
JOURNAL OF RESEARCH of the National Bureau cf Standards-B. Mathematics and Mathematical Physics 
Vol. 69B, No.4, October-December 1965 

is 

Error Analysis of Phase-Integral Methods. 

1. General Theory for Simple Turning Points 
F. W. J. Olver 

(July 1. 1965) 

An approximat e genera l solutio n urt he d ifferential e quation 

d2w/dz2 = f( z)u-

w "" Af- '/" exp (J j' /2dz ) + 8f- I /' exp 1- f j' /2dz). 

To rep rese nt a parti e ulal' solution throu ghuut a e:iven complex domain, diffe rin g pairs "I' va lu es uf th e 
arbitra r y cu nstant s A a nd B are gene rall y needed in va ri o us s ubdomains . S tric t e rror bu unds a re 
estab lis he d in thi s papcr for the coe ffi c ie nt s in the lin ea r e quations co nnec ting th e pairs of values (If 
A and B. in th e case in whi c h th e z-domain unde r c ons ide ra tion is unbounded a nd co nt a ins a s imple 
ze ro and no s in gulariti es of./l z). 

Th e res ult s a re used to p lace the "WKI3J" me thod on a firm math e matica l foundation. 

Key Wo rd s: Differe ntial equation s. asy mptutics. phase- int eg ra l, WKI3J m e thod . turning po int , 
co nnec tion formula s . e rror bound s . 

1. Introduction 

A form of solution of the differential equation 

d2w 
dz2 = f(z)w, 

which IS frequ e ntly used in ap plie d mathe mati cal problems, is give n by 

w = Af- t/4 exp ( J P /2dz) + 8f- t /4 exp (- J P /2dz). 

(1.01) 

(1.02) 

in which A , 8 are arbitrary constants. This is com monly referred to as the Liouville-Green approxi
mation, the WKB or WKBJ approximation , or the phase-integral solution. A necessary condition 
for the applicability of the approximation is thatf- I/4 be a bounded, slowly varying function of z [1).1 
Thi s co ndition a utomatically excludes from th e region of validity most kinds of singularity of j; 
and also zeros of f , the so-called turning or transition points of the differential equation . 

A further co ndition concerns the monotonicity of the function Re f F /2dz (see [l) , sec. 8, and 
sec . 4, below). Thi s require me nt has the effec t of dividing the z-region under consideration, D, 
say, into a number of subregions, in each of whic h a different co mbination of values of A and 8 
in (1.02) has to be used in order to re prese nt th e s ame solution of (1.01). This is, of course, an 
example of the S tokes phenom e non . The linear equations linking the values of A and 8 in one 
subregion with those in anothe r ar e call ed th e cOllnection formulas or Stokes equatioll s. The 
purpose of thi s paper is to de termine the con nec tion formulas in the case in which D co ntains 
no singularity of j (z), an d just one s imple turning point, Zo, say. 

I Figures in bracket s indicate the lit erature references at the end uf Ihis paper. 
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Two principal methods are available for attacking this problem. The first , applicable wh en 
/(z) is real on the real axis, starts with the Liouville-Green approximation in real exponential form 
on one side of Zo, then traces its behavior along a semicircle in the complex plane to the re al axis 
on the other side of zoo The condition that the solution must be real when z is real suffices to deter
mine the main features of the appropriate connection formula. This method was originated by 
Zwaan [2J, and has been de veloped further by Ke mble [3J and Furry [4]. 

The second method consists of using approximations to the solutions in terms of Airy functions 
(or equivalently Bessel functions of order one-third), the region of validity of whic h includes Zo. 

Away from Zo the Airy functions are approximated by their asymptotic form s for large argument, 
leading immediately to the Liouville-Green forms. In the original version [5J-[7], the Airy"function 
representations were constructed by replaci ng/(z) by a linear approximation in the neighborhood 
of 20; this is, perhaps, the true "WKBJ method." In more recent work [8J-[13J more powerful 
uniform approximations in terms of Airy functions have been used to derive the connection formulas. 

Hitherto , the method of Zwaan has not been put on a sound math e matical footing: writing in 
1934 Langer [14J commented " ... an estimation of the relative error involved in the result is 
almost impossible ... ". The treatment of the Airy-function procedure has been more satis
factory. By supposing that /(z) contains as multiplicative factor (the square of) a large parameter 
u, say, it is shown in the referen ces cited that the conn ec tion formulas are asymptotically correc t 
as lui ~ 00. 

In the present paper we give rigorous analytical derivations of both methods, and supply 
explicit bounds for the errors in the connec tion formulas (thus overcoming one of Langer's objec
tions to Zwaan 's me thod). Since we are dealing with bounds there is no need for the explic it 
introduction of a parameter u ill the theory: asymptoti c properties in applications can be regarded 
as immediate consequences of the form of error bound. 2 We also dispense with the requirement, 
in Zwaan's method, that /(z) be real on the axis. 

The starting points of our investigation are the theories of error bounds for the Liouville-Green 
and uniform Airy approximations which have been developed by the writer in [IJ and [15J_ 

Since the present paper and its sequel-[19J were written, there has appeared a monograph on 
the same subject by N . Friiman and P. O. Froman [20]. Although th e objec tive of these authors 
is essentially the same as that of the present writer, the methods use d and result s achieved are 
suffic ie ntly differen t to warrant publication of this paper and [19J in substantially their original 
forms . Some comparisons with the results of [20J are given in section 11. 

2. First Error Theorem 

We begin with the differential equation 

d 2w 
dz2 = {I + /(z)}w, (2_01) 

in which 1(z) is a regular (holomorphic) function in a simply-connected complex z-domain D. 
THEOREM 1. Equation (2.01) has solutions Wj(z) U= 1, 2) regular in D, and depending on 

arbitrary fixed points aj of D, such that 

(2.02) 

where 

(2.03) 

whenz E H j • 

21n the course of a valuable his torical introduction 10 phase -integral methods, Heading ([13]. p. 8) c ritizes other writers . particularly Budden (121, for failin g to 

standardize a large parameter in their analysis. The theory of erro r bounds presented in thi s paper provides a broader basis for justifying the work of these writers. 

272 



In this res ult , the upper signs are to be take n when j = 1, and the lower signs wh e n j = 2. The 
regions of validity H j (j = 1, 2) co mpri se th e aggregate of those points z for whic h th ere exi s ts a 
path fYJ j joining z with aj and lying entirely in D, with the properties: 

(i) f1j consists of a finit e number of Jordan a rcs, eac h having a parametri c equation of the form 
t = t(T) with t''tT) continuous and t' (T) nonvani s hin g. 

(ii) Re t is monotoni c noninc reas in g (j = 1) or monotoni c nond ecreas in g (j =2), as / trave rses 
fYJ j from z to aj. 

Lastly, '~Y'j (G) denotes the variation along fYJ--j of the function 

G(z) = J j(z)dz; (2.04) 

thus 

(2.05) 

Theore m 1 is essentially a s pecial case of Th eore m 7 of [IJ. We reco rd the main s teps of the 
proof, howe ve r, s in ce they are needed in th e de rivation of further properties of th e error te rms in 
th e next sec tion. 

For illus tra tion, we take j = 1. From (2.01) and (2.02) we find th at 

(2 .06) 

Therefore EI( Z) sati s fi es th e int egral equation 

EI (Z) = ~ lz {l- e2(t - z )} {I + EI(I )}.f(l)dt , 

'" 
(2 .07) 

JIl whic h th e path uf int egra tion is ta ke n to be f11. The soluti on of thi s equ atio n is co ns tru cted 
as a con vergent se ri es 

x 

EI (Z) = L ll. ,,(Z), (2.08) 
11 = 1 

in whi c h II . o( z) = I , a nd 

k ,,(z) = } f' {1- e 2:t - Z)} jU )ll . II - I(/ )eLl 

'" 
(17 ;;,: 1). (2.09) 

In conseque nce of Condition (ii) on fYJ I we have 

(2.10) 

and by substituting this bound in (2.09) we readily establish by induction that 

(2.11) 

showing that the series (2.08) is uniformly convergent. In order that solutions of the integral 
equation (2.07) also represent solutions of the differential equation (2.06) , some res tri c tion s are 
needed on the path fYJ I. Those given in (i) above suffice (compare [16], pp. 491-492). 

The first of the inequalities (2.03) now follows by summation of (2.11). The other two are 
derived similarly from the differentiated form of (2.09). 
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3. Further Properties of the Error Terms 

For conciseness, we shall refer to a path fYJ j which fulfills Condition (i) of section 2 and is such 
that Re t is monotonic as t traverses fYJ j as a progressive path. If the monotoni c ity is strict every· 
where, we say that the path is strictly progressive. It may be noted, incid entally, that Condition 
(i) is quite weak, and can be fulfilled , for example, by any finite chain of s traight lines and ci rc ular 
arcs . 

The condition that D be simply connected, mentioned in the opening paragraph of section 2, 
merely ensures that each Wj(z) is single-valued in D. For a multiply connected domain, each 
branch of Wj(z) sati sfies (2.02) and (2.03) whenever a progressive path can be found in D joining 
Z with aj. 

In section 2 we tacitly assumed th at the points aj are finit e. Theorem 1 st ill holds , however, 
if D is unbounded and the aj are points at infinity on progressive paths!tj, provided that fYJ j coin
cides with~ as aj is approached and that the variations (2.05) converge. The convergence of th e 
infinite integrals (2.09) is then an immediate consequence of the inequality (2.11). 

A situation of importance in the later sections occllrs when a l and a2 are distinct points a t 
infinity, and can be joined by a progress ive path fYJ lying in D. From (2.03) it is seen that EI(Z) and 
E;(Z) both vanish as z~ a l along fYJ; in deed we may regard these properties as th e boundary con

dition s defining Uh (Z) . What happe ns, however, to EI(Z) and E;(Z) as z~ a2? 

and 

THEOREM 2. lf1Re zl~ 00 as Z~ a, and as Z~ a2, then 

E, (z) ~ a constant EI (a2) , say, and E; (z) ~ 0 as z~ a z,) 

Ez(Z) ~ a constant Ez(a, ), say. and E~(Z)~ 0 as z~ ai , 

To prove these res ult s. let 

!31. //(z) = I Z e2(r-zIjU)ll . // - ,( t )dt. 
'" 

Then from (2.08) and (2.09), we have 

(3.01) 

(3.02) 

(3.03) 

(3 .04) 

(3.05) 

the su mm a tions exte nding in eac h case from n = 1 to n = co. Since by hypothesis I'" If(t)dt l con-
'" 

verges, it follows that for any give n positive numbe r 0 which is less th an the value of thi s doubly 
in finite integral there exist s a point z' on fYJ such that 

f' If(t )dt l = o. (3.06) 

Let Z be any point of fYJ between z' and a2 (fig. 1). Then by splitting the integration range in the 
second of (3.04) at z' , and applying (2.10), (2.11), we find that 

1!3 () I,;;: 1 2( Z'-z ) 1 { r ",. z,(C)}" + { i ",. ",( G)}"- 1 0 (3.07) 
I. //Z e n! (n-l)!' 
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FI GU RE 1. z' 

Therefore 

(3.08) 

With the assumed conditions, e2(z'-z ) vanishes as Z-7 a2. Hence 2,{3"n(Z) also vanishes, that is, 

E;(Z) -7 O. 
Next , we ha ve 

and so 

",.JG)} /I- { i ", .AG)}/1 
n! 

(3.09) 

(3.10) 

The ri g ht s id e o f thi s ine qu a lity va ni s hes as z a nd z' te nd indcpcnd {> ntl y to a~, therefore 2.0' ,. ,,(z) 

te nds to a co ns ta nt limiting valu e. Th e pmof o f th e fir s t line of (3.01) is nuw c tlll1plcte . The 

secund line follow s b y sy mmetr y. 
To pro ve (3.02), we c on s truc t th e Wron s ki a n from (2 .02): 

F rolll (3.01) we see th a t t hi s re du c es to 2{ ] + E:!l aJl } at z = a, . a nd 2{1 + E!l!l:!J} at z= a2. S ince 

th e Wru ns ki a n is c un s ta nt, (3.0 2) fo llows. 

L as tl y. wc d cri ve fmlll (2.ll) a nd (3.04) 

(3. ] 2) 

The impruved form (3.03) 0(" t he m a in re s ult (2.03 ) for th e s pecia l va lu e z= a :! now ("o llu w!;; imm e

di a tely frum (3 .0S). 

4. Basic Error Theorem for the Liouville-Green Approximation 

W e now proceed to ap pl y th e res ult s of th e pre ce ding two s t'C tion s tu th e diffe rential equ a ti on 

(1.01 ). A useful gen e ralizatioll is a c hi e ved on re plac in g t il(' c oe fi ici e nt of IU in thi s equat ion b y th e 

s u m of two fun c tion s I( z) and !t( z). say. In applicat ion s the second [unction /i( z) will e ith e r IJ<' 

ze ro , or s ma ll , in some sen se, compa red with .liz) (ef. 11J. s ec . 4(ii)). From th e s tand point o f th e 

error a na lys is. how e ver , th e relat ive magnitud es of/iz) and h( z) a re imm a te r ia l. 

Thu s we c on s id e r the diffe re nti a l e qua ti on 

789-972 0 - 66 - 2 

d~w 
-d 'J = {f( z) + h( zj}w , 

z' 
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in which fez) and h(z) are regular in an unbounded domain D , not necessarily simply connected, 
and J(z) is nonvanishing. The Liouville transformation 

~=~(z) = J {fez) }1/2dz, W = {fez) }1/4w , (4.02) 

throws (4.01) into the form 

(4.03) 

in which 

W=h(z)+ 4J(z)f'(z)-5{f'(z)} 2 =!!: __ 1 ~(J- ). 
<p fez) 16 {f(z) P / [3/4 dz2 \/1/4 (4.04) 

Equation (4.03) is of the form (2.01). The z·domain D is mapped on a g.domain A, say, and <p(~) 
is regular in A. By applying Theorem 1 and then restoring the original variables we establish the 
following: 

THEOREM 3. Let z= c be an arbitrary point at infinity in D such that IRe ~(c)1 = 00, and let 
the branch 0/ ~(z) be chosen in such a way that Re ~(z) is positive as c is approached. Then the 
differential equation (4.01) has a regular solution, given by 

w(z) = {fez} } - 1/4r ,(Z) {1 + E(z)}, (4.05) 

where 

!E(z) I, 1/-1/2E' (z) I, IE(z) - {E'(Z)/g' (z)} I ~ exp {j/ z, c(F)} -1 (z E H(c)) , (4.06) 

and 

(4.07) 

The region of validity H (c) comprises those points z which can be joined in D to c by a "g-pro· 
gressive" path f!i', that is, one whose map in the ~-plane is progressive (sec. 3). All branches in 
(4.05) to (4.07) are continuous along f!i', that ofjl/2 being the square ofp/4. The variation in (4.06) 
is taken over f!i'; naturally we assume that it converges at c, otherwise (4.06) is meaningless. 

5. Fundamental Connection Formula for a Simple Turning Point 

In this section we suppose that fez) and h(z) are regular in an unbounded, simply connected 
domain D, and that fez) has just one zero in D, a simple zero at an interior point Zo, say. We 
define g(z) by (4.02), fixing the arbitrary lower integration limit at Zo: 

g(z) = fZ {f(t)}I /2 dt. (5 :01) 
Zo 

Clearly ~(z) is an analytic function in D whose only singularity is a branch point at zoo If the 
Taylor expansion of fez} in the neighborhood of Zo is denoted by 

'" /(z) = 2: /,,(z-zo)n, (5.02) 
11 = 1 
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then 

t;(z) = ~ f1'2(Z - zo)3/2{1 +0 (z - zo) }. (5.03) 

The set of points in the z·plane for whic h 

Re g(z) = 0 (5.04) 

we call the principal curves 3 associated with the turning point zoo Using the theory of conformal 
mapping, we see that each principal curve is a regular Jordan arc which can terminate only at Zo 
or at the boundary of D. Moreover, no principal curve can intersect itself or any other principal 
curve except at zoo Equation (5.03) shows that three principal curves emerge from Zo, inclined 
there at angle 2-rr/3 with each other; we denote them by '6'" '6'2, '6'3, enumerated in the positive 
rotational sense. These and other principal curves divide D into a number of subdomains. Those 
with Zo on their boundary we call the principal subdomains, and denote them by DI, D 2 , D3, as 
indicated on figure 2. Clearly each Dj is itself simply connected. For terminological convenience 
in what follows we shall enumeratej with modulo 3; thus Do == D 3 , D4 == D t • 

We define gj (z) (j = 1, 2, 3) to be that branch of g (z) which is continuous in D cut along the cor
responding '6'j, and whose real part is positive in Dj and negative in the other two principal sub· 
domains. Analytic continuation across the cut (t'j is expressed by 

(5.05) 

co mpare (5.03). We define g(z) to be the four-valued function 

g(z)= {f(Z)} - t/4. (5.06) 

Its analytic continuation is expressed by 

g{ (z - zo)e±27Ti} = =+ig(z - zo). (5.07) 

We de note by gjz) (j = 1,2,3) an arbitrary constant multiple of any branc h of ~z) whic h is con· 
tinuous in D cut along the corresponding 'it'j. In order to achieve a symmetric form of final result, 
we stipulate that these multiples mus t be chose n in s uch a way that 

g;(z) = e7Ti/6gj_t(z) (z E Dj - t U D). (5.,08) 

3 Also c alled anti -S tokes lines 1121. [131. 

FIGURE 2. Principal subdomains D). 
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The self-cunsis te ncy of thi s equation for j= 1, 2,3 follows from (5.07). 
Let us suppose that each Dj is unbounded, and that Cj is an arbitrary point at infinity in D j 

suc h th at IRe g(c.;) I = 00 . Exclurlin g th e puint Zo from D , and the n applyin g Theorem 3 of sec ti on 4 , 
we find tha t eq (4.01) has sulutiun s wJiz) (j = 1, 2, 3), give n by 

(5. 09) 

wh e re 

(5.10) 

an~ F is de fined by (4.07). In (5.10) th e branc h of 1-1/2 is l/ gj(z), and H(Ci) is th e se t of z· point s 

whi ch can be joined to Ci by a g-progress ive pa th fY'j lying in D. (We observe , in passin g, that the 
corres ponding prin cipal curve '«'i is excluded from H( c)), sin ce passage uf .CJ") through Zo is not 

permitted.) "f/ z, c) (F) denotes the variation over fJ» of F. 

Although eac h solution wj{z) satisfi es (5.09) a nd (5.10) in only part of D , the th eury of lin e ar 
differe ntial equation s s hows tha t eac h w)z) exi s ts and is regular throughout th e whole of D . Fur
th er , there is an id e ntity of the form 

(5.11 ) 

in whi c h the A) are ind e pe nd ent of z. Equ a tiun (5. 11) is th e cunnec tion formula for th e turnin g 
point Zo, and the valu es of th e A) con stitute our pri mary ques t. In urde r to obtain the m. we ass um e 
that g-progressive paths exi s t in D linkin g each pair of refere nce point s ci, c" . 

Con s id er (5.11) in D I. Subs titutin g by mean s of (5.09) and (5.08), and us in g the relation s 
g2(z)=fl(Z)=- gl(Z), we de rive 

(5.12) 

Now le t z ~ CI· The n EI(Z) vanis hes and, b y Theorem 2, E2(Z) and E:l(Z) te nd to cons ta nt values EAcI ) 
and E3(c1). Also b y h ypothes is Re g l(z)~ + 00 . He nce we have 

(5. 13) 

Similarly, 

(5.14) 

(5.15) 

The co ns is te ncy of thi s se t of homoge neou s equati ons for th e A i immedi a tely follows from th e 
relation Ei(c!.l = Ek(ci) obta ined from eq (3.02) . Solving for the A i and s ubs tituti ng bac k in (5. 11), 
we arri ve at the desired form of t he con nec tion form ula: 

(5. 16) 
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l 
1 

The e rror te rms are bound e d b y (co mpare (3.03)) 

I Ej(ct,) I ~~ [ exp {f ( . . (. ,.(F)} - l], 
J ' 

that is, (5. 17) 

in whi c h th e va ri a tion (o r int cgral) is e va lu a ted a lo ng a ~-progress i ve pa th lin k in g C; with Ct, · 

W e s ummarize thi s sec ti o n so far. The assume d cond itio ns on j{z) a nd h(z) are s tate d in the 

ope nin g se nt e nce. Th e prin c ipal s ubdomain s D ; assoc ia te d with th e turnin g point Zo a re d e fll1t'd 

in th e seco nd pa ragrap h. Three s ulutions Wj( z) (j = 1,2,3) of th e diffe re nti a l e qu a tiun (4.01) a re 

th e n con s tru c te d , give n b y (5.09) a nd (5.10). H e r e ~j(z) is th e branch of th t' int eg ral (5 .0l ) whi c h 

has pos itive I'ea l part in OJ; g;(z) (j = 1, 2,3) is a n y se t of co ns ta nt mu ltiples of bra nc hes o f U( Z)} - 1/4 

sa ti s fying (5.08); Cj is a ny point a t infinit y in D j s uc h th a t IR e ~( c;)1 =00 . T he e rror bound s (5. ]0) 
are va li d a t a ll po int s z whic h c an b e join e d to C; by a ~-progressive pa th l yin g in D . F in a ll y, pro · 

vid e d th at th e C; c an be joined in pa irs b y p ath s of thi s kind , th e fun dam e nt a l c onn ec tion formul a 

be twee n th e /U) z) is expressed by (5. 16) and (5.17). 
Remark. It will be o bse rv ed that an outsta ndin g proble m in th e appli ca tion of th e co nn ec tion 

formula (5.16) will be th e d e te rminatiol} of s uitable ~· progress i ve path s linkin g toge th e r th e po ints 

a t infinit y ('.i- Thi s appears to be a n una vo id ab le fea ture of thi s me th od ,4 and it s so lution will 

ge ne rall y necess itat e a s tud y of th e ac tu a l co nfo rm al tra ns form a ti on be twee n th e ~ and z·p lanes . 

Us ua ll y it wiJl not be difT-ie lllt to d e mon s trate th e e xi s te nce of s uitabl e ~-progress i v e path s. 

The ,se pa th s a re no t uniqu e, how e ve r , and tilt' mos t effec tive use of th e c onnec ti on formul a cle a rl y 

c a ll s for th e d e tc rminatio n of th ose path s whi c h minimi zc the tota l va ri a t io n Ill' th e fun c tion F a long 

th eir le ngth . Ro ug hl y s pt'a kin g . thi s mean s th a t wt' need to kee p th e ~- pr()gress i ve pa th s as fa r 

a wa y as poss ible frum a ll th e s in gul a ritie s of .lIz) and h(z) a nd ze ro s of .lIz) (in c luding zo) , s ubjec t 

tu fulfillme nt of th e mo no to ni c it y co nditi o n. 

T he co ns t ru c ti on of ~-p rogress i ve pat hs in t he ne ig hb o rh ood of i nfi n it y is di sc ussed in sec t ion 7 

be lo w, and a n e xa mpl e of th e d e te rmin a ti o n of ~-p rogress i ve pa th s whi c h minimize th e va ri a tion 

of a n a nalyti c fun c tion alon g t he i I' le ngt h is gi ve n in I] n sec t ion 7. 

6 . Airy's Equation 

The s impl es t examp le to whi c h th e tlw(lr y (If sect ion 5 is app li c ah le is prov id ed b y th e dif· 

fe re nti a l e qu a t ion 

In th e nota t ion of sec t ion s 4 a nd 5, we ta ke .lIz) = z a nd h(z) = O. The n Zo = 0 and 

(6.02) 

• 
D co mpri ses th e who le z· planc. a nd th e p rin c ipal s ubdumain s D ; a re th e sec to rs of a ng le 2rr/3 
indi cated in fi g ure 3. 

W e de fin e g l( z) to be th e p rin c ipa l bran c h of Z- I/-I. Th e n frum (.').08) 

(6.03) 
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FIGURE 3. Principal subdomains for Airy's equation. FIGURE 4. t-plane. 

We take CI =+ 00, C2 = 00 e27ri / 3 , C3 = 00 e- 27ri /3 • By considering the fmap we see that each region 
H(cj) comprises the part of the z-plane remaining after the removal of the corresponding principal 
curve~j. From (4.07) we have 

5 5 
F(z) = 24z3/ 2 = 36( (6.04) 

The fmap of a suitable ~-progressive path linking CI with C2 is shown in figure 4. As the radius 
R of the semicircular part tends to infinity, the variation of F along the whole path vanishes. There

fore from (5.17) EI Ccz) = O. Similarly E2(C3) and E3 (CI) both vanish. Accordingly (5.16) reduces to 

(6.05) 

By comparing (5.09) with the asymptotic forms of the Airy functions [18], we identify 

WI (z) = 27T1/2 Ai (z), W2 (z) = 27T1/ 2 Ai (ze- 27ri /3) , (6.06) 

Equation (6.05) is the well-known connection formula for these functions. It is interesting to ob
serve that our theory yields it exactly. 

The vanishing of the error terms in this example is essentially a consequence of there being 
no 'boundary of D intervening between Cj and Ck in the neighborhood of infinity. The path of figure 
4 generally cannot be used to establish this in other cases. Using different paths, we formulate 
sufficient conditions for the vanishing of Ej{ch') in the next section. 

7. Sufficient Conditions for the Vanishing of the Error Terms 

We again use the notation of section 5, and we suppose, without loss of generality, that the 
turning point Zo is at the origin. 

THEOREM 4. Let f(z) and h(z) be regular in the sector S: '}II < arg z < '}I2 for all sufficiently 
large Izl, and 

f(z) - AZT, h(z) = o (Z(T/2)-1-8), as Izl ~ 00, (7.01) 

uniformly with respect to arg z in S. Here A is a real or complex non-zero constant, and r, 8 real 
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constants such that 5 r > - 2, 0 > O. Also, within S, let !i'1, !i'2 be outward-drawn rays from the 
origin which lie in adjacent principal subdomains 01 , O2 , respectively. Then provided that !£ I , !£ 2 

are not parallel to the asymptotes of the neighboring boundaries of 01, O2, they are strictly {-pro
gressive paths in the neighborhood of infinity, and if CI, C2 denote the points at infinity on them, 
EI(c2) = o. 

To prove thi s res ult , we firs t observe that 

g(z) == {j(Z)} - 1/4 ~ A - I/4z- r/4 (7.02) 

as Izl ~ 00 in S. Hence ([10], section 1.36) 

g' (z) ~ :i (:i + 1) A - 1/4z - (r/4) - 2 (r =l= 0) (7.03) 

as Izl ~ 00 in any sec tor S' : y; < arg z < y~ whic h is properly interior to S. Whe n r = 0, t he res ult 

corresponding to (7.03) is g '( Z) = 0(Z- 2). Therefore, whether or not r is zero, we have 

g(Z)g'(Z) = O(Z- S- I) (7.04) 

as Izl ~ 00 in S', uniforml y with respec t to arg z , where 

s = h+ 1, 

and is positive, by hypoth es is. From (4.07) , (7.01), and (7 .04) we de rive 

(7.05) 

where 01 = minto , s). He nce th e int egral in (5.17) co nve rges. Th e essenti al prob le m is to s how 
how to co ns truct a {-progress ive path conn ec ting CI with C2 in th e neighborhood of infinit y. 

From (5.01), we have 

AI /2Z' 
{ = --+o(ZS) 

s 
(z E S). 

The refo re the princ ipal curves approach infinity in direc ti ons parallel to the ra ys 

arg z = {(n+ thr- h:l' }/s, 

(7.06) 

(7.07) 

where a=arg A, and n = 0,±1,±2, .. .. We call these the principal directions. Consider 
the behavior of Re { along the ray with parametric equation z=TeiY, y being real and fixed, and 
O< T<oo. We have 

(7.08) 

as T~ 00. He nce 

(7.09) 

The constant cos (sy+ t al vanis hes only when y has one of the values given by the right of (7.07). 
Therefore any outward ray in S not in a principal direction is a strictly {-progressive path for all 
sufficiently large Izl. In particular thi s includes !i'l and !i'2' 

:; Thus the different ial equation (4.01) has an irregul ar singulari ty at in finity. 
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FIGURE 5. z-plane. FIGURE 6. Approximate path in l;-pla ne: Idl = IA 11/2b/s. 

Next, consider the path with parametric equation 

z = {(b + ir)ei"l'}!/s' ( - 00 < r < <X), (7.10) 

where y and b are real con s tants, b being large and pos itive . 

As indicated in figure 5 thi s path begins at infinity, sweeps bac k to its nearest approach to the 
origin at z= b I ls eiyls and then returns to infinity , the angle between its asymptotes being 7Tls. When 
b is large, we have from (7.06) 

~ - s- I IA 11/2(b + ir)ei(y+ (a I2)) , 

showing that the ~-map of (7 .10) is approximately the straight line indicated in fi gure 6. 
res ponding to (7.09), we find th at 

d IA 11/2 { ( 1) } dr (Re ~) =--s- sin Y+"2 Q +0 (1) , 

Cor-

(7. 1] ) 

as b ~ 00, uniformly with res pec t to r . Therefore the curve (7. 10) is a strictly ~-fJrogress ive path 
for all sufficiently large b, except when its asymptotes are in principal directions. 

Now consider CI and C2. By taking y; and y~ sufficiently close to YI and Y2', respectively, we can 

ensure that S' contains !f I and !f 2. From (7.06) and the hypotheses on !f I and !f 2, it follows that 

(7.12) 

Figure 7 indicates how C I and C2 can be connec ted by a stri c tl y ~-progres sive path in S' , consisting 
of !f 1,!f2 and either one or two arcs of the type (7 .10), de pending whether or not largc2 - arg cd 
< 7Tls. The corresponding path in the ~-plane is approximately that indicated in fi gure 8. On 
le tting the b-parame ters of the arcs te nd to infinity, we see immedi ately from (7.05) that the vari a
tions of F along !f I and !f 2 tend to zero. For the contribution to the variation from the arcs (7.10), 
we observe that the corres pondin g values of J IZ- I-O ldz l are bounded by 

and accordingly vani sh as b ~ 00. The proof of T heore m 4 is now co mple te. 
An alternative set of suffic ie nt conditions for the vanishing of the error terms is provided by 

the next theorem, which can be proved in a similar way. In thi s result m, A denote real or complex 
nonzero con s tants, and 0 is a positive con stant. 
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F'I GU HE 7. /;-progressive path in z·plone. 

FIGURE 8. Approximate path in f·p lane. 

THEOREM 5. Let f(z) and h(z) be regular in the strip T: '}'t < Im(mz) < '}'t for all sufficiently 
large positive values of Re (mz) , and 

h(z) = 0 (emz( t - Ii)/2), as Re (mz) ~ + 00, (7.13) 

uniformly with respect to 1m (mz) in T. Also, within T, let !f" !fz be straight lines which are 
parallel to the boundaries of T, and lie in adjacent principal subdomains Dl , D2, respectively. 
Then provided that !flo !f2 do not coincide with the asymptotes of the boundaries of D l , D z, they 
are strictly fprogressive paths in the neighborhood of infinity, and 1/ c" Ct are the points at infinity 
on them, Et (cz) = O. 

8 . The Gans-Jeffreys Connection Formulas (i) 

The first of these two fo rmulas may be regarded as a special case of the fundamental co nnec· 
tion formula of sec tion 5. We again co nsider the differential equation (4.01) in which ./(z) and 
h(z) are regular in an unbounded, simply connected domain D and f(z) has just one zero in D , a 
simple zero at z= O. This ti me we suppose that D includes the whole of the real axis, and that 
f(z) and h(z) are real whe n z is real. Without loss of ge nerality, we tak e / (z)/z to be positive on the 
real axis . 

°2 

0, 
C2 

C, 

~, 

C ......... 
3 

°3 

FIG URE 9. Typical principal subdomains Dj for the 
Gans·Jeffreys formulas . 
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One of the three principal curves, say <ifl , which emerges from the origin is the negative real 
axis. The other two emerge at directions±7T/3 and are symmetric with respect to the real axis. As 
in section 5 we denote by D I , D 2 , D3 the three subdomains bounded by the princi pal curves which 
have the origin on their boundary. 

We take C I to be the point at infinity on the positive real axis, and C2 , C3 to be points at infinity 
on conjugate g-progressive curves :£2, fl:'3. These curves must lie within D 2 , D 3 , respectively. and 
be such that no boundary of D interve nes between them in the neighborhood of infinity. We 
assume that IRe g(z) I ~ 00 when z~ Cj (j= 1,2,3) (the " dominancy condition ") and that the varia
tion of the function F , defin ed by (4.07), converges when z~ Cj. The other assumptions we need 
are 

(i) g-progressive paths can be found in D which link C2 or C3 with any point of the real axis, 
other than th'e origin, and which do not pass throu gh the origin. 

(ii) E2(C3), 102(- 00) and 103(- 00) all vanish. 
In applications, Condition (i) can be tested by considering the t-map. Sufficient sets of 

conditions for (ii) are to be found in section 7. 
The connection formula (5.16) for the solutions of (4.01) takes the form 

(8.01) 

To fix the solution s comple tel y, we defi ne gl(z) to be the branch of {j(Z)} - 1/4 which takes it s prin· 
c ipal value on the positive real axis (compare (5.08)). The branches of the Wj(z) are then interpreted 

in real form as follows. 
When z is positive, we have immediately from (5.09) and (5.10) 

wI(z)=f- I !4 exp (-f F !2dz) {I+ EI (Z)} (z > 0), (8.02) 

where 

(8.03) 

the variation being take n along the real ax is. 
When z is negative, we find that 

(0 
6(z)=i Jz 111 1!2dz, (8.04) 

Substitution of (5.09) in (8 .01) accordingly yield s 

wdz)={I+E;I(cI)}e 7Ti!4Ifl - I!4 exp (-i LO Ifll !2dz) {l + EAz)} + conju gate. (8.05) 

Let 

1 + dz) = {l + fL(Z) }e- i1)( z ), 1 + E;I(Z) = {I + fL( z)}e i1)( z ), (8.06) 

where fL(Z) and 1j(z) are real and fL(Z) ~ -1. Then by elementary considerations 

(8.07) 

provided that I E2(Z) I ,,;; 1. Substitution in (8.05) yields 

WI(Z) = 2{I + fL(c l)} {I + fL(Z)} 111 -1/4 s in { f 111 1!2dz + i- 7T + 1j(z) - 1j(c I)} (z < 0). (8.08) 
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From (8.07), (5.17) and (5.10), we ded uce that 

1 f.L(cl)l, 121)(cl)/ 7T 1 ~ ~ lex p U' ',. ,,(F)} - 1], (8.09) 

and 

(8.10) 

the variations in both cases being evaluated along g-progressive curves. 
The aggregate of (8.02), (8.03), (8.08), (8.09), and (8.10), may be regarded as th e full form of 

the first Gans-Jeffreys connection formula [5], [6], [9]. It expresses the subdominant exponenti~l 
solution on one side of the turning point in terms of the oscillatory solutions on the other side. 
Boundary conditions satisfied by WI(Z) are clearly 

(Z~ + (0); f.L(Z), 1)(z) = 0(1) (Z~-oo). (8.11) 

W e note that the bounds for the error term s f.L(cd, 1)(CI) depend solely on the variation of F along 
the g-progressive path linking CI and C2, and can be minimized by proper choice of path. 

The second co nnection formula concerns the dominant ex pone ntial solution . Unlike the 
subdominant solution, this is not unique . Consider first W2(Z). For negativez, we have from (8.04) 
and (5.09) 

(z < 0) . (8.12) 

On the other side of the turning point 

(z > 0). (8.13) 

Instead of W2 (z), however, we prefer the real solution W4 (z) = Re{ e- m/6w2 (z)}. Then with the aid 

of (8.06), we derive 

(z > 0), (8.14) 

and 

(z < 0), (8.15) 

where IE2(Z) 1 , 1 f.L(z) 1 and 1 21) (z)/7r 1 are all bounded by the right of (8.10). These relations consti
tute the seco nd Gans-Jeffreys formula. - We note that W4(Z) satisfies the boundary conditions 

f.L(z), 1)(z) = 0 (1) (z~ - (0); (8.16) 

where IE2(CI)1 is bounded by the ri ght of (8.09). 

9 . The Gans-Jeffreys Connection Formulas (ii) 

In this section we attack the problem of sec tion 8 with real-variable theory. Our hypotheses 
are 

(i) The function f(z)/z is positive and twice-continuously diffe rentiable throughout the inte rval 
-00 < z < 00, and h(z) is a continuous real func tion in the same intervaL 
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(ii) As z ~ ± 00, 1 iZ f '2dZI is unbounded and the variation of the function F (defined by (4.07» 

converges. 
In these circumstances it is shown in [15], sections 4, 5 that (4.01) has a solution 6 

(9.01) 

where 

1
3 r z 1

2/3 
~ == ~(z)=± "2)0 {f(t)} 1/2dt (9.02) 

(9.03) 

and 

(9.04) 

The upper or lower signs are taken in (9.02) and (9.04) according as z is positive or negative, and the 
integration limits in (9.04) are determined by the condition H(O) = O. The auxiliary functions EW, 
MW and the constant AI = 1.430 ... are de fined in [15], section 2. 

On substituting for Ai W by means of its appropriate asymptotic forms, we obtain 

(9.05) 

and 

(z~-oo), 
(9.06) 

where 

(9.07) 

and is bounded. 
In order to throw (9.06) fully into " modulus-phase" form, we appeal to Theorem 4 of [1]. This 

shows that solutions of (4.01) exist of the form 

Ifl - 1/4 {1 +o(l)}exp {±i f Ifll /2dz} as z~-oo. (9.08) 

Therefore we can express 

(z~-co), (9.09) 

where /11 , /12 are real constants to be determined. Comparison of (9.06) with (9 .09) shows that 

p(z) = (1 + /11) sin {8(z) + /12} - sin 8(z) + 0(1) , (9.10) 

6 Not 10 be confused with the WI(Z) of sec tion 8. 

286 



where 

(9.11) 

He nce p{z) has the furm 

p(z) = PI. sin {O( z) + V:l} + 0(1), (9 .12) 

where PI. and V:l a re real co ns tants (P I. ? 0) r elated tu VI and V2. Clearly 

pl = lim \p(z)\. (9. 13) 
.z-+-oo 

Accordingly , from (9.03), (9.07) a nd the fact that 1~1 1 /4MW~7T- 1 /2 as ~~-::YJ, we ha ve 

(9. 14) 

In (9. 10) and (9. 12) le t z~ - ::YJ thruugh a sequence of values for whic h fJ(z) is an int egral multiple 
of 7T (cum pare hypu thes is (ii) abuve). This gives 

(9. 15) 

Alternatively, by using a seque nce of odd integral multiples of t 7T we derive 

(9.16) 

Combinatiun of (9.15) a nd (9. 16) yields 

(9.17) 

Therefo re 

(9 .18) 

provided th at PI. ~ 1 (compare (8.07)). 
The firs t Gans·J effreys formula is represented by th e aggregate of (9.05), (9.09), (9. 14), and 

(9.18). 
A second solution of (4.01) is [15] 

(9.19) 

whe re 

(9 .20) 

and A2 = 1.315 . . . . Substituti on of the asy mptotic form s for BiW yields 

(9 .21) 
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and 

(z---,> - OC), (9.22) 

where 

(9.23) 

An obvious extension of Theorem 2 of the present paper shows that O'(z) tends to a finite limit, 
0' (00), as z ---,> + 00. Accordingl y 

(9.24) 

From (9.20) and the asymptotic form of M(~), we obtain 

(9.25) 

And with the aid of analysis similar to that used for throwing (9.06) into the form (9.09), we readily 

show that 

W2(Z) = 7T- 1/2 Ifl -1/ 4 {I + o(1)} cos {f 1111/2 dz+i 7T + 0(1)} (z---,> - oc). (9.26) 

Relations (9.24), (9.25), and (9.26) consititute the second Gans-] effreys connection formula. 
Sharper bounds. Somewhat improved bounds for the error terms of this section can be 

achieved by application of Theorem 3 of [15],1 and, in the case of the Bi-type solution, of an in
equality of the same character as (3.03) above. The results are expressed by 

(9.27) 

and 

(9.28) 

where ~ = 0.521 ... and A5 = 0.520 .. . . 

10. Summary 

The primary purpose of this paper has been to investigate approximate solutions of the dif
ferential equations (1.01) and, more generally, (4.01) in a complex domain containing no singu
larities of the functions fiz) and h(z), and a simple zero ofj(z). Some preliminary results concerning 
the Liouville-Green approximation are given in sections 2 through 4. The connection formula for 
the three fundamental approximations of this kind is then established in section 5, complete with 
strict error bounds, by considering limiting behavior at the point at infinity_ An illustrative 
application to Airy's differential equation is made in section 6, and some general circumstances 
in which the error terms vanish are investigated in section 7. 

An important special case concerns real variables: the problem here is to connect the exponen
tial-type solutions on one side of the turning point with the oscillatory solutions on the other. 
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This is solved in section 8 by use of the general formula of section 5. An alternative solution is 
constructed in section 9 solely from real-variable theory, by re-expansion of known uniform Airy
func tion approximations. Naturally, differe nt hypotheses on j(z) and h(z) are made in the two 
methods , but the principal differe nce li es in th e form s of the error bounds. In the firs t method 
the bounds depend on the variation of a certain fun ction along an infinite path of specified type in 
the complex plane. In the seco nd me thod th e bounds de pe nd on the variation of a more compli
cated function along th e real axis . 

The error bounds given in this paper have computational applications. As shown in the paper 
which follows [19] , they may also be used to provide theoretical insight into the accuracy of the con
nec tion formulas in various circ umstances , including cases when the differential equation contains 
a large parameter. Hithe rto, in certain applications it has often been diffic ult to assess the validity 
of assumptions which have been made. 

11. Addendum 

The proble ms studied in the present paper and its sequel [19] have also been considered in 
a recent monograph by Froman and Froman [20]. These authors have the same principal objec
tive, that is, the determination of stri ct error bounds for the coefficients in the connec tion formulas. 
The method they use resembles the firs t me thod of the present paper in that it is a rigorous formula· 
tion of the procedure of Zwaan. The differe nce in the approac hes is as follows. 

We constructed (in sec . 5) the connec tion formula for the three fundam e ntal Liouville-Green 
solutions associated with a simple turning point of the differential equation (4.01) by examinin g 
the asymptotic be havior of these solution s in the neighborhood of the point at infinity. Froman 
and Froman , following Kemble [3], express the general solution of (4.01) in the form 

w(z) = a, (Z)/- '/4 exp ( J /, /2 dz) + a2 (Z)/- ' /4 exp (- J /, /2 dz), 

and derive a pair of first-order simultaneous differential eq uations for the fun ctions a ,(z) and a2(z). 
These equations are then used to determine the changes in these functions as z passes from one 
principal s ubdomain to another. Error bound s for the changes are expressed in term s of contour 
integrals which are equivalent to the vari a tions of our function F (z). 

Generally the path for the contour integrals consists of the real z-axi s with indenta tion s by
passing the turning points. Froman and Froman show that the appropriate form of monotonicity 
condition is fulfilled whe n the indentations are semicircles of sufficiently small radiu s ([20], p. 
39). Owing to the s ingularities of F(z) at the turning points however , the error bounds te nd to 
infinity as the indentations shrink to zero. In consequence Froman and Fri)man assume that the 
indentations can actually be taken s uffic ie ntl y large to yield small error bounds, without violating 
the monotonicity condition. In the prese nt paper we allow greater flexibility in the choice of paths, 
with a view to achie ving minimum bounds in applications. 

Other comparisons with the -firs t me thod of the present paper are as follows: 
(i) There is greater e mphasis in [20] on the case in which the coefficients fez) and h(z~ in the 

differential equation (4. 01) are real on the real axis. 
(ii) Approximations and expansions are frequently used in [20] to simplify the error bounds. 

There is greater e mphasi s on stri c t bounds in the present paper and [19]. 
(iii) In the special limiting case in which z is at infinity the error bounds can be sharpened 

by a factor of 2 (see Theorem 2 of sec. 3 above) . This refinement is freely used in the present paper 
and [19], but is not in evidence in [20]. 

The author acknowledges helpful criticisms of the draft of this paper by Drs. J. Heading, L. 
Maximon, and F. Stenger. 

The work described above has been supported by the U.S. Army Research Office, Durham, 
North Carolina (Project No. 4238-M). 
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