random walk with the first two steps in the surface layer and generates in succession the relative
probabilities P.(m,, my,, m.; r), Py, mz, my, m.; r), and P.(m,, m,, m.; r), these probabilities are
linear combinations of exponentials e"® where 2<n< r+2. Differentiation of Q(0, N) with
respect to 6 has the effect of generating the sum required for computing the average number n
of steps in the surface layer.

It should be noted that the probabilities P{m,, m,, m.; N) contain more information than is
required to calculate the z component of the mean displacement after NV steps and the mean num-
ber of steps in the surface layer. In fact, we will not solve eqs (1) to (6). Instead we will pro-
ceed as in I and for each value of m, we will sum the appropriate equations in (1) to (6) over all
values of m, and m,. The result is

paAmz; N+ 1)=(1/2)[p(ms; N)+ paAmz; N)|, m. =1 (11)
pymz; N+1)=(1/2)[ps(mz; N)+ px(m.; N)], m. =1 (12)
pomz; N+1)=(1/4(E? + E3)[pa(mz; N)+ pyme; N)|, m: =1 (13)

and
[1—(1—e 9] p0; N+1)=(1/2)[p,(0; N)+ p:(0; N)] (14)
[1—=(1=e))py(0; N+ 1)=(1/2)[p+(0; N)+ p.(0; N)] (15)
[1—=(1—e9p-(0; N+ 1)=(1/4E*[p.(0; N)+ p,(0; N)] (16)

where

pimz; N)= i i P(mz, my, ms; N). (17)

Mg=—x M=
We introduce one further transformation in eqs (11) to (16)

pim; N)= p.(mz; N) (18)
and

q(m; N)=(1/2)[pz(mz; N)+ py(me; N)]. (19)
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In terms of these relative probabilities for being in the lattice plane which is m units from the solu-
tion surface at the Nth step, we can rewrite eqs (11) to (16) as

qim; N+1)=(1/2)[g(m; N)+ p(m; N)], m =1 (20)
plm; N+1)=(1/2)[gim +1:N) + gim—1; N), m =1 (21)
(1= —e]g(0; N+1)=(1/2)[¢(0: N)+p(0; N)] (22)
[1—1—=e]p0; N+1)=(1/2)¢(1; N). (23)

Equations (20) and (22) are obtained by combining (11), (12) and (14), (15), respectively.
The sums in eqs (8) to (10) for v(#, N) and z( 6, N), which involve the Pjm,, m,, m.; N)’s, can be
replaced by simpler sums involving p(m; N) and ¢(m; N)

0. M= mi2q(m: N+ p(m: N)]/Q(9, N) (24)

m=0

and

Q(6, N)= 2 [2g(m; N) + p(m; N)]. (25)

m=0

The starting condition for the random walk, namely, that the first two steps are in the surface layer,
corresponds to the statement

plm. 0)=0, m=0 (26)
and

q(0, 0)=e*, g(m,0)=0,m > 1. (27)

3. Solution of Recurrence Equations

The recurrence equations (20) to (23) can be solved by introducing generating functions.
The procedure used is similar to that used in I.  Multiply the equation for g(m, N + 1) by (277)1/2¢imé
and sum over all values of m =0. The result is

— (A —e) @m)'2q0: N+ 1)+ 2(¢, N+1) =3 {2 (¢, N) + 2(¢, N)}, (28)
where
2(¢, N) = (2m) 12 i e™bg(m; N) (29)
=
and
P, N)=2m) 12 3 emop(m; N), (30)

m=0
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The corresponding equation obtained by combining the equations for the p(m; N+1)’s is
—(1—e2m)~"2p(0; N+ 1)+ 2(p, N+ 1) =cos ¢ 2(d, N) —3 2m)-12e=itq(0; N). (31)
Next multiply egs (30) and (31) by ¥V*!, and sum each over all values of N to obtain the pair
— (1= e 2m) "2k ) — q(0; 0]+ A (. Y= 2(0, 0) =3 (b, ) + Ald, ¥)] (32)
and

— (1 — e ) 2m)2[ho(y) — p(0; 0)]+T'(d, ) — 2 (0, 0)=ycos  A(d, y)— 5 12m) e itky(y) (33)

where
A, y)= \2 W2(d, N), (34)
L =3 Wb, V), (35)
=0
hw(y)= 2 y¥pm; N), (36)
=0
and
kn(y)= i YWalm; N). (37)
0

The definitions (29), (30), (36), and (37), when combined with the starting conditions (26) and (27),
are substituted in (32) and (33). The result is

=3 yl(b. N+ (1= 3 YAD. y) =2m) 2[(1 — e O)ko(y) + €] (38)
and
L. y)— vy cos pA(D, y) =2m) 2[(1 —e ) ho(y) — 3 ye~itko(y)]. (39)

Next solve eqgs (38) and (39) for I'(¢, y) and A(¢. y) and obtain

\ (2m) 12 :
F¢, =71 ‘_jl Feos & {11 —eDho(y) — § ye kN1 - 3 ) +[(1 — e Dko(y) + ]y cos ¢}
AN (40)
(277)=1/2 : i )
A, y)= =1 ,—1 oo d {1 —eko(y) + e + 3 (1 —eho(y) — 3 ye k(¥ ]} (41)
2 ) 2 . Z

Equations (40) and (41) constitute a pair of implicit equations for the functions h(y) and k(y)

because according to the definitions of (¢, ¥), A(d, ¥), hu(y), and ku(y) in (34) to (37) and 2 (¢, N)
and 2 (¢, N) in (29) and (30)

[ )= 2m) 12 S eimbh,(y) (42)

m=0
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and

A, )=@2m) 12 S eimb,(y). 43)

m=0

A pair of equations for determining ho(y) and ko(y) can be obtained by multiplying eqs (40) and
(41) by (2m)~'2 and integrating with respect to ¢ from — to 7

ho(y) =[(1 = e ) o(ho(y) — 2 y1:(y)ko )1 = 3 ¥)+ M1 — e ko(y) + ) 1(y) (44)
and
1 1,
ko(y) = [(1 — e=O)ko(y) + el o(y) +§ y(L—e ) ho(y)o(y) 2 ho()i(y) (45)
where
1 (T eimbddh I Y AU SRS BUAY
=gy || —at—=[a—n(1+57+37)]
1 —5Y—5y'cos
1/2) |m
1-gy=|a=n(1+g+ )™
X 1 (46)
'2'3/

Solving (44) and (45) for ho(y) and ko(y), we obtain

ho) = {3t 0) | 1= = e+ 02100 | et [3 (1= ) == [l 20,9 )

and
koly)= {6’9[0(}’)[1 == %}/) (= 6_0)]()(Y)]+ % }’210(3’)11(5/)(30_ 1)}/@((), ¥) (48)
where

: 1 1
26, =1+ =) (Gy =21+ v+ A= e L) (1=3 v) = 5 0hk a9)

Equations (47) to (49) can be simplified with the aid of eq (46) to give
ho(y)= % ye1,(»)/ 2 (6, ) (50)
and
ko(y)=1o3)] 2 (6, y) (51
where
(6, y):[(l —) <l+%yz+iy3>:l_l/2 {% [(1—y) (l+iy2+iy3>:|1/2——;——!—}Ly-%ye“"-i-e‘”}' (52)
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Substitute the expressions for h(y) and ko(y) obtained in (50) and (51) into eqs (40) and (41) for
I'(é, y) and A(¢, y), and then form the quantity I'(¢p, y)+ 2A(d, y)

2+ y cos 4)]
2+y

—1/2 1 3 y(ef— 1)11()’)+lo(y)[—%ye—i"’+2(1—e“’)
[($, y)+2A(, y)=——om) U +2 ) ‘

[1—2y—2 ) cosp]'? 70, y)

20 _2+)v+_u"¢>] (53)

Equation (53) constitutes an explicit solution of the recurrence equations (20) to (23) which can be
used to compute the sums appearing in eqs (24), (25), and (8). In particular, from the definitions

of I'(¢p, v) and A(¢, v) we have

I(p, v)+2A(dh, y)=(2m)~ ‘/ZZ ¥V 2 e[ p(m:; N)+ 2q(m; n)]. (54)

=0 m=0

If we set =0 and select the coefficient of ¥V in eq (54) using Cauchy’s formula, we obtain an
explicit expression for (6, N)

1 [ dy

Q(O N) - 27TL y\'+1

(2m)2[1°(0, y)+ 2A(0, y)] (55)

where Cy is a closed contour in the complex y-plane which encloses only the pole of the integrand
at y=0. Substituting eq (53) in (55) and using eqs (46) and (52), one obtains the explicit formula

1 [ dy 1 [ipe!—DLm+L[20—e—3y] .,
0(9 N) 27” y\+1 1._y{ (0. y) +e } (56)
or
QO N)=200 4+ 2 2

27t J eyl —y

1 1 .
(e’—1) [l—%y— \/(l—-y) <1+1y2+ay‘>] y 14+ 21—e 9 —1y

0 (57)
\/71 <1+4y2+élly)-—l+2y et e

The sum S: m[p(m; N)+2q(m; N)] appearing in eq (24) can be extracted from eq (54)

m=0

1 dy (2m)'?
2w Jo, yNY 0

i m[p(m; N)+2q(m; N)] =5—

m=0

d
.Y+ 2A(d, v c
dd)[ (d) )) (d) ‘)] b=0 (58)

The explicit formula obtained from eq (58) after inserting (53) is

i m[p(m; N)+2q(m; N)] = ! dyﬂ
m=0 27TL \ (1 - y)gf(ow y) (59)
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or

1 far 1

> mlp(m; N)+2q(m; N)] =5— Apw g

m=0

-1
X {\/(1 -9 (l+iy2+%y">— 1+ %y—ye—0+2e—20} ©(60)

4. Calculation of »(9, N) and z(9, N) for N>1
In this section we evaluate the contour integrals in eqs (57) and (60) for N> 1 and so obtain
expressions for »(6, N) from eq (8) and z(6, N) from eq (24). The procedure which we use to evalu-
ate the contour integrals is similar to that used in 1.

Location of singularities. It is first necessary to locate the singularities of the integrands
in (57) and (60). In addition to the poles at y=0 and y=1, there are branch point singularities

. . . . 1 1 . . ..
associated with zeros of the square root function \/(1 =) (l +[—1'-y2+l y“), namely, singularities

at y=1 and at the roots of the cubic equation
l-f—lyz%-l 3=() (61
1 P 61)

It is shown in the appendix that these three roots, y., v, and y., lie outside the unit circle in the
complex y-plane. In view of the occurrence of these branch point singularities, we introduce
cuts in the complex y-plane as shown in figure 1 in order to define the integrands in eqs (57) and
(60) uniquely. The cuts start at the branch points and extend radially outward. The square root
function is taken as real and positive on the real axis between y=0 and 1. With this definition
of the square root function, there may be an additional singularity of the integrands in (57) and (60)

FIGURE 1. Singularities of integrands, cuts, and contours of inte-
gration in the complex y-plane.
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arising from a zero of the denominator

1 | 1
g0, y)= \/(l =) (] +Zy2+1y‘> =l +-2-y+ 2eg2ti=ryeso: (62)

A numerical investigation of g(6. y) for different values of 6 shows that there is never more than
one root of g(f. y) inside the unit circle.  When there is a root of g(#. y) inside the unit circle, it
is real, and it lies between y=0 and 1. In order to determine the condition on 6 for which there
is a real root yi(6) =1 of g(0. y). consider the plots of the two functions F(y)=

\/(1 —y) (1 + i y2 +%y"> and LB, y=1—2e2—(5—e %y shown in figure 2. The occurrence

of the root yi(6) corresponds to an intersection of F(y) and L(6, y). For 6=In 2, the line L(0, y)
becomes L(ln 2, y)=3%. For 6 > In 2, the slope of L(6, y) is negative; and as 0 increases the inter-
section of L(6. y) and F(y) moves up toward the point (0, 1), i.e., toward smaller values of y4(0) than
yilln 2).  For 6 <ln 2, the slope of L(6, y) is positive; and as 6 decreases the intersection of L(6. y)
and F(6, y) moves down toward the point (1, 0). The critical value of 6. for which the intersection
of L(6. y) and F(y) occurs at (1, 0) can be determined by solving the equation g(6, 1)=0, i.e.,

—1+3}+2e2—e?=0. (63)
The value of 6 at which y(6)=1 is
0.=In (V5—1). (64)

There are no other singularities of the integrands in (57) and (60).
Deformation of the contour of integration. Having determined the positions and types of

singularities of the integrands in the integral representations of (0, N) and E m[p(m; N)
m=0

+2g(m: N)], we will now evaluate these integrals in the limit in which NV is large and 6 > .. As

in I, the details of the calculation are different, depending upon whether 6 > 6., 6 < 6., or 6=6,.

F(y)

L4 2,y)

FIGURE 2. Plots of F(y)= {(l —y)(l +%y2+% y")]llz and
LO, y) =1—2e2— (%—e‘”)y versus y for real y, 0 <y <1.
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The results in each case are qualitatively the same as in [.  Therefore, we will limit our discussion
to the case 6 > 6..
Consider the integral
) d
— L § S dv (65)
27 | g(6, y) y¥ !
around the three contours Cy, C;, and C» shown in figure 1. Denote these integrals by ./, 44, and
S5, respectively. Suppose that the integrand f(y)/g(6, y)y¥*! is the integrand in eq (57) or (60)

so that #4,=0Q(6, N)or J = 2 m[p(m; N)=+2q(m: N)], respectively. The contour C; encloses

m=0
y1(0), and the contour C: consists of a circular part whose radius is 1+ 8, and an indented part
around the branch point at y=1. With these definitions, the integrals satisfy the relation

kyoz‘/g_‘/l (66)

We first evaluate #; and indicate why ., is negligible compared to .#; for N >>1. The value of
S1 is simply the residue [5] at y1=1y(6)

J1=fy) /g (0, y1)yi*! (67)

, d . : .
where g'(6, y,) denotes d_ g0, y)/y=y,- Thus S is proportional to the (N + 1) power of a number

which is larger than one. As in I, it can be verified in the case of the contour integral 4, that the
contribution from the circular part of the contour is proportional to (14 &)=V, and that the contri-

. o . 1 N+1
bution from the remaining part of the contour is small compared to (}7 . Therefore, in the
1

limit N> 1, we can neglect > compared to /1 and write eq (66) as
Jo=—S (68)

This approximation is excellent for large finite values of N provided that 6 is not too close to 6.,

e., provided that y, is not too close to the branch point y=1. Having established the relations
(67) and (68) for both integrals (57) and (60), we can now calculate the values of (6, N) and z(0, N).
First we have from eq (8)

6y1
6, N)= —ln Q@,N=—N-— (69)
a0,
1.0 T T T T T ————
///
=
0.8 [ 6—-choice
7/
/
~ / '
z 4-choice
S oiEls ~
B
T
z
8 0.4 - =
S
= =
e “2-choice
0.2 | - -
|
o Il 1 // 1 1 1 |
o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
8

FIGURE 3. Average fraction of adsorbed monomer units
N-1 (6, N) versus adsorption energy 6 (solid curve) for 6 > 6.
For comparison, the corresponding curves for the 6-choice simple cubic lattice (dashed
curve) and the 2-choice simple cubic (dotted curve) are included, from reference I.
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(0] 0.2 0.4 0.6 0.8 1.0 122 1.4 1.6

FIGURE 4. Mean distance of end of polymer chain from surface
20, N) versus adsorption energy 0 for 6 > 6.

In eq (69), we have dropped terms which are not proportional to N. It is seen that the result
obtained here for the case of the 4-choice s.c. lattice when 6 > 6. is similar to the result obtained
in I, namely, on the average a finite fraction of all steps are adsorbed in the surface for N> 1.

In the case of eq (24) we have

1 1 1,1, 1 =
2(69N)i'2'y1{(f’6—])|i1 *Qyuv\/(1—y1)<1+1yf+1y.‘>]yf‘+2(1—e”)i_vl} s (70)

a result which is independent of N for N > 1.

The values of N='v(6, N) and z(#, N) in eqs (69) and (70) have been determined numerically by F.
McCrackin; and the results are presented graphically in figures 3 and 4 for 6 > 6.. Values of
N='w(f, N) obtained in I for the 6-choice simple cubic lattice and the 2-choice simple cubic lattice
are also included in figure 3 for comparison.  Although results have only been presented for adsorp-
tion energies greater than 6., examination of the behavior of the integrands in (57) and (60) for 6 < 6.
and 6= 6, in the neighborhood of y=1 shows that the results for the 4-choice simple cubic lattice
are qualitatively similar to the results for the lattices studied in [ over the entire range of values of 6.

I thank F. McCrackin for calculating the numerical values of N='1(6, N) and z(6, V).

5. Appendix

The roots of the cubic equation
1 1
L R
1 3 1 2eF 0
are the reciprocals of the roots of the equation

1 1
gL i
2"-1—42'-}-4 0.
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Therefore the roots of (Al) are
Yo=—2{[(1 + Y27)12+ 13 — [(1 + VYa7)1/2 — 1 ]/3} -1
=—1.968

Vo= 4{[(1 + Yor) 12+ 1]3 — [(1 + Yo)!2 — 18 — iNV/Z([(1 + Yar)!/2 + 113 4 (1 + Yag)/2 — 1]13)} -1
= 0.497 +1.308i

ye = 0.497 —1.308i

Thus all three roots, v, y», and y., lie outside the unit circle.
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