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Error Analysis of Phase-Integral Methods.
II. Application to Wave-Penetration Problems

F. W. ]. Olver

(July 1, 1965)

A study is made of the differential equation
d*w/dz*= {fiz) + h(z)} w,
in which f(z) and h(z) are real and regular on the real axis, and f(z) has exactly two zeros there. Strict
error bounds are derived for the coefficients in the formulas which connect the asymptotic solutions

at z=+  with the asymptotic solutions at z=—c. Applications are made to two physical problems.

Key Words: Wave penetration, connection formulas, error bounds, potential barrier, transmis-
sion coefficient, harmonic oscillator.

1. Introduction and Summary

The purpose of this paper is to illustrate the theory of the preceding paper [1]' with two
problems arising from the one-dimensional wave equation

cia {fz)+ h(z)}w. (1.01)

dz?

In both problems the functions f(z) and h(z) are real when z is real, and in the region considered
f(z) has no singularities and just two zeros, both of which are real and simple. The function
h(z) is to be regarded in some sense as being small compared with f(z), but we do not need to formu-
late this assumption precisely at the outset.

In the first problem (secs. 2, 3) f(z) is positive between the zeros. The object is to determine
the ratio of the amplitude of an oscillatory solution at z=+ © to the amplitudes of its components
gl === 5L

In the second problem (secs. 4, 5) f(z) is negative between the zeros. The object here is to
determine eigenconditions admitting a solution having subdominant (exponentially small) character
at both —o and + oo.

Both problems have been treated frequently in the literature; see the references cited in [1],
and [2]—[7] given at the end of this paper. Generally, the viewpoint adopted has been that f(z)
contains a multiplicative factor u?, h(z) is independent of u, and approximate solutions are sought
which are asymptotically correct for large values of the parameter u. In the present paper, we
establish explicit strict error bounds for the approximate solutions. Asymptotic properties with
respect to parameters are immediate consequences of the forms of the bounds.

Two methods for solution were given in [1]. We shall concentrate on the first (Zwaan’s
method). As we shall see, from the standpoint of deriving error bounds this affords the simpler
approach to the present problems.

2. The Overdense Potential Barrier

In this section we suppose that f(z) and h(z) are regular in an unbounded, simply connected
complex domain D, which includes the whole of the real axis, and that the only zeros of f(z) in
D are simple zeros at z==+a (a>0). When—a <z< a, f(z) is positive.

1 Figures in brackets indicate the literature references at the end of this paper.
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Let us consider the turning point at z=—a. In order to apply the theory of [1], section 5,

we have to exclude the other zero z=a from the domain of consideration, and we do this by intro-
ducing a cut ./ along the real axis from z=a to z=+». We shall refer to the upper and lower
sides of this cut as ./, and .9, respectively. As in [1], section 5, we define

&z)= f {f(}'2de. (2.01)

The associated principal curves %; and subdomains D; are indicated in figure 1. %, is the part
of the real axis which extends from —a to —. %,,%; are conjugate curves emerging from — a at
directions + /3. They cannot intersect the real axis at any other point. We define &(z) to be
the branch of &z) which is continuous in D cut along .« and €j, and has positive real part in D).
Similarly, gi(z), g(z), gs(z) are multiples of any branches of g(z) = {f(z)}~"/* which are continuous
in D cut along 7 and the corresponding®;, and satisfy eq (5.08) of [1].

As in [1], let ¢; be points at infinity on arbitrary &-progressive curves .%#; lying within D; such
that |Re &(cj)|=. &, is taken in the upper half-plane, and %>, ¥s are complex conjugates, but
no boundary of D may intervene between. %, and %5 in the neighborhood of infinity. The other
assumptions we make are

(i) The variation of the function

(h 1 & /1
Fff T_FM—ZZ(ﬁ)}dz (2.02)

converges as z— ¢; along %}, and also as z— * along the real axis.

(i1) &-progressive curves can be found in D linking: (a) ¢; with ¢»; (b) ¢; with ¢35 (c) ¢2 or c3
with any point of the interval (—, —a); (d) ¢; with any point of .</;.

(i11) €2(c3)=0; €2(z) and e3(z)— 0 as z—> —; €(2)— 0 as z— + > on ..

(A brief discussion of the determination of &-progressive paths is given in the remark at the
end of [1], sec. 5, and sufficient conditions for the fulfillment of (iii) are given in sec. 7 of the same
paper.)

With these conditions, the fundamental connection formula ([1], sec. 5) for the solutions

wji(z) = giz)e 5 {1+ €2)} (2.03)
of the differential eq (1.01), becomes
wi(2) = e™B{1 + €1(c3) ywa(z) + e~ ™B{1 + €1(c2) fws(z). (2.04)
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We fix the wjz) by specifying that gi(z) is the branch of {f(z)}~"* which takes its principal value
on the join of —a and + a, and interpret the branches of the two sides of (2.04) in real form, as

follows.
When z € .7, we have

F4
f;(Z)Za-—if |f]'2dt, g1(2) = e™/4| f|=1/4, (2.05)

where

- f \f]12de (2.06)

and is positive. Therefore from (2.03) and hypothesis (iii)

wi(@)= e~ f|-1{ 1+ 0(1) } exp(i f f]2de+ %m‘) (z—> +<0). (2.07)

This expression represents a transmitted wave ([8], p. 1100; [6]).
When — o < z <—a, we have

§g(z)=if_ If]V2dt,  galz) = e 2| f|-1/4, (2.08)

Hence

e™B{1 + €(c3) fwaAz) = | f|~ V{14 €; (c3) +o(1)} exP(_i f_” If|’/2dt+% ﬂi) (z=>—).
(2.09)

This is the incident wave, moving in the same direction as the transmitted wave. Similarly

e~ ™B{1 + €1(c2) bws(2) = | f| V{1 + ei(c2) +0(1) } exp( i f_ |f|‘/2dt—?}. 7Ti) (z—>—0),
4
(2.10)
This is the reflected wave, moving in the opposite direction to the transmitted wave.

The transmission coefficient > T and the reflection coefficient R are the squares of the limiting
ratios of the wave amplitudes. Thus

T:€_2"|1+61(C:;)|_2, (211)
R=[1+ eic2)?|1+ €(cs)| 2, (2.12)

where ([1], (5.17))
lee)| <2 exp {V e o)} =3 (=2, 3), (2.13)

the variations being evaluated along é-progressive curves.
Alternative, and sometimes more effective, formulas for T and, especially, R, can be derived
with the aid of the energy-conservation eq ([8], p. 1066; [9], sec. 4.4)

T+R=1. (2.14)

2 Or “tunnelling probability” [7].
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(This relation may be verified analytically by means of Theorem 4 of [10] and the Wronskian prop-
erty of the solutions of the differential equation.) Substitution of (2.11) and (2.12) in (2.14) yields

11+ eilcs) |2 — |1+ exlea) 2= €72 (2.15)
Hence
eAZ&
= [T+ e(c)+e2a’ (2.16)
—2a )2
R=1 - _ 1+ ele) 2.17)

N teles)? |1+ elc)2+e2e

Remark. It is interesting to observe that we have not used the connection formula for the
turning point at z=-+a. In contrast, if the problem of this section were attacked by real-variable
theory ([1], sec. 9) connection formulas at both —a and + a would have to be used, and the resulting
approximate solutions of the differential equation then matched in the interval —a <z < a; see,
for example, [5, 6|2 The error analysis obviously would be lengthier and lead to more compli-
cated bounds.

3. Example *
Consider the modified Weber equation
d*w/dz*= (a®> — 2w (a>0). (3.01)

We take f(z)=a?—2% and h(z)=0. Then
&z)= J‘z (@2 — ) 2dt=3ma®— 3 a? cos™! (zla)+ %z(az—zz)l/z. (3.02)

The principal subdomains in the z-plane are shown in figure 2 (compare [12], sec. 3). The

3 A real-variable method which avoids this matching has been suggested by Miller and Good [4] and by Pike [7],but it has yet to be placed on a firm mathematical
foundation.
4For an account of some direct numerical calculations of transmission coefficients to high precision see [11].
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FIGURE 2. z-plane: principal subdomains. FIGURE 3. &i-plane.
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corresponding map of the upper half of the z-plane on the &;-plane is indicated in figure 3; the map
of the lower half is of course the image of figure 3 in the real axis.

The reference points ¢, ¢, and ¢z are taken at infinity on outward-drawn rays from the origin
in the first, second, and third quadrants of the z-plane, respectively. With the aid of the &;-map,
we see immediately that hypotheses (i) and (ii) of section 2 are satisfied. Theorem 4 of [1] shows
that hypothesis (iii) is satisfied, and also that €, (cz) =0. From the definition (2.06) we have a=1% ma?.
Hence from eqs (2.16) and (2.17), we derive

e~7m2 1

=i R

(3.03)

These results may be verified analytically with the aid of asymptotic expansions and connec-
tion formulas for the Weber functions given, for example, in [13]. The actual expression for w(z)
is found to be, in Miller’s notation,

) ) 1 1 1 1 1
— 9—(ia2+1)/4 4ia2(2 o Sl N—== Gafe—= Jaa —-1/2 = -0 QIRVPI 2 ’
wi(z) =2 a exp ( 5 ma 1 a*—35 ch_) {k W (2 a?, 2Z>+Lk /78 <2 @, \/iz)}
(3.04)

[t is noteworthy that our theory 3 proves sufficiently powerful to yield exact expressions for T and
R. This example, however, is unique in this respect.

4. The Approximate Harmonic Oscillator

The conditions assumed in this section are those stated in the opening paragraph of section 2,
except that f(z) is negative when —a <z < a.

We distinguish the auxiliary functions and principal subdomains associated with the turning
point at z=— a from those associated with z=+ a by the addition of tildes. Thus

f(z)zf: { f(t)} 2dt, é‘Z):f: {f(t)}2dt. (4.01)

Three principal curves emerge from —a and three from + a, one of which in each case is the join
of —a and +a; see figure 4. Let Dy, Dy be the principal subdomains which include the points

5This is also true of the theory of [14], section 9.1.

FIGURE 4. Typical principal subdomains for the approxi-
mate harmonic oscillator.
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¢; =+ and ¢, =—x, respectively. Then clearly D, =D; and D;=D,. We take cs, cs to be

points at infinity on conjugate &-progressive curves lying within Ds, Dj, respectively, and ¢»=cs,

C3=cs. We assume that &progressive curves can be found in D linking ¢» and c¢3 with + o and
—oo, and also with each other, and that |Re &(z)| —  as z tends to any of the ¢; or ¢;.

The fundamental connection formulas for the two turning points are given by

{1 + ex(cs) }wa(z) + e=2m3{1 +€3(c1) buwn(z) + 2™/3{1 + €i(cs) fws(z) = 0, (4.02)

and
(4.03)

{1+ &(E) yivn(z) + e~2mI3{1 + &(C1) hva(z) + e2m13{1 + €1(C2) Jivs(2) = 0.

Clearly its(z2) is a multiple of ws(2), and 105(z) a multiple of ws(z). To fix these relationships we suppose

that g (z) and g,(2) are the branches of the function { f2) }~"/* which take their principal values when
z > aand z <—a, respectively. We then find thatif z € D,
(4.04)

G)=ia+Ez), &) =eT0g(),

where a is again defined by (2.06). Therefore
(4.05)

103(z) = emiloIia 4 (z) €(2) = €(2).

Substituting these and the corresponding results for it5(z) and €s(z) in (4.03), we obtain the connection
Elimination of ws(z) by means of (4.02) then yields

formula for 101(z), w2(z) and ws(2).
L+ ele) | {1+elei{l+E(c) eZi“] e™3ws»(z) el ) jeietvy(z). (4.06)
- 1+e 1(c2) ’

wi(2)= [1 +elcy) {1+ eles)} {1+ &)}

The eigencondition or “quantization condition” is that w;(z) be a multiple of y(z). Accord-
ingly, this is expressed by
. {1+ ei(cs)} {1 +€(c2)}
PYN E (4.07)
¢ {1+ e(e)} {1+ Eca)}
3 5

Neglecting the error terms, we obtain at once the well-known approximations a=2 5Ty T

To assess the errors in these approximations, we write

€i(cs) =pe't, €i(c2) =pe1, €icz)=pe'l,  €éflcs)=Pe~ii, (4.08)
where p, p> 0 and ¢, ¢ are real. Then
i [ eiel) (e = 2ot
where w, ® are real, and
|o| <sin~! p < 3mp, |&| <sin~! p< zwp, (4.10)
provided that p, p<1. Hence the eigencondition is given by
4.11)

(n=0,1,2,. ..,
296
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where B=(w+ ®)/m and is real. From (4.08), (4.10) and [1], (5.17), we obtain the desired bound

1 1 1
Vel si exp {7 ... c.(F)} +1 exp {72 B} — > (4.12)
where F is any continuous branch of the integral defined by (2.02) above, and the variations are

taken along &-progressive paths.
When the eigencondition is satisfied, eq (4.06) reduces to

— _)nli__éﬁ«() 4.13
W1(Z)_( 1+8 112), ( . )

where
18] <% exp {7 . o(F)}— 7, 18] <2 exp {7 .. olF)}— 3. (4.14)

Thus on the real axis the eigensolution is given by

wi(d ={14+e(2)} V4 exp (—f f‘/zdt), (4.15)
where
lei(z)] <exp {7 . AF)}—1 (z > a), (4.16)
and
wi(2)= (1 4+ 8)(1+8) {1 +&2)} -/ exp (—f_"fllzd,» 417)
where
|€z)| <exp {7 . AF)}—1 (z<—a). (4.18)

The fractional powers in (4.15) and (4.17) are positive, and the variations in (4.16) and (4.18) are
taken along the real axis.

Remark. Let f(z) and h(z) be even functions of z, and assume that c», ¢3 can be taken as the
points == j%. Then the bound (4.12) and eq (4.13) reduce to

1Bl <2 exp {7 ... F)}— %, (4.19)
and
wi(2) = (—)"16(2) = (—)"wn(— 2). (4.20)
5. Examples
(i) Weber equation.

d*w/dz? = (z2 — a®)w (a>0). (5.01)

We take f(z)=22— a? and h(z)=0. Then

H4
§(z)=f (2 — a?'2dt = 3222 — a?)'?— 3a? In {z+ (22— a?'?} + 3a® In a. (5.02)
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FIGURE 5. Principal subdomains for the Weber equation.

Figure 5 illustrates the principal subdomains. We take cs, c3 to be the points i, From [1],
theorem 4, we see that €(c.)=¢€(c2)=0. Hence in (4.08) p=p=0. Therefore B8 vanishes and
=(n+ 2)m, exactly.® Using (2.06), we see that this implies a>=2n+1. The eigensolution of
course obeys (4.20). These results accord with the known analytical properties of the Weber
functions [13].
(i1) Large parameter. Let f(z)= u?fo(z), where u is a large positive parameter, and the functions
fo(z) and hA(z) are independent of u (though this restriction could be eased without significantly af-
fecting the following analysis). Then

a=uwy, F)=Fo@2)u, (5.03)
where
w=|" |foldt,  Filz e
0 - 0 t, olz 1/2 f1/4 d 2 \f1/4 2, (5.04)
and are independent of u. Write
1 o 1 . 1
x(u) =3 6xp {u™Y ., es(Fo)} tzexp {u> 7%,(-2(Fo)}—§. (5.05)

Then the eigencondition (4.11) is expressed by the following equation for u:
Y(w) = uao—(n+ %) m—mPu) =0, (5.06)
in which
|Bw)| < x(w). (5.07)

For large u, x(u) =O(u~'). Therefore for large values of the positive integer n

u=oy(n+ 3 )m +0[mn1). (5.08)

% Compare also [14]. page 109.
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In order to determine precise bounds for the O term in the last equation, consider the function
x(w). This tends to infinity as u— 0, and to zero as u— %, and is monotonic strictly decreasing

when u is positive. Let uo be the root of x(uo)=3. Then provided that nm/a > uo, we have from
(5.06) and (5.07)

Ynmlaw) =— &7 — wPnar/ap) < 0, (5.09)
and
P{(n+ Dmlaw} = 27— wB{(n+ V)mr/a} > 0. (5.10)

Therefore at least one eigenvalue exists in the interval nm/ay<u <(n+ 1)mw/ay. To delimit it in
a shorter interval, let

u=(n+ 3z +v)7l oo, (5.11)

where |v|< 3. Then substituting in (5.06), we obtain

v=_RB{(n+ 7 +v)mla}. (5.12)
Hence |v| < x(nm/ay), that is,
1 (671} . 1 (1)) 5 1
2exp iV, (Folttexp 2y __ (F)l—=
lv| < 2 EXP {nﬂ- x‘(z(f(,)}+4exp {m‘r ‘ -x.,z(f‘u)} 3 (5.13)

Relations (5.11) and (5.13) constitute the precise form of the eigencondition (5.08), and are
valid when n > apue/7. The eigensolution satisfies (4.13), where

1 Qg 1
==e — Y . e - =,
Bl =<1 exp {W . z(F(,)} :

< 1 Xy - 1

BIES 5 exp {; / ,,x',.z(Fu)}— N (5.14)
The above proof shows that there is at least one eigenvalue (5.11) which satisfies (5.13). In

order to establish that there is exactly one eigenvalue of this form, we need to investigate the sign

of the derivative 8'(u) in the interval considered.” This takes us back to fundamentals. We have

to consider the Liouville-Green approximate solutions of the differential equation

d*w/dz2={u2+ f(z)}w (5.15)

(compare [1], sec. 2) as functions of u, and seek bounds for the u-derivatives of their error terms.
The analysis is somewhat lengthy, and we record only the result:

Let
Xw) =+ [:’f'] Lo 7“[7(:7 i LR o, (5.16)
3—el u 3—¢é u
where
I=u 1Y o, eF0)y, I=u"'Y_,. (Fo), (5.17)
K= (2e cos y)7!, k= (2e cos ¥)"1, (5.18)

7 An alternative, but apparently no easier. approach would be to consider complex values of « and apply Rouché’s theorem.
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2

and vy, y are the maximum angles of slope with the real £&-axis of the £&-maps of the progressive paths
linking = to ¢s, and — % to ¢, respectively (|y|, | ¥/ < 3 m). Then exactly one eigenvalue satisfies
(5.11) and (5.13), provided that n = aoui/m where u, is the largest positive zero of X(u).

Some simplification can be effected by using upper bounds for the zeros of () — % and X(u).
In this way we may verify that both of the conditions n > ayue/m and n = awus/7 are certainly ful-
filled if n exceeds each of the three quantities

., ('2(F0), a? o, eo(Fo) , 21n 2
mln 2 mln 2

(2+ k+K). (5.19)
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