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Error Analysis of Phase-Integral Methods. 

II. Application to Wave-Penetration Problems 

F. W. 1. Olver 

(July 1, 1965) 

A study is made of the differential equation 

(J2w/dz2 = (f(z) + h(z)}w, 

in whichf(z) and h(z) are real and regular on the real axis, andj(z) has e xactly two ze ros the re. S~ ri c t 
e rror bound s are derived for the coefficients in the formulas which connect the asy mptoll c solutions 
at z =+oo with the asymptotic so lutions at z =-oo. Applications a re made to two physica l problems. 

Key Words: Wave pe netration , connection formulas, e rror bounds, potential barrier, tran smis
s ion coe ffi cie nt , harmoni c oscillator. 

1. Introduction and Summary 
Th e purpose o[ this paper is to illustrate the theory of the preceding paper [1] 1 with two 

problems arising from the one-dimensional wave equation 

d2w 
dz2 = Ulz) + h(z)} w. (1.01) 

In both problems the functions f(z) and h(z) are real when z .is real , and in the region considered 
f(z) has no singularities and just two zeros, both of which are real and simple. The function 
h(z) is to be regarded in some sense as bein g small compared withf(z) , but we do not need to formu
late this assumption precisely at the outset. 

In the firs t problem (secs. 2 , 3) f(z) is positive between the zeros. The object is to determine 
the ratio o[ th e amplitude of an oscillatory solution at z=+oo to the amplitudes of its compone nts 
at z=- 00. 

In the second proble m (secs. 4, 5) f(z) is negative between the zeros. The object here is to 
determine eigenconditions admitting a solution having subdominant (exponentially small) character 
at both - 00 and + 00. 

Both problems have been treated frequently in the literature; see the references cited in [1], 
and [2] -[7] given at the end of this paper. Generally , the viewpoint adopted has bee n that f(z) 
contains a multi plicative fac tor u2 , h(z) is independent of u , and approximate solutions are sought 
which are asymptotically correc t for large values of the parameter u. In the prese nt paper, we 
establish explicit strict error bounds for the approximate solutions. Asymptotic properties with 
respect to parameters are immediate consequences of the forms of the bounds. 

Two methods [or solution were given in [1]. We shall concentrate on the first (Zwaan's 
method). As we shall see, from the standpoint of deriving error bounds this affords the simpler 
approach to the present problems. 

2. The Overdense Potential Barrier 
In this section we suppose that f(z) and h(z) are regular in an unbounded, simply connected 

complex domain D, which includes the whole of the real axis, and that the only zeros of f(z) in 
D are simple zeros at z=±a (a > 0). Whe n -a < z < a,f(z) is positive. 

1 Figures in bracket s indicate the lit e rature refe rences at the end of thi s paper. 
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~, ~, FIGURE 1. . Typical principal subdomains for the over
dense potential barrier. 

Let us consider the turning point at z =- a. In order to apply the theory of [1], section 5, 
we have to exclude the other zero z= a from the domain of consideration, and we do this by intro· 
ducing a cut sI along the real axis from z = a to z = + 00. We shall refer to the upper and lower 
sides of this cut as sI, and sl2, respectively. As in [1], section 5, we define 

g(z) = fa {J(t)}1/2dt. (2.01) 

The associated principal curves '£ j and subdomains Dj are indicated in figure 1. '£ I is the part 
of the real axis which extends from - a to - 00. '6'2, '£ 3 are conjugate curves emerging from - a at 
directions =+= 1T/3. They cannot intersect the real axis at any other point. We define gj(z) to be 
the branch of g(z) which is continuous in D cut along sI and '£j, and has positive real part in Dj. 
Similarly, gl(Z), g2(Z), giz) are multiples of any branches of g(z) == {f(Z)} - 1/4 which are continuous 
in D cut along sI and the corresponding'£j, and satisfy eq (5.08) of [1]. 

As in [1], let Cj be points at infinity on arbitrary g·progressive curves 2 j lying within Dj such 
that IRe g(Cj) I =00. !f'1 is taken in the upper half.plane, and !f'2, !f'3 are complex conjugates, but 
no boundary of D may intervene between !f'2 and !f' 3 in the neighborhood of infinity. The other 
assumptions we make are 

(i) The variation of the function 

(2.02) 

converges as z ~ Cj along !f'j, and also as z ~ ± 00 along the real axis. 
(ii) g-progressive curves can be found in D linking: (a) CI with C2; (b) CI with C3; (c) C2 or C3 

with any point of the interval (- 00, - a); (d) CI with any point of sI,. 
(iii) E2( C3) = 0; E2(Z) and E3(Z) ~ 0 as z ~ - 00; EI(Z) ~ 0 as z ~ + 00 on sI,. 
(A brief discussion of the determination oCg-progressive paths is given in the remark at the 

end of [1], sec. 5, and sufficient conditions for the fulfillment of (iii) are given in sec. 7 of the same 
paper.) 

With these conditions, the fundamental connection formula ([1], sec. 5) for the solutions 

(2.03) 

of the differential eq (1.01), becomes 

(2.04) 
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We fix the wJ{z) by specifyi ng tha t g b ) is the branc h of {f(Z)} - 1/4 whic h tak es its principal value 
on the join of - a and + a, a nd inte rpre t the bra nches of the two s ides of (2.04) in real form , as 
follows. 

Wh en Z E d J, we have 

~ 1 (Z) = C\' - if Z lf11 /2 dt , 
fI 

(2 .05) 

where 

C\' = L~, Ifl 1/2dt (2.06) 

and is pos itive. Therefore from (2.03) and hypothesis (iii) 

(2 .07) 

This expression represents a transmitted wave ([8], p. 1l00; [6]). 
Wh e n - 00 < z < - a, we have 

6(z) = i i-a If I1/2dt, (2.08) 

Hence 

(z~ -00) . 

(2 .09) 

Thi s is the incident wave, mov ing in th e same direc tion as the trans mitted wave. Simila rly 

(2. 10) 

Thi s is the reflected wave , movin g in the oppos ite direction to the trans mitted wave. 
The transmiss ion coefficient 2 T a nd the reflection coefficient R are the squ ares of the limit ing 

ratios of the wave a mplitudes. Thu s 

(2.11) 

(2.12) 

where ([1], (5.17)) 

(j=2 , 3), (2.13) 

the variations be ing e valuated along g-progressive curves. 
Alternative , and some times more e ffective , formulas for T and, especially, R, can be derived 

with the aid of the energy-conse rvation eq ([8], p. 1066; [9], sec . 4.4) 

T + R=l. (2 .14) 

2 O r "t unne lling prub abili t y" 171 . 
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(This relation may be verified analytically by means of Theorem 4 of [10] and the Wronskian prop
erty of the solutions of the differential equation_) Substitution of (2_11) and (2.12) in (2.14) yields 

(2.15) 

Hence 

e- 2 a 
T= , 

11 + E\(dI 2 + e- 2a 
(2 .16) 

(2.17) 

Remark. It is interesting to observe that we have not used the connection formula for the 
turning point at z = + a. In contrast, if the problem of this section were attacked by real-variable 
theory ([1], sec. 9) connection formulas at both - a and + a would have to be used, and the resulting 
approximate solutions of the differential equation then matched in the interval - a < z < a; see, 
for example, [5, 6).3 The error analysis obviously would be lengthier and lead to more compli
cated bounds. 

3. Example· 

Consider the modified Weber equation 

(a> 0). (3.01) 

We take f(z) = a2 - Z2 and h(z) = o. Then 

The principal subdomains in the z-plane are shown in figure 2 (compare [12], sec. 3). The 

3 A re al-variable me thod whic h a voids this matc hin g has been s uggested by Miller and Goud [41 and by Pike 17J. but it has yet 10 be placed on a firm mathe matical 

foundation . 
-4 For an account of so me d irec t nume ri cal c alc ulations of tran smiss iu n cud fi cients 10 high prec ision see Ill]. 

Q 

FIGURE 2 . z-plane: principal subdomains . FIGURE 3. t.-plane. 
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corresponding map of the uppe r half of the z-p lane on the g,-plane is indicated in figure 3; the map 
of the lower half is of course the image of fi gure 3 in the real axis. 

The reference points CI, C2, and C:1 are take n at infinity on outward-drawn rays from the origin 
in the first, second, and third quadrants of the z-plane, respectively. With the aid of the gl-map, 
we see immediately that hypotheses (i) and (ii) of section 2 are satisfied. Theorem 4 of [1] shows 
that hypothesis (iii) is satisfied, and also that EI (C2) = O. From the definition (2.06) we have a =! 7m2 • 

Hence from eqs (2.16) and (2.17), we derive 

e- rra2 

T = 1 + e - 1m2' 

1 
R = 1 + e-TTa2 (3.03) 

These results may be verified analytically with the aid of asymptotic expansions and connec
tion formulas for the Weber fun ctions given, for example, in [13]. The actual expression for WI(Z) 
is found to be, in Miller's notation, 

wI(z) = 2- (ia 2+ 1)/ 4a ia 2/2 ex p (-4 7ra2 -i ia2 -4 i<P2) {k- I/2W G a2 , \i2z)+ikl /2W G a2 , -\i2z)}. 

(3.04) 

It is noteworthy that our theory 5 proves sufficien tl y powerful to yield exact express ions for T and 
R. This example, however, is unique in thi s respect. 

4. The Approximate Harmonic Oscillator 

The co nditions assu med in this sectio n are those s tated in the ope ning paragraph of section 2, 
except that fez) is negative when - a < z < a. 

We distinguish the auxiliary functions and principal subdomains associated with the turning 
point at z=- a from those associated with z=+ a by the addition of tildes. Thus 

g(z)= f Z {J(t)}I /2dt , 
" 

~(z) = f" {J(t)} 1/2dt. (4.01) 

Three principal c urves e me rge from - a and three from + a, one of which in each case is th e join 
of - a a nd + a; see figure 4. Let D " ~ be the principal subdomain s whic h include the points 

~ This is also true or the theory of [14], section 9.1. 

C2 = c3 

/ 
O2 ,, 03 

D, 0, 
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CI == + 00 and (I == - 00, respectively. Then clearly O2 == 0 3 and 6 3 == O 2 • We take C2, C3 to be 
points at infinity on conjugate g-progressive curves lying within D 2 , 0 3 , respectively, and (-t=c:l, 

(-3 = Ct. We assume that g-progressive curves can be found in D linking Ct and C:l with + 00 and 
- 00, and also with each other, and that IRe g(z) I ~ 00 as z tends to any of the Cj or q. 

The fundamental connection formulas for the two turning points are given by 

(4.02) 

and 

(4.03) 

Clearly lV3(Z) is a multiple of W2(Z), and lV2(Z) a multiple of W3(Z). To fix these relationships we suppose 

that gl (z) and gl (z) are the branches of the function {f(z) }-1/4 which take their principal values when 
z > a and z < - a , respectively. W e then find that if z E D 2 

(4.04) 

where (\' is again define d by (2 .06). Therefore 

(4.05) 

Substituting these and the corresponding results for /(;2(Z) and E2(Z) in (4.03), we obtain the connection 
formula for Wl(Z), W2(Z) and wiz). Elimination of W3(Z) by means of (4.02) then yields 

(4.06) 

The eigencondition or "quantization condition" is that WI (z) be a multiple of/(; dz). Accord

ingly, this is expressed by 

Neglecting the error terms, we obtain at once the well-known approximations (\' =~ 7T, ~ 7T, ~ 7T, • 

To assess the errors in these approximations, we write 

where p, p> 0 and q, If are real. Then 

where w , ware real, and 

provided that p , p ~ 1. Hence the eigencondition is given by 

(\'= (n + t + f3)7T (n=O, 1, 2, ... ), 
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where f3 =(w+w)/1r and is real. From (4.08), (4.10) and [1], (5.17), we obtain the des ired bound 

1 . 1 1 IPI ~ 4 exp { "f x . c2(F )} +4 exp {f - 00 , C2(F)} - 2' (4. 12) 

where F is any continuous branch of the integral de fin ed by (2.02) above, and 1 he variations are 
tak en along ~-progressive paths. 

When the eige ncondition is sati sfi ed , eq (4.06) reduces 10 

whe re 

1 + 0 -
wl(z)=(-)"1+8 1Ii (Z), 

Thus on the real axis the eigensolution is given by 

wh e re 

(z > a), 

and 

where 

(z < - a) . 

(4.13) 

(4 .14) 

(4.15) 

(4.16) 

(4. 17) 

(4. 18) 

The fractional powers in (4. 15) and (4. 17) are positive, and the variations in (4 .16) and (4.18) are 
taken along the real axis. 

R emark. Let f(z) and h(z) be even functions of z, and ass u me that C2, C3 can be tak e n as the 
points ± ioo. The n the bound (4. 12) and eq (4.13) reduce to 

1f31 ~ t exp {'f x, ix(F)} - t, (4 .19) 

and 

(4.20) 

5. Examples 

(i) W eber equation. 

(a > 0) . (5.01) 

We take f(z) = Z2 - a2 and h(z) = O. The n 
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FIGURE 5. Principal subdomainsfor the Weber equation. 

Figure 5 illustrates the principal subdomains. We take C2, C3 to be the points ± ioo. From [1] , 
theorem 4, we see that EI(C2) = E I(C2) = O. Hence in (4.08) p = p= O. Therefore (3 vanishes and 
a=(n+ t)1T , exactly.6 Using (2.06), we see that this implies a2=2n+ 1. The eigensolution of 
course obeys (4.20) . These results accord with the known analytical properties of the Weber 
functions [13]. 

(ii) Large parameter. Let f(z) = u2/o(z), where u is a large positive parameter, and the functions 
/o(z) and h(z) are independent of u (though this res triction could be eased without significantly af
fecting the following analysis). Then 

a=uao, F (z) = F o(z)/ u, (5.03) 

where 

Fo(z) = J b~2-/~/41:2 (f~/4) } dz, (5.04) 

and are independent of u. Write 

(5.05) 

Then the eigencondition (4.11) is expressed by the following equation for u: 

!/I(u) == uao - (n + t) 1T -1T{3(U) = 0, (5.06) 

in which 

1{3(u)1 ~ X(u). (5.07) 

For large u, X(u) = O(U~ I). Therefore for large values of the positive integer n 

(5.08) 

ti Curnpan:! also I ]4 1. page 109. 
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In order to determine precise bounds for the 0 term in the last equation, consider the function 
X(u). This tends to infinity as u ~ 0, and to zero as u~ 00, and is monotonic strictly decreasing 

when u is positive. Let Uo be the root of X(uo) = ! . Then provided that wrrjao > Uo, we have from 
(5.06) and (5.07) 

(5. 09) 

and 

(5.10) 

Therefore at leas t one eigenvalue exists in the interval nn/ao < u < (n+ l)n/ao. To delimit it in 
a shorter interval, let 

u = (n + ! + v)n/ao, (5.11) 

where Ivl< !. The n subs tituting in (5.06), we obtain 

v= f3{(n+! +v)n/ao }. (5.12) 

Hence Ivl < X(n1T/ao), that is, 

(5.13) 

elations (5.11) and (5.13) constitute the prec ise form of the eigencondit ion (5.08), and are 
valid when n > aouo/n . The eigensol ution sat isfies (4.13), where 

I-I 1 {ao } 1 fi ~ "2 exp nn 't - x, c) Fo) - 2' (5.14) 

The ahove proof shows that there is at leas t one eigenvalue (5.11) which sa ti sfies (5 .] 3). In 
order to es tablish that there is exactly one eige nvalue of thi s form, we need to in ves ti gate the s ign 
of the derivative f3'(u) in the interval considered. 7 Thi s takes us back to funda me ntals. We have 
to consider the Liouville ·Green approxim ate solutions of the differential equation 

(5 .15) 

(compare [1], sec. 2) as funct ions of u, and seek bounds for the u·derivatives of their e rror terms. 
The analys is is somewhat lengthy, and we record only the res ult: 

Let 

lei l +K lei I+K 
X(u) =-3 '--+-3- ,---- aQ , -e U --e u (5.16) 

where 

l = u- I "f/ 00 , c2(F 0) , (5. 17) 

K= (2e cos Y) - I, (5.18) 

7 An uilcrnalive. but apparently no ea s ie r . ap~ruac h wou ld bt, to consider cu mpl ex values ~, f II and apply RuudH~ 'S theorem . 
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and y, ii are the maximum angles of slope with the real faxis of the ~-maps of the progressive paths 
linking OCI to C2, and - OCI to C2, respectively (I yl, 1 YI < ~ 7T). Then exactly one eigenvalue satisfies 
(5.11) and (5 .13), provided that n ~ aouIi7T where Ul is the largest positive zero of X(u). 

Some simplification can be effected by using upper bounds for the zeros of x(u) - ~ and X(u). 
In this way we may verify that both of the conditions n > aouo!7T and n ~ aouJ/7T are certainly ful
filled if n exceeds each of the three quantities 

an "f/ x, c2(F 0) 
7T In 2 ' 

ao"l ~x , c)Fo) 
7T In 2 

(5.19) 

The author acknowledges helpful criticisms of the draft of this 'paper by Drs. 1. Heading and L. 
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