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A random walk lattice model of adsorption of an iso la ted polymer c hain at a so lu t ion surface is 
inves ti gated . The model is a modifi cation of a s imple c ubic lattice in which the re is a co rre la tion 
between success ive s te ps. The direc tion of each s tep is at right angles to the direc tion of the preceding 
step (a ll bo nd angles are 90°). O ne-dime nsional c harac te ri s ti cs of the monomer unit di s tribution a re 
de termined analyti call y in the limit of long polyme r cha ins neglec tin g the self-excluded vo lume. T he 
mean numbe r of monomer units adsorbed in the surface laye r V(() , N) is de termined assuming th a t one 
end of the po.lymer chain li es in the s urface layer, where N is the mean nu mber of monome r unit s in 
the c ha in and () is the adsorption ene rgy of each monomer unit in the surface layer measured in units 
of kT . In addition, the mean di s tan ce of the free e nd of the cha in from the s urface laye r z(() , N) is de­
te rmined. Th e properties of thi s corre lated step model a re qualita ti ve ly s imila r to the pro perti es whi ch 
ha ve been fo und in unco rre la ted s te p models. In pa rti c ula r, there is a c riti ca l va lue of the adsorpt ion 
ene rgy ()c such that for () > ()c, vii!, N) is proportiona l to N. Num erical va lu es of N- 'v(() , N) and z( () , N) 
are p resented for () > ()c = In (V5- 1). 

Key Words: Chain polymer , adso rption , ra ndom wa lk , latti ce mode l, short range correlation, 
c riti ca l e ne rgy, pa rtition fun c tion, ge nera tin g fun c tion. 

1. Introduction 

We have recently s tudi ed a vari e ty of r andom walk latti ce models of polyme r c hain adsorpti on 
a t a solution surface [1].1 At the same time F . McCrackin [2] has comple ted a Monte Carlo inves­
tigation of s till another la tti ce model of polymer chain adsorption a t a solution surface in whi ch 
he treats the effect of the self-excluded volume of the polymer chain. The la ttice model treated 
by McCrackin is a simple cubic latti ce in whic h th e direction of each s te p mus t be at ri ght an gles 
to the direc ti on of the preceding ste p. Thus there is a correlation be tween neighboring s te ps in 
hi s model. The purpose of this paper is twofold : (11 To generali ze the methods de veloped in I in 
order to treat a latti ce mode l with correlation betwee n neighboring s te ps, and (2) to de termine some 
of the mo me nts of the monomer unit di stribution whi ch will serve as refere nce values for the ex­
cluded volume' co mputations of McC rackin. 

The averages which are calculated are N- IV ( () , N), the average fraction of monome r units ad­
sorbed in the solution s urface, and z((} , N), the mean di stance of one end of the chain from the 
surface wh en the other end is in the surface . The parame ter N is the number of monomer units 
in the c hain , and () is the energy of adsorption of a monomer unit meas ured in units of kT. The 
lattice model and recurrence equations for the associated generalized random walk are described 
in section 2. The recurrence equations are solved formally in section 3 by the method of generating 
fun ction s; and formulas for N - 1v((}, N) and z((}, N) are obtained in terms of the generating fun ction 
solution. It is shown in section 4 that there is a critical value of the adsorption e nergy (}c= In (VS- l) 
such that for () > (}c the molecule exists in an adsorbed state. In parti cular, for () > (}c the fraction 
N - 1v(() , N) is independent of N and greater than zero in the limit N~ 00 . The numeri cal results 
presented in section 4 for N- IV ( (} , N) and z((} , N) cover only the adsorbed state of the chain molecule 
(() > (}c) and apply to the case in whic h the first two monomer units of one end of the c hain li e in 
the solution s urface. The re are no qu alitative differe nces between the lattice model inves tigated 
in thi s paper and the simpler la tti ce models studied in I. 

I Figures ill brac kets in d ica te the lit era ture rde re nces at th e e nd of thi s pa per. 
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2. Lattice Model and Recurrence Equations 

We consider a simple-cubic lattice model of the solution-surface system in which the solution 
surface corresponds to the x-y lattice plane through the point z= O. Successive lattice planes 
through z= 1, 2, ... represent the solution phase of the system. Polymer chain configurations 
in the solution correspond to paths generated in a random walk on the lattic e between nearest­
neighbor sites subject to the restriction that the direction of each step must be at right angles to 
the direction of the preceding step. The physical presence of the surface is introduced by con­
sidering only random walks [3, 4] ~hich never enter the lattice plane through z=-l. If a polymer 
chain is very far from the solution surface , all random walk configurations of a given length are 
equally likely. However, we are primarily interested in the influence of an adsorbing solution 
surface on the average conformation of a polymer chain. In our lattice model, all random walk 
paths of N steps with n steps lying in the surface layer have the same a priori probability. Relative 
to a random walk configuration of N steps with n -1 steps lying in the surface, the a priori proba· 
bility of a walk with n steps in the surface layer is greater by the factor eO where 8= E/kT and E 

is the adsorption energy of a monomer unit. 

For convenience, we use a random walk terminology. Consider the problem of computing, 
for a random walk in which the first two steps lie in the surface layer, the unnormalized or relative 
probability that at the Nth step the random walker is located at lattice point (mx, my, m z), where 
mz ~ o. There are actually three different relative probabilities P x(mx, my, mz; N + 1), P y(mx, 
my, mz; N+ 1), and Pz(mx, my, m z; N+ 1) associated with the three different directions from which 
the random walker arrives at (mx, my, mz). These three relative probabilities are related to the 
relative probabilities at the Nth step by the relati~ns 

Py(mx , my , mz; N+ 1) = (1/4)(Et + Ey)[Px(mx, my, mz; N)+ PAmx, my, mz; N)], mz ~ 1 (2) 

Pz(mx, my, mz; N+ 1)=(1/4)(Ei +E;)[Px(mx, my, mz; N)+Py(mx, my, mz; N)], mz~ 1 (3) 

and 

(4) 

Py(mx , my, 0; N+l)=eO(I/4)(Et+Ey)[Px(mx, my, 0; N)+Pz(mx, my, 0; N)] (5) 

(6) 

where Ef£ is an operator which is defined by the relation 

(7) 

The operators E~ and Ey have "imilar defini tions. Equations (1) to (3) describe the relations 
between the relative \probabilities at the N + lth and the Nth steps outside the surface layer. The 
factor eO in eqs (4) to (6) accounts for the fact that relative to those configurations where mz ~ 1 at 
the N + lth step, the relative probabilities for those configurations where m z = 0 at the N + 1 th 
step are greater by the factor eO. The absence of K; in eq (6) is related to the fact that the random 
walker enters the z= 0 layer from only one direction . 

W e are interested in deriving from the solution of eqs (1) to (6) the values of z(8, N) the mean 
distance from the surface at the Nth step and v(8 , N) the mean number of steps in the surface 
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layer. The definitions of these qu antities are 

v(O, N) = (to Q(O , N) ) /Q(O, N) = to In Q(O, N) (8) 

and 

x x x 3 

z(O, N)= L L L L m z Pj(mx, my, mz; N) /Q(O, N) (9) 
1Ilx = - x Uly = - X III Z = O j = l 

where 

x :x:: :)0 3 

Q(O, N) = L L L L Pj(mx , my, mz ; N) (10) 
m~. =-'XJ 1ny=-'XJ mz=O j = t 

plays the role of a partition function . The subscript j = 1, 2,3 denotes respec tively, x, y, and z. 
It was noted in I a nd it follow s from the structure of the recurrence equations that if one s tarts 
a random walk with the firs t two steps in the surface layer and generates in s uccession the relative 
probabilities P x(m.l' , m y, mz; r), Py(m x, my, m z ; r) , and P z(m J" my, m z ; r) , these probabilities are 
linear combinations of exponentials enlJ where 2 .:;; n ':;; r+ 2. Differentiation of Q(O, N) with 
respec t to 0 has the effect of generating the sum required for computing the average numbe r n 

of ste ps in the surface layer. 
It should be noted that the probabilities PJmx, my, m z; N) contain more information than is 

required to calculate the z component of the mean di splaceme nt afte r N s teps and the mean num­
ber of steps in the surface layer. In fact, we will not solve eqs (1) to (6). In stead we will pro­
ceed as in I and for eac h value of m z we will sum the appropriate equations in (1) to (6) over all 
values of mx and my. The result is 

and 

[1 - (1 - e- IJ)] Px(O; N + 1) = (1/2)[P 11(0; N) + Pz(O; N) ] 

[1- (1- e- IJ)]py(O; N + 1) = (1/2)[PAO; N) + p,(o; N) ] 

[1- (1-e- 8)]p,(0; N + 1)= (l/4)Et [Px(0; N) + py(O; N)] 

where 

x 

L P(mx, my, m z; N) . 
l1I x =- x lIIy=-X 

We introduce one further transformation in eqs (11) to (16) 

and 

q(m; N) = (1/2)[px{mz; N) + py(mz; N)]. 
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In terms of these relative probabilities for being in the lattice plane which is m units from the solu­
tion surface at the Nth step, we can rewrite eqs (11) to (16) as 

q(m; N + 1) = (I/2)[q(m; N) + p(m; N)], m:? 1 (20) 

p(m; N+I)=(I/2)[q(m + I;N)+q(m-I; N)], m:? 1 (21) 

[1 - (1- CO)]q(O; N + 1) = 0/2)[ q(O; N) + p(O; N)] (22) 

[1 - (1 - e- O) ]p(O; N + 1) = (l/2)q( 1; N). (23) 

Equations (20) and (22) are obtained by combining (11), (12) and (14), (15), respectively. 
The sums in eqs (8) to (0) for v(O, N) and z(O, N), which involve the Pj(m.r , m!" mz; N)'s, can be 

replaced by simpler sums involving fI(m; N) and q(m; N) 

x 

z(8, N)= L m[2q(m; N)+p(m;N)]/Q(O, N) (24) 
111 = 0 

and 

x 

Q(8, N) = L [2q(m; N) + !J(m; N)]. (25) 
111 = 0 

The starting condition for the rand()m walL namely , that the first two steps are in the surface layer, 
corresponds to the statement 

p(m, 0) = 0, m :? 0 (26) 

and 

q(O, 0) = e20 , q(m, 0) = 0, m:? L (27) 

3. Solution of Recurrence Equations 

The recurrence equations (20) to (23) can be solved by introducing generating functions. 
The procedure used is similar to that used in 1. Multiply the equation for q(m, N + 1) by (277)-1 /2eimcb 

and sum over all values of m :? O. The result is 

- (1- e-O) (277)1/2q(0; N + 1) + P2(1), N + 1) = t {g> (1), N) + P2(1), N)}, (28) 

where 

P2(1), N) = (277) -1/2 i eillld'q(m; N) (29) 
111=0 

and 

x 

,0/'(1) , l\~ =(277)-1 /2 L eillld'!J(m; N). (30) 
II/ = () 
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The co rres pondin g equ ation obta in ed by co mbining the eq uations for the p(m ; N + l)'s is 

- (1 - e- O)(2 7T)- 1/2p(0 ; N + 1) + g> ( c/.>, N + 1) = cos c/.> P2 (</> , N ) - t (27T) - 1/2e-i<bq (0 ; N). (3 1) 

Next multiply eqs (30) and (31) by yN+ I , and sum each over all values of N to obtain the pair 

- (1 - C O)(27T)- 1/2Iko(y ) - q(O; 0) I + A (c/.>, y) - P2 (0 , 0) = h {f (c/.> , y) + A(c/.> , y) ] (32) 

and 

where 

x 

A(c/.> , y) = 2: yv P2 (</> , N ), (34) 
.1' = 0 

x 

nc/.>, Y) = 2: y" /? (c/.> , N), (35) 
.\' = 0 

x 

h,l/(Y) = 2: y l",,(III ; N), (36) 
.\' = 0 

a nd 

" kl/I( Y) = 2: .y l"q( m ; N). (37) 
.1' = 0 

Th e de fi nit io ns (29) , (30), (36), and (37), whe n co mb ined with the sta rti ng co ndit io ns (26) a nd (27), 
ar e s ubs ti tuted in (32) and (33). T he resu lt is 

(38) 

and 

(39) 

Next solve eqs (38) a nd (39) for f «p, y) and A(c/.> , y) a nd obtain 

(41) 

E qua tions (40) and (41) constitute a pair of implicit equations for the fun c tions ho(y) and ko(y) 
because according to the definiti ons of [(c/.> , y), A( c/.> , y) , h ll/(Y)' and klJl(Y) in (34) to (37) a nd g> (</> , N) 
and !2 (</> , N) in (29) and (30) 

" l'(c/.> , y) = (27T)- 1/2 2: eim<bhll/(y) (42) 
111 = 0 
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L 

and 

A(ct>, y) = (27T) - 1/2 i: ei llld>kl//(Y)· (43) 
m=o 

A pair of equations for de termining ho(y) dnd ko(y) can be obtained by multiplymg eqs (40) and 
(41) by (27T)- 1/2 and integrating with respect to ct> from - 7T to 7T 

and 

(45) 

where 

_ _ 1 J7T eimd>dct> 
lll!(y) - 2 1 1 

7T - 7/" 1 __ y __ y2 cos A. 
2 2 'f' 

(46) 

Solving (44) and (45) for ho(y) and ko(y), we obtain 

and 

where 

Equations (47) to (49) can be simplified with the aid of eq (46) to give 

(50) 

and 

ko(y) = J o(y)/ qz (8, y) (51) 

where 

qz(8, y) = [0- y) (1 + ~ r +~ y3) r1/2 H [(1- y) (1 +~ r +~ y3) r'2 -~+~ y-~ ye-B + e- 2B } (52) 
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Substitute the expressions for holY) and ko(y) obtained in (50) and (51) into eqs (40) and (41) for 
f(e/>, y) and A(e/> , y), and then form the quantity f(e/>, y)+ 2A(e/>, y) 

[ 
1· 2 + y cos e/>] 

= (27T)- 1/2(1+! y) r h{e8 - 1)lb)+Io(y) -"2ye-'4'+2(I-e- lI ) 2+y 

f(e/>, y) + 2A(cp, y) [1 -! y-! T cos e/>] 1/2l ~( e , y) 

+ 2eo 2 + y cos e/>j . (53) 
2+y 

Equation (53) constitutes an explicit solution of the recurrence equa ti ons (20) to (23) which can be 
used to compute the sums appearing in eqs (24), (25), and (8). In particular, from th e defin iti ons 
of f(e/>, y) and A(e/>, y) we have 

'l.. X 

f(e/>, y) + 2A(e/> , y) = (27T)-1 /2 L yV L e illl (!> [p(m; N) + 2q(m; 11)]. (54) 
.\'= 0 11/ = 0 

If we se t e/> = O and selec t th e coeffi cient of yN .in eq (54) using Cauchy's formula , we obtain an 
explicit ex pression for 0(8 , N) 

ore, N) = 2~1 ~:l (27T)I/2[r(0, y)+2A(0, y)] 
7TL Je"y 

(55) 

where Co is a closed contour in the complex y-plane which encloses only the pole of the integrand 
at y= 0. Substituting eq (53) in (55) and using eqs (46) and (52), one obtains the explicit formula 

or 

o( - II -l-f ~_2_ e, N) - 2e + 2· N+ll 
7Tl Co Y - Y 

x 11''-11 [1- h- ~(I- yl (I +i y'+~ I') 1 y' + 2(1- , - OJ -\ yl. (57) 

~ (l - y) ( 1 + i y2 + i y3 ) - 1 + ! y - ye- O + 2e- 20 

x 

The sum L m[p(m; N) + 2q(m; N)] appearing in eq (24) can be extracted from eq (54) 
111 = 0 

ex 1 ~ dy (27T)1/2 d , I L m[p(m; N)+2q(m; N)] =~ . .\'+1-· -drl-. [1 (e/>, y)+2A(e/>, y)] . 
111= 0 TTL (" Y L 'I' ,!> = () (58) 

Th e explici t formula obtained from eq (58) after inserting (53) is 

x 1 ~ dy !Io(Y) L m[p(m; N)+2q(m; N)] =~ . ~(l- ):!2J(e ) 
111 = 0 7Tl (" Y Y , Y (59) 
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or 

x 1 ~ dy 1 L m[p(m; N)+2q(m; N)] =~ N-l-
III ~ O 1T[ Co Y - Y 

x {~(l-Y) (1 +-~y2+iy3) -1 + h- ye-o+ 2e-20f1. (60) 

4. Calculation of v(O, N) and z(O, N) for N:;p 1 
In this section we evaluate the contour integrals in eqs (57) and (60) for N P 1 and so obtain 

expressions for v(O, N) from eq (8) and z(6, N) from eq (24). The procedure which we use to evalu­
ate the contour integrals is similar to that used in I. 

Location of singularities. It is first necessary to locate the singularities of the integrands 
in (57) and (60). In addition to the poles at y= 0 and y= 1, there are branch point singularities 

associated with zeros of the square root function )(l-Y) (1+t:r+t y3), namely, singularities 

at y= 1 and at the roots of the cubic equation 

(61) 

It is shown in the appendix that these three roots, Ya, YI), and Ye, lie outside the unit circle in the 
complex y-plane. In view of the occurrence of these branch point singularities, we introduce 
cuts in the complex y-plane as shown in figure 1 in order to define the integrands in eqs (57) and 
(60) uniquely. The cuts start at the branch points and extend radially outward. The square root 
function is taken as real and positive on the real -axis between y= 0 and 1. With this definition 
of the square root function, there may be an additional singularity of the integrands in (57) and (60) 

/ 

FIG URE 1. Singularities 0/ integrands , cuts, and contours 0/ inte­
gration in the complex y-plane_ 
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a ri s in g from a zero of the de nom inat or 

g«(J, y) = ~( 1 - y) ( 1 + i y2 + i y1) - 1 + ~ y + 2e- 28 - ye- 8. (62) 

A numerical in vestigat ion of {I(8, y) for differe nt values of 8 shows th at the re is ne ver more th a n 
one root of {!(8. y) inside th e unit circle. When th ere is a root of {!(8. y) in s id e the unit c ircle, it 
is real, and it lies between y= ° and J. In order to dete rmine the co ndition on 8 for whi c h th e re 
i~ a real root yd8) ~ 1 of Id8. y), co n s id er the plots of tli e tw o fun c ti o n s F (y)= 

~(1 - y) ( 1 + i y2 + i y1) and L(8, y) = 1- 2e- 28 - ( 1- e- 8)y s hown in fi gure 2. The occurrence 

of the root YI(8) cor respond s to an intersect ion of F (y) and L(8 , y). For 8 = In 2, th e line L«(), y) 

becomes L(ln 2, y) = 1. For 8 > In 2, the slope of L(8 , y) is negative; and as () incr eases th e inte r· 
sec tion of L (8. y) and F (y) moves up toward the point (0, 1), i. e ., toward smaller values of YI«() than 
YI(ln 2). For () < In 2, the slope of L«(), y) is pos itive; and as () decreases th e intersec ti o n of L«(). y) 

and F((), y) moves down toward the point (1, 0). The c riti c al va lue of 8 , for whic h th e inte rsec tion 
of L (8, y) and F(y) occurs a t (l, 0) can be de termin ed by solving th e equ a ti on {!«(), 1) = 0, i. e., 

(63) 

The value of () a t which YI«()= 1 IS 

8c= In CVs - 1). (64) 

There are no othe r s ing ul ariti es o'f the int egrand s in (57) and (60). 

Deformation o/ Ihe conlour 0/ inlewalioll . Having de te rmine d the pos iti o ns a nd types of 
x 

s ingulariti es of the integrands in th e integral representations of Q(() , N) a nd L m[p(m; N) 
111 = 0 

+2q(m; N) ] , we will now e valuate th ese integra ls in the limit in which N is la rge a nd 8 > ()c. As 
in I , th e de ta il s of th e calculation a re differe nt , de pe nding upon whethe r 8 > ()c, 8 < (),., o r 8 = (),.. 

F(y) 

U8,y) 

---- -- (I,O) 

[ ( 1 1)] 1/2 FIGURE 2. Plots of F(y)= (l -y) 1 +/j:y2 + ,p,,1 and 

L (O, y) = 1 -2e-28-(~ -e-8)y versus y for real y, 0 ,,; y"; 1. 
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The results in each case are qualitatively the same as in I. Therefore, we will limit our discussion 
to the case (J > (Jc. 

Consider the integral 

f=_l_l f(y) dy (65) 
27Ti j g«(J, y) yV+ I 

aro und the three co ntours Co, C1 , and C2 shown in figure 1. Denote these integrals by ..!o, f I, and 
..!2, respectively. S uppose that the integrand f(y)/g«(J, y)yV+I is the integrand in eq (57) or (60) 

so that ..!o=Q«(J, N)or ..! o= 2: m[p(m; N)+2q(m; N)], respectively. The contour C I encloses 
111=0 

YI« (J) , and the contour C2 consists of a circular part whose radius is 1 + 0, and an indented part 
around the branch point at y= 1. With these definitions, the integrals satisfy the relation 

We first evaluate ..! I and indicate why..! 2 is negligible compared to ..! I for N > > 1. The value of 
..!I is simply the residue [5] at YI=YI«(J) 

where g' «(J, YI) denotes del g«(J, y) / y= ~" Thus ..! I is proportion al to the (N + l)st power of a number Y . 
which is larger than one. As in I, it can be verified in the case of the con tour integral..! 2 that the 
con tribution from the circ ular part of the contour is proportional to (l + 0)- ,1', and that the contri· 

bution from the remaining part of the contour is small compared to (~JN+I. Therefore, in the 

limit N ~ 1, we can neglect ..! 2 compared to f I and write eq (66) as 

(68) 

This approximation is excellent for large finite values of N provided that (J is not too close to (J(", 
i.e., provided that YI is not too close to the branch point y= 1. Having established the relations 
(67) and (68) for both integrals (57) and (60), we can now calculate the values of v«(J , N) and z«(J, N). 

First we have from eq (8) 
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Z 
'!! 0. 6 

'" , 
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8 0 .4 
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0.2 

0 
0 
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6-chOice// 

I 
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I 
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0.2 

/ 

/ 
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0. 4 0 .6 
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e 
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1.0 1.2 1. 4 1. 6 

FIGURE 3. Averag e Jraction oj odsorbed monomer units 
N- l v(8, N) versus adsorption energy 8 (solid curve)Jor 8 > 8c . 

Fur cumparison. the corresponding curves for the 6-choice simple cubic lattice (dashed 
curve ) and the 2-c hoicc simple (' ubic (dOll ed curvt') are includ ed. from reference I. 
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6.0 '---'r---'--'--~--r----'---.-------, 

5 .0 

4 .0 

z :g 3 .0 

2.0 

1. 0 

o L ___ Le~c_~_~ __ ~_-L-===L===~==~ 
o 0.2 0. 4 0.6 0.8 

e 
1.0 1. 2 1. 4 1.6 

F IGURE 4. Mean distance of end of polymer chain from surface 
z(8, N) versus adsorption energy 0 for 8 > Oe. 

In eq (69), we have dropped te rm s which are not proporti onal to N. It is see n th a t the res ult 
obtained he l'e [or the case of the 4-choi ce s.c . lattice wh en {} > {}c is s imilar to the res ult obtained 
in I , namely , on th e average a finit e fract ion of all s te ps are adsorbed in the s urface for N ~ 1. 
In th e case of eq (24) we have 

a res ult which is indepe ndent of N for N ~ 1. 

The values of N- 1v({}, N) and z({}, N) in eqs (69) and (70) have been de termined nume rically by F. 
McCrackin; and the results are presented graphically in fi gu res 3 and 4 for {} > {}c. Valu es of 
N - 1v({} , N) obtained in I for the 6-choice s imple c ubic latti ce and the 2-c hoice simple c ubic latti ce 
are also included in fi gu re 3 for co mpariso n. Although res ults have only been prese nted for adsorp­
tion e nergies greater than {}c , examin atio n of the be havior of the integrands in (57) and (60) for {} < @c 

and {} = {}c in t he ne ighborhood of y = 1 shows that the res ults for the 4-choice s imple c ubic lattice 
are qualitative ly similar to th e res ults for th e latti ces studied in lover the entire range of values of {}_ 

I thank F_ McCrackin for calculating the numerical values of N- IV({}, N) and z( {} , N). 

5. Appendix 

Th e roots of the c ubic equation 

(AI) 

are the reciprocals of the roo ts of the equation 
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Therefore the roots of (AI) are 

~ -1.968 

~ 0.497 + 1.308i 

Yc ~ 0.497 - 1.308i 

Thus all three roots, y", Y'" and Ye, li e outside the unit circle. 
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