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Error Analysis of Phase-Integral Methods.

I. General Theory for Simple Turning Points
F. W. ]. Olver
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An approximate general solution of the differential equation

d*w/dz? = f(z2)w

w = Af~" exp ([ f12dz)+ Bf~1* exp (— [ f12dz).

To represent a particular solution throughout a given complex domain, differing pairs of values of the
arbitrary constants 4 and B are generally needed in various subdomains. Strict error bounds are
established in this paper for the coefficients in the linear equations connecting the pairs of values of
A and B, in the case in which the z-domain under consideration is unbounded and contains a simple
zero and no singularities of f(z).

The results are used to place the “WKBJ” method on a firm mathematical foundation.
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1. Introduction

A form of solution of the differential equation

d*w
=l (1.01)

which is frequently used in applied mathematical problems, is given by
w = Af~1% exp ( [ f12dz) + Bf~1* exp (— [ f12dz). (1.02)

in which A4, B are arbitrary constants. This is commonly referred to as the Liouville-Green approxi-
mation, the WKB or WKBJ approximation, or the phase-integral solution. A necessary condition
for the applicability of the approximation is that ="/ be a bounded, slowly varying function of z [1].!
This condition automatically excludes from the region of validity most kinds of singularity of f,
and also zeros of f, the so-called turning or transition points of the differential equation.

A further condition concerns the monotonicity of the function Re [ f12dz (see [1], sec. 8, and
sec. 4, below). This requirement has the effect of dividing the z-region under consideration, D,
say, into a number of subregions, in each of which a different combination of values of 4 and B
in (1.02) has to be used in order to represent the same solution of (1.01). This is, of course, an
example of the Stokes phenomenon. The linear equations linking the values of 4 and B in one
subregion with those in another are called the connection formulas or Stokes equations. The
purpose of this paper is to determine the connection formulas in the case in which D contains
no singularity of f(z), and just one simple turning point, zy, say.

! Figures in brackets indicate the literature references at the end of this paper.
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Two principal methods are available for attacking this problem. The first, applicable when
f(2) is real on the real axis, starts with the Liouville-Green approximation in real exponential form
on one side of z,, then traces its behavior along a semicircle in the complex plane to the real axis
on the other side of z). The condition that the solution must be real when z is real suffices to deter-
mine the main features of the appropriate connection formula. This method was originated by
Zwaan [2], and has been developed further by Kemble [3] and Furry [4].

The second method consists of using approximations to the solutions in terms of Airy functions
(or equivalently Bessel functions of order one-third), the region of validity of which includes z.
Away from z, the Airy functions are approximated by their asymptotic forms for large argument,
leading immediately to the Liouville-Green forms. In the original version [5]-{7], the Airy-function
representations were constructed by replacing f(z) by a linear approximation in the neighborhood
of z; this is, perhaps, the true “WKBJ method.” In more recent work [8]-[13] more powerful
uniform approximations in terms of Airy functions have been used to derive the connection formulas.

Hitherto, the method of Zwaan has not been put on a sound mathematical footing: writing in
1934 Langer [14] commented *“. . . an estimation of the relative error involved in the result is
almost impossible . . .”. The treatment of the Airy-function procedure has been more satis-
factory. By supposing that f(z) contains as multiplicative factor (the square of) a large parameter
u, say, it is shown in the references cited that the connection formulas are asymptotically correct
as |u| — .

In the present paper we give rigorous analytical derivations of both methods, and supply
explicit bounds for the errors in the connection formulas (thus overcoming one of Langer’s objec-
tions to Zwaan’s method). Since we are dealing with bounds there is no need for the explicit
introduction of a parameter « in the theory: asymptotic properties in applications can be regarded
as immediate consequences of the form of error bound.?  We also dispense with the requirement,
in Zwaan’s method, that f(2) be real on the axis.

The starting points of our investigation are the theories of error bounds for the Liouville-Green
and uniform Airy approximations which have been developed by the writer in [1] and [15].

Since the present paper and its sequel [19] were written, there has appeared a monograph on
the same subject by N. Froman and P. O. Froman [20].  Although the objective of these authors
is essentially the same as that of the present writer, the methods used and results achieved are
sufficiently different to warrant publication of this paper and [19] in substantially their original
forms. Some comparisons with the results of [20] are given in section 11.

2. First Exrror Theorem

We begin with the differential equation

2
%:{Hﬂz}}w, (2.01)

in which f(z) is a regular (holomorphic) function in a simply-connected complex z-domain D.

THEOREM 1. Equation (2.01) has solutions wj(z) (j=1, 2) regular in D, and depending on
arbitrary fixed points a;j of D, such that

wi(z) =e**{1+¢€) }, (2.02)
where
5@ 1@ l6@ @) <exp (77,©)} 1 (2.0

when z € H;.

2In the course of a valuable historical introduction io phase-integral methods, Heading ([13], p. 8) critizes other writers, particularly Budden [12], for failing to
standardize a large parameter in their analysis. The theory of error bounds presented in this paper provides a broader basis for justifying the work of these writers.
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In this result, the upper signs are to be taken when j=1, and the lower signs when j=2. The
regions of validity H; (j=1, 2) comprise the aggregate of those points z for which there exists a
path 2 ; joining z with @; and lying entirely in D, with the properties:

(i) @ j consists of a finite number of Jordan arcs, each having a parametric equation of the form
t = t(7) with t"(7) continuous and ¢'(7) nonvanishing.

(i) Re ¢ is monotonic nonincreasing (j= 1) or monotonic nondecreasing (j=2), as t traverses
#; from z to a;.

Lastly, ¥} (G) denotes the variation along 2; of the function

(z'{Z)fo(z)(lz; (2.04)
thus
%wj((,‘)zj" | f(dt]. (2.05)

Theorem 1 is essentially a special case of Theorem 7 of [1].  We record the main steps of the
proof, however, since they are needed in the derivation of further properties of the error terms in
the next section.

For illustration, we take j=1. From (2.01) and (2.02) we find that

€(2)+ 2€i(2)=f(2){1 +ei(2)}. (2.06)

Therefore €;(z) satisfies the integral equation

&2 =13 J& {1—e2"=2}{1+€,1)} flt)dt, (2.07)

in which the path of integration is taken to be #,. The solution of this equation is constructed
as a convergent series

a(z1=3 L), (2.08)
n=1
in which /; ((z)=1, and
l]i,,(l):é j‘ {1*ez’mZ)}f(’)ll./l*rl(,)(l’ (n= 1) (20())

In consequence of Condition (ii) on & we have
|62(1—z)| <1, (210)
and by substituting this bound in (2.09) we readily establish by induction that

I, n@] < {¥a,:06)}"n! (n=0), (2.11)

showing that the series (2.08) is uniformly convergent. In order that solutions of the integral
equation (2.07) also represent solutions of the differential equation (2.06), some restrictions are
needed on the path #,. Those given in (i) above suffice (compare [16], pp. 491-492).

The first of the inequalities (2.03) now follows by summation of (2.11). The other two are
derived similarly from the differentiated form of (2.09).
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3. Further Properties of the Error Terms

For conciseness, we shall refer to a path #; which fulfills Condition (i) of section 2 and is such
that Re ¢ is monotonic as ¢ traverses #; as a progressive path. If the monotonicity is strict every-
where, we say that the path is strictly progressive. 1t may be noted, incidentally, that Condition
(i) is quite weak, and can be fulfilled, for example, by any finite chain of straight lines and circular
arcs.

The condition that D be simply connected, mentioned in the opening paragraph of section 2,
merely ensures that each wj(z) is single-valued in . For a multiply connected domain, each
branch of wj(z) satisfies (2.02) and (2.03) whenever a progressive path can be found in D joining
z with a;.

In section 2 we tacitly assumed that the points @; are finite. Theorem 1 still holds, however,
if D is unbounded and the «; are points at infinity on progressive paths.%;, provided that #; coin-
cides with.%; as a; is approached and that the variations (2.05) converge. The convergence of the
infinite integrals (2.09) is then an immediate consequence of the inequality (2.11).

A situation of importance in the later sections occurs when a; and a» are distinct points at
infinity, and can be joined by a progressive path # lying in D. From (2.03) it is seen that €;(z) and
€(z) both vanish as z— @, along #; indeed we may regard these properties as the boundary con-
ditions defining wi(z). What happens, however, to €(2) and €/(z) as z— a»?

THEOREM 2. If|Re z|— ® as z— a1 and as z— a», then

€1(z) = a constant €,(az) , say, and €;(z) = 0 as z— as,

€(2) = a constant &(a:), say, and €(z)— 0 as z— a,, e
€1(ax) =€(ar), (3.02)
and
lei(a)| < 2 [exp {7 4(G)} —1]. (3.03)
To prove these results, let

Q. ,,(z):f‘ Sl -a(t)de, ﬁl,,,(z):f: A=Ay - (t)dt. (3.04)

Then from (2.08) and (2.09), we have
€(2)=1% Say_uz)— 7 2 B1. ul2). €1(2)=2B1. u2), (3.05)

y
the summations extending in each case fromn=1ton=0%. Since by hypolhesisf | f(t)dt| con-

u.
verges, it follows that for any given positive number § which is less than the value of this doubly
infinite integral there exists a point z’ on 2 such that

f “|f0dt) = 8. (3.06)

O

Let z be any point of 2 between z’ and a, (fig. 1). Then by splitting the integration range in the
second of (3.04) at z', and applying (2.10), (2.11), we find that

) (! '/'vn]. 2! C i g "’1~ i G n—1
IB]. H(Z)r = Ie-"z 7z)| { ( )} +{ / -( )} 8.
n! (n—1)!
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FIGURE 1. / 7z z

Therefore

[exp {7 «,. G} —1]+ 8 exp {7 a,. lG)}. (3.08)

|2 81, u2)| < |e2®'=2

With the assumed conditions, e2¢'~?) vanishes as z— a>. Hence 2B .(z) also vanishes, that is,
€(2— 0.

Next, we have

A A =T AG)”

|(M,_,Az)4(¥|.,,(z')|=’ j f“)[].n—](”(l[ == o A (3.09)

and so
|2, wz)— 2 uz)] < exp {1 . 4G)} —exp {1 4. 2(G)}. (3.10)
The right side of this inequality vanishes as z and z’ tend independently to a», therefore X ,(z)

tends to a constant limiting value. The proof of the first line of (3.01) is now complete. The
second line follows by symmetry.
To prove (3.02), we construct the Wronskian from (2.02):

W wy,wn= {1 T €2} {1+ €1(2) + €)(2)} + {1+ €2} {1+ ex2) — €)(2)}. (3.11)

From (3.01) we see that this reduces to 2{1+ esa;)} at z=a,. and 2{1 + €(a2)} at 2= as. Since
the Wronskian is constant. (3.02) follows.
Lastly, we derive from (2.11) and (3.04)

lar, n(as)| < {7 a,.a,(G) }*/n. (3.12)

The improved form (3.03) of the main result (2.03) for the special value z=a» now follows imme-

diately from (3.05).

4. Basic Error Theorem for the Liouville-Green Approximation

We now proceed to apply the results of the preceding two sections to the differential equation
(1.01). A useful generalization is achieved on replacing the coeflicient of w in this equation by the
sum of two functions f(z) and h(z), say. In applications the second function h(z) will either be
zero, or small, in some sense, compared with f(z) (cf. [1]. sec. 4(ii)). From the standpoint of the
error analysis, however, the relative magnitudes of f(z) and A(z) are immaterial.

Thus we consider the differential equation

d*w
e {f(2)+ h(z)}w, 4.01)
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in which f(z) and h(z) are regular in an unbounded domain D, not necessarily simply connected,
and f(z) is nonvanishing. The Liouville transformation

§=¢6) = f {f@Yrdz, W={f(@)}"w, (4.02)
throws (4.01) into the form
d*W[de2= {1+ p(&)} W, (4.03)
in which
_He) S b L (L) 404
(23] f(z)+ 16{f(z)}3 _f f"“ dz? /4 (4.04)

Equation (4.03) is of the form (2.01). The z-domain D is mapped on a ¢é-domain A, say, and ¢(§)
is regular in A. By applying Theorem 1 and then restoring the original variables we establish the
following:

THEOREM 3. Let z=c be an arbitrary point at infinity in D such that |Re &(c)| =, and let
the branch of &(z) be chosen in such a way that Re &(z) is positive as c is approached. Then the
differential equation (4.01) has a regular solution, given by

w(2) ={f@)} e t@{l1+e()}, (4.05)
where
le@) |, | /%€ @), |e) —{€' (@) /€' @)} <exp {¥V . .F)}—1 E€H()), (4.06)
and
Rl & (1
Fo = eode= [ {777 o () = @.07)

The region of validity H(c) comprises those points z which can be joined in D to ¢ by a “&-pro-
gressive” path 2, that is, one whose map in the &-plane is progressive (sec. 3). All branches in
(4.05) to (4.07) are continuous along £, that of /12 being the square of fY/4. The variation in (4.06)
is taken over #; naturally we assume that it converges at c, otherwise (4.06) is meaningless.

5. Fundamental Connection Formula for a Simple Turning Point

In this section we suppose that f(z) and A(z) are regular in an unbounded, simply connected
domain D, and that f(z) has just one zero in D, a simple zero at an interior point z, say. We
define &(z) by (4.02), fixing the arbitrary lower integration limit at zo:

&z)= f ) {f(t)}2dt. (5.01)

Clearly £(z) is an analytic function in D whose only singularity is a branch point at zo. If the
Taylor expansion of f(z) in the neighborhood of z is denoted by

f@=3 fulz—zon, (5.02)
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then

&(z) =§f‘:/2(z— 20)¥2{14+0(z—z0) }- (5.03)

The set of points in the z-plane for which

Re &2)=0 (5.04)

we call the principal curves ® associated with the turning point zo. Using the theory of conformal
mapping, we see that each principal curve is a regular Jordan arc which can terminate only at z,
or at the boundary of D. Moreover, no principal curve can intersect itself or any other principal
curve except at zo. Equation (5.03) shows that three principal curves emerge from z,, inclined
there at angle 27/3 with each other; we denote them by %, €., €3, enumerated in the positive
rotational sense. These and other principal curves divide D into a number of subdomains. Those
with zo on their boundary we call the principal subdomains, and denote them by D, D., D3, as
indicated on figure 2. Clearly each Dj is itself simply connected. For terminological convenience
in what follows we shall enumerate j with modulo 3; thus Dy = D3, Dy = D,.

We define £ (z) (j=1, 2, 3) to be that branch of ¢(z) which is continuous in D cut along the cor-
responding €;, and whose real part is positive in D; and negative in the other two principal sub-
domains. Analytic continuation across the cut%; is expressed by

Ei{(z—z0)e*?mi} =— €z — 20); (5.05)
compare (5.03). We define g(z) to be the four-valued function

g)={fz)}~V4. (5.06)

Its analytic continuation is expressed by

g{(z— z0)e*2™} = Fig(z — zo). (5.07)
We denote by gjz) (=1, 2, 3) an arbitrary constant multiple of any branch of g(z) which is con-
tinuous in D cut along the corresponding@’;. In order to achieve a symmetric form of final result,

we stipulate that these multiples must be chosen in such a way that

gi(2)=e™6g;_1(2) (z € Dj—1 U D). (5.08)

3 Also called anti-Stokes lines [12], [13].

FIGURE 2. Principal subdomains Dy.
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The self-consistency of this equation for j=1, 2, 3 follows from (5.07).

Let us suppose that each Dj is unbounded, and that ¢; is an arbitrary point at infinity in D;
such that |Re &cj)| ==. Excluding the point zy from D, and then applying Theorem 3 of section 4.,
we find that eq (4.01) has solutions wj(z) (j=1, 2, 3), given by

wj(z) = giz)e=&§D{1 + €)(2)}, (5.09)
where
€(2)|,|f12€(2)|, |2 —f12€/(2)] <exp {V . (F)}—1  (z € H(gy) (5.10)
J J J

ang F is defined by (4.07). In (5.10) the branch of =12 is 1/¢/(z). and Hi(c)) is the set of z-points
which can be joined to ¢; by a &progressive path 2 lying in D.  (We observe, in passing, that the
corresponding principal curve 7 is excluded from Hic¢)), since passage of #; through z, is not
permitted.) 7, Cj(F) denotes the variation over 2; of F.

Although each solution wjz) satisfies (5.09) and (5.10) in only part of D, the theory of linear
differential equations shows that each wjz) exists and is regular throughout the whole of D.  Fur-
ther, there is an identity of the form

A wi(z) + Aswa(z) + Asws(z) =0, (5.11)

in which the 4; are independent of z.  Equation (5.11) is the connection formula for the turning
point zy, and the values of the 4; constitute our primary quest. In order to obtain them. we assume
that &-progressive paths exist in D linking each pair of reference points ¢;, cj.

Consider (5.11) in D,. Substituting by means of (5.09) and (5.08). and using the relations
&x(z)= &5(z2) =— &1(2), we derive

Are 61+ € (2) } + Ap eI+ {1 + €,(2) } + Age~il6)+€, ({1 + €5(2) } = 0. (5.12)

Now let z— ¢;.  Then €(z) vanishes and, by Theorem 2, €5(z) and e3(2) tend to constant values es(c,)
and es(c;). Also by hypothesis Re &(z)— +«. Hence we have

e””“{] =F €y )}A_) =P (’,77”-/”{ Il 4F €3(cy )}A;;: 0. 1513)
Similarly,

e mI6{1 + €(ca)} A1 + ™6 {1+ €(c2) JA3=0, (5.14)

e8] + €,(c3) } A1 + e~ ™/{1 4 es(c3) } 4. = 0. (5.15)

The consistency of this set of homogeneous equations for the 4; immediately follows from the
relation €j(c;) = eilc;) obtained from eq (3.02). Solving for the 4; and substituting back in (5.11),
we arrive at the desired form of the connection formula:

{1+ exlcs) wi(2) + e 2™B{1 + es(c1) fwa(2) + 27 3{1 + €(c2) bws(z) = 0. (5.16)
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The error terms are bounded by (compare (3.03))
|e_,'((‘;.-)| < 3 [exp {7/ ¢ ,.,‘,(F)} —1],

that is, (5.17)

_1 k| h 1 & /1 1
lej(cr)] Sgexp | W_W@ 0 |dz]| — 5

j
in which the variation (or integral) is evaluated along a &-progressive path linking ¢; with ¢;.

We summarize this section so far.  The assumed conditions on f(z) and h(z) are stated in the
opening sentence. The principal subdomains Dj associated with the turning point z, are defined
in the second paragraph. Three solutions wj(z) (=1, 2, 3) of the differential equation (4.01) are
then constructed, given by (5.09) and (5.10). Here &j(z) is the branch of the integral (5.01) which
has positive real part in D}z gi(2) (j=1, 2, 3) is any set of constant multiples of branches of {f(z)}-14
satisfying (5.08); ¢; is any point at infinity in D; such that |Re &cj)|=9<. The error bounds (5.10)
are valid at all points z which can be joined to ¢; by a &-progressive path lyingin D. Finally, pro-

vided that the ¢; can be joined in pairs by paths of this kind, the fundamental connection formula
between the wz) is expressed by (5.16) and (5.17).

Remark. It will be observed that an outstanding problem in the application of the connection
formula (5.16) will be the determination of suitable &progressive paths linking together the points
at infinity ¢;.  This appears to be an unavoidable feature of this method,! and its solution will
generally necessitate a study of the actual conformal transformation between the ¢ and z-planes.

Usually it will not be difficult to demonstrate the existence of suitable &-progressive paths.
These paths are not unique, however, and the most effective use of the connection formula clearly
calls for the determination of those paths which minimize the total variation of the function F along
their length.  Roughly speaking, this means that we need to keep the éprogressive paths as far
away as possible from all the singularities of f(z) and A(z) and zeros of f(z) (including z), subject
to fulfillment of the monotonicity condition.

The construction of é-progressive paths in the neighborhood of infinity is discussed in section 7
below, and an example of the determination of &-progressive paths which minimize the variation
of an analytic function along their length is given in [17]. section 7.

6. Airy's Equation

The simplest example to which the theory of section 5 is applicable is provided by the dif-

ferential equation
d*w|dz* = zw. (6.01)

In the notation of sections 4 and 5, we take f(z)=2z and h(z)=0. Then zo=0 and
E(Z)ZEZW. 2(z)=za et (6.02)

D comprises the whole z-plane. and the principal subdomains Dj; are the sectors of angle 277/3
indicated in figure 3.
We define gi(2) to be the principal branch of z7%. Then from (5.08)

g2(2) = emil6z-1/4 (z€ D, UD.,, Z3(z) = e~ m/6z-1/4 (z € D; UDs). (6.03)

t Compare [20]. chapter 4.
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FIGURE 3. Principal subdomains for Airy’s equation. FIGURE 4. &-plane.

We take ¢; =+, ¢, =x 23 3= 273, By considering the £&-map we see that each region
H(cj) comprises the part of the z-plane remaining after the removal of the corresponding principal
curve?;. From (4.07) we have

5 )

F(z) =247 36¢

(6.04)

The &map of a suitable &-progressive path linking ¢; with ¢, is shown in figure 4. As the radius
R of the semicircular part tends to infinity, the variation of F along the whole path vanishes. There-

fore from (5.17) €:(co) =0. Similarly e:(c3) and e3(c1) both vanish. Accordingly (5.16) reduces to
wi(2) + e~ 2 Byy(2z) + e2™/3w5(z) = 0. (6.05)

By comparing (5.09) with the asymptotic forms of the Airy functions [18], we identify
w1 (z) =272 Ai (2). wa(2) =272 Ai (ze727/3),  ws3(z) =22 Ai (ze2™i/3). (6.06)

Equation (6.05) is the well-known connection formula for these functions. It is interesting to ob-
serve that our theory yields it exactly.

The vanishing of the error terms in this example is essentially a consequence of there being
no boundary of D intervening between c; and cx in the neighborhood of infinity. The path of figure
4 generally cannot be used to establish this in other cases. Using different paths, we formulate
sufficient conditions for the vanishing of €j(cx) in the next section.

7. Sufficient Conditions for the Vanishing of the Error Terms

We again use the notation of section 5, and we suppose, without loss of generality, that the
turning point z, is at the origin.

THEOREM 4. Let f(z) and h(z) be regular in the sector S: y; < arg z <'y, for all sufficiently
large |z|, and

fl@) ~Az", k() =0@E"»-179), as |z| = o, (7.01)

uniformly with respect to arg zin S. Here A is a real or complex non-zero constant, and r, 3 real
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constants such that® r>—2,8>0. Also, within S, let ¥\, %> be outward-drawn rays from the
origin which lie in adjacent principal subdomains Dy, Ds, respectively. Then provided that ¥, ¥ »
are not parallel to the asymptotes of the neighboring boundaries of D1, D, they are strictly &-pro-
gressive paths in the neighborhood of infinity, and if ci, ¢» denote the points at infinity on them,
61(02) = O ’

To prove this result, we first observe that

ll

&z) = {flz)} V4 ~A-VizTie (7.02)

as |zl = in S. Hence ([10], section 1.36)

g@~ <i+ 1) A-Viz=r19=2 (r % 0) (7.03)
as |z| = o0 in any sector S":y; < arg z <y} which is properly interior to S.  When r=0, the result
corresponding to (7.03) is g'(z)=o0(z7%). Therefore, whether or not ris zero, we have

g2)g"(z)=0(z57") (7.04)
as |z| = ¢ in S’, uniformly with respect to arg z, where
s=2r+1,
and is positive, by hypothesis. From (4.07), (7.01), and (7.04) we derive
F'R) =0(z1%1), (7.05)
where 8, =min(8. s). Hence the integral in (5.17) converges. The essential problem is to show
how to construct a é-progressive path connecting ¢, with ¢, in the neighborhood of infinity.

From (5.01), we have

Al/Zzs

'3 +o(*) (z€NS). (7.06)

Therefore the principal curves approach infinity in directions parallel to the rays
arg z={(n+ 3)m—32alls, (7.07)

where a=arg A, and n=0,%£1,%+2, . . . . We call these the principal directions. Consider
the behavior of Re & along the ray with parametric equation z=r7e!”, vy being real and fixed, and
0<r<x. We have

déldT={f(2)}VA(dz|d7) = A27"%e7{1 + 0 (1) } (7.08)

as T— <. Hence

d (Re &)ldr=|A|"2772{cos (sy+ 3a) +0(1)}. (7.09)

The constant cos (sy+ 3«) vanishes only when y has one of the values given by the right of (7.07).
Therefore any outward ray in S not in a principal direction is a strictly &-progressive path for all
sufficiently large |z|. In particular this includes #; and Z-.

5 Thus the differential equation (4.01) has an irregular singularity at infinity.
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FIGURE 5. z-plane. FIGURE 6. Approximate path in &plane: |d| = |A|'2b/s.
Next, consider the path with parametric equation
z={(b+inei"}s (-0 <7< ), (7.10)

where y and b are real constants, b being large and positive.

As indicated in figure 5 this path begins at infinity, sweeps back to its nearest approach to the
origin at z= b'se/s and then returns to infinity, the angle between its asymptotes being 77/s. When
b is large, we have from (7.06)

&~ s7UA|V2(b + iT)eilr+e2)

showing that the &-map of (7.10) is approximately the straight line indicated in figure 6. Cor-
responding to (7.09), we find that

d |A|”2{ . ( 1 }
~— (Re §)=— s +3 )+ Dt, 75
dT( e f) L pin(y Ty« o(1) (7.11)
as b—> oo, uniformly with respect to 7. Therefore the curve (7.10) is a strictly é-progressive path
Sor all sufficiently large b, except when its asymptotes are in principal directions.

Now consider ¢; and ¢;. By taking y; and vy sufficiently close to y; and y», respectively, we can
ensure that S’ contains %, and %». From (7.06) and the hypotheses on #; and %, it follows that

|arg co— arg c1| < 2m/s. (7.12)

Figure 7 indicates how c¢; and c¢» can be connected by a strictly &-progressive path in S’, consisting
of #1, %> and either one or two arcs of the type (7.10), depending whether or not |arg c»— arg c,|
< /s. The corresponding path in the &-plane is approximately that indicated in figure 8. On
letting the b-parameters of the arcs tend to infinity, we see immediately from (7.05) that the varia-
tions of F along %, and %5 tend to zero. For the contribution to the variation from the arcs (7.10),
we observe that the corresponding values of [|z71-%'dz| are bounded by

1 (= dr
s ). |6+ i7|1+@s)

and accordingly vanish as 6— ©. The proof of Theorem 4 is now complete.

An alternative set of sufficient conditions for the vanishing of the error terms is provided by
the next theorem, which can be proved in a similar way. In this result m, 4 denote real or complex
nonzero constants, and & is a positive constant.
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FIGURE 7. &-progressive path in z-plane. C,

FIGURE 8. Approximate path in &-plane.

THEOREM 5. Let f(z) and h(z) be regular in the strip T: vy, < Im(mz) < 7y for all sufficiently
large positive values of Re (mz), and

fz) ~ Ae™=, h(z) =0 (em1-912) qs Re (mz) =+ o, (7.13)

uniformly with respect to Im (mz) in T. Also, within T, let %,, &> be straight lines which are
parallel to the boundaries of T, and lie in adjacent principal subdomains Dy, D., respectively.
Then provided that %, %> do not coincide with the asymptotes of the boundaries of Dy, D2, they
are strictly &-progressive paths in the neighborhood of infinity, and if ¢, c» are the points at infinity
on them, €(c2) = 0.

8. The Gans-Jeffreys Connection Formulas (i)

The first of these two formulas may be regarded as a special case of the fundamental connec-
tion formula of section 5. We again consider the differential equation (4.01) in which f{z) and
h(z) are regular in an unbounded, simply connected domain D and f(z) has just one zero in D, a
simple zero at z=0. This time we suppose that D includes the whole of the real axis, and that
f(z) and A(z) are real when zis real. Without loss of generality, we take f(z)/z to be positive on the
real axis.

Ficure 9. Typical principal subdomains Dj; for the
Gans-Jeffreys formulas.
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One of the three principal curves, say %, which emerges from the origin is the negative real
axis. The other two emerge at directions =7/3 and are symmetric with respect to the real axis. As
in section 5 we denote by Dy, D,, D; the three subdomains bounded by the principal curves which
have the origin on their boundary.

We take ¢ to be the point at infinity on the positive real axis, and c», c3 to be points at infinity
on conjugate ¢-progressive curves #», #3. These curves must lie within Ds, D3, respectively, and
be such that no boundary of D intervenes between them in the neighborhood of infinity. We
assume that |Re &2z)| = © when z— ¢; (j=1, 2, 3) (the “‘dominancy condition”) and that the varia-
tion of the function F, defined by (4.07), converges when z—¢j. The other assumptions we need

are
(i) &progressive paths can be found in D which link ¢» or c; with any point of the real axis,

other than the origin, and which do not pass through the origin.

(ii) €s(cs), €2(—») and e3(— ) all vanish.

In applications, Condition (i) can be tested by considering the &map. Sufficient sets of
conditions for (ii) are to be found in section 7.

The connection formula (5.16) for the solutions of (4.01) takes the form

wi(z)=e™B{1 + €5(c1) Jwa(z) + e TR{1 + eaxlcr) fws(2). (8.01)
To fix the solutions completely, we define g(z) to be the branch of {f(z)}~/* which takes its prin-
cipal value on the positive real axis (compare (5.08)). The branches of the wj(z) are then interpreted
in real form as follows.

When z is positive, we have immediately from (5.09) and (5.10)

wi(z) =f""* exp <—fzf‘/2dz> {1+ ez} (z>0), (8.02)
0

where
lez) <exp {7 . (F)}—1, (8.03)

the variation being taken along the real axis.
When z is negative, we find that

0
&R =1 f | f1V2dz, Golzy=e~TNZ| f| 714, (8.04)

Substitution of (5.09) in (8.01) accordingly yields

0
wi(z)= {1+ eslcy) e™ 4| f]~ V4 exp <—i f |f|”2dz> {1+ esx2)} + conjugate. (8.05)

Let
1+ ez2)={1+uwaz)le ), 1+ e(z)= {1+ wiz)}le™?, (8.06)
where u(z) and n(z) are real and u(z) =—1. Then by elementary considerations
|w(z)| < |ex2)], In(z)] <sin ! |exA2)| < 7lex2)]/2, (8.07)
provided that |exz)] < 1. Substitution in (8.05) yields
wi(z)=2{1+ wic)} {1+ wz)}|f]~* sin { L) |f|‘/2dz+i T+ nz)— 7)(61)} (z<0). (8.08)
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From (8.07), (5.17) and (5.10), we deduce that

| ien)|,

1
2n(cy)/m| < 3 [exp {7 e, oF)}—11, (8.09)

and
lw2)], 12n@) 7] <exp {7z (F)}—1, (8.10)

the variations in both cases being evaluated along é-progressive curves.

The aggregate of (8.02), (8.03), (8.08), (8.09), and (8.10), may be regarded as the full form of
the first Gans-Jeffreys connection formula [5], [6], [9]. It expresses the subdominant exponential
solution on one side of the turning point in terms of the oscillatory solutions on the other side.
Boundary conditions satisfied by wi(z) are clearly

e(z)=o(l) (z—>+x); 2, niz)=o(l) (z—>—x). (8.11)
We note that the bounds for the error terms u(cy), m(ci) depend solely on the variation of F along
the &-progressive path linking ¢; and ¢», and can be minimized by proper choice of path.

The second connection formula concerns the dominant exponential solution. Unlike the
subdominant solution, this is not unique. Consider first wz(z). For negative z, we have from (8.04)

and (5.09)
wn(z) = -] f|-114 exp <—i f ' l/‘l'“dz) +e@} <0 8.12)

On the other side of the turning point
wa(z) = e™l6f~1/4 exp <f~f‘/2(lz> {1+ ex(2)} (z>0). (8.13)
0

Instead of w»(z), however, we prefer the real solution ws(z) =Re{e ™/%w,(z) }. Then with the aid

of (8.06), we derive

ws(z) = [1+ Re{e(2) } ]~V exp (J()zf”zdz> (z>0), (8.14)

and

e e A R {fo |f]2dz +.L%7T+n(z)} (z<0), (8.15)

where |ex(2)|, |u(z)| and |2n(z)/7| are all bounded by the right of (8.10). These relations consti-
tute the second Gans-Jeffreys formula. ~We note that wa4(z) satisfies the boundary conditions

e(z)=é€c1) +0(1) (z—+x); wz), mz)=0() (z—>—x); (8.16)

where |€x(ci)| is bounded by the right of (8.09).
9. The Gans-Jeffreys Connection Formulas (ii)

In this section we attack the problem of section 8 with real-variable theory. Our hypotheses
are

(i) The function f(z)/z is positive and twice-continuously differentiable throughout the interval
—o0 < z <o, and A(z) is a continuous real function in the same interval.
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(i1) As z—> *= o, is unbounded and the variation of the function F (defined by (4.07))

j " gy
0

converges.
In these circumstances it is shown in [15], sections 4, 5 that (4.01) has a solution ©

wi(z)= (L HVH{Ai (0)+ e2)}, (9.01)

where

3 2 2/3
CEC(z)=i‘§ L {f(t)}‘/zdt’ (9.02)
le(z)] S ATE-HOM(Q) [exp {MY 2, (H)}—1] (= <z<), (9.03)
and
5 (1 & (1 \_ _h

to)=~stgre= | (i i ()~ v = 00

The upper or lower signs are taken in (9.02) and (9.04) according as z is positive or negative, and the
integration limits in (9.04) are determined by the condition H(0)=0. The auxiliary functions E({),
M({) and the constant \;=1.430 . . . are defined in [15], section 2.

On substituting for Ai ({) by means of its appropriate asymptotic forms, we obtain

wi(2)=z 7 2f~Y*{1+0(1) } exp (— fzf"zd2> (z— + ), (9.05)
0
and
wi(z) = 12| f|-s [Sin (L" |f|1/2dz+i-w>+p(z)+o(l):| (z— —), 0.06)
where
plz) = m2| | V4eq(2), (9.07)

and is bounded.
In order to throw (9.06) fully into “modulus-phase’ form, we appeal to Theorem 4 of [1]. This
shows that solutions of (4.01) exist of the form

0
A + o bexp {1 [ 1f19de] as 2= = 9.08

Therefore we can express

0
wi(z) =7 12| f|~Y4{1 4+ v; + 0(1) }sin {f |f¢”2dz+i7'r+ uﬁ—o(l)} (z—> — ), (9.09)

where vy, v are real constants to be determined. Comparison of (9.06) with (9.09) shows that

p(z)=(1+ ) sin {6(z) + v2} —sin &z)+ o(1), (9.10)

6 Not to be confused with the w(z) of section 8.
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where
0 1
b(z) = f \f1 Moz A+ (9.11)

Hence p(z) has the form
plz) = pr.sin {0(2) + v3} + o(1), (9.12)

where p; and vy are real constants (p, = 0) related to vy and v,.  Clearly
pr=1lim |p@|. (9.13)

Accordingly, from (9.03), (9.07) and the fact that [{|"*M({)— 72 as {— —, we have
pr<A"'lexp{\v .. .(H)}—1] (9.14)

In (9.10) and (9.12) let z— — > through a sequence of values for which #z) is an integral multiple
of 7 (compare hypothesis (ii) above). This gives

(1+vy) sin vo=p;. sin vs. (9.15)
Alternatively, by using a sequence of odd integral multiples of 37 we derive
(I +vi)cos vo—1=p; cos vs. (9.16)
Combination of (9.15) and (9.16) yields
(I +wvy)ei2=1+ pes. (9.17)

Therefore

|vi| < pu, || <sin~'p, < mp./2, (9.18)

provided that p, <1 (compare (8.07)).

The first Gans-Jeffreys formula is represented by the aggregate of (9.05), (9.09), (9.14), and
(9.18).

A second solution of (4.01) is [15]

w2 (2) = (L[N {Bi(0) +€2(2) }, (9.19)
where
lex2)] < (NS NEQM(Q [exp {N7 . (H)} —1], (9.20)
and \» = 1.315 . . .. Substitution of the asymptotic forms for Bi({) yields
we(z) = 2 f~14 {1 4+ of(z) + o(1)} exp <§ C;ﬂ) (z— + ), (9.21)
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and

wy (2) = 12| f|-1/4 {cos <§'C|3/2+117T)+0(1)} (z— — ), (9.22)

where

olz) =724 exp (—% C‘”)Q(z). (9.23)

An obvious extension of Theorem 2 of the present paper shows that o(z) tends to a finite limit,
o (), as z—>+ . Accordingly

Q) = (14 ) + o) ex f frd) ) ©.24)

From (9.20) and the asymptotic form of M({), we obtain

|6(o9) s%\fs)\zx;l lexp (N7 _a, o ()} —11. 9.25)

And with the aid of analysis similar to that used for throwing (9.06) into the form (9.09), we readily
show that

To
wo(z) =a12|f|7V4 {1 + 0o(1)} cos {J | A2 dz+i7r+o(l)} (z— — ). (9.26)

Relations (9.24), (9.25), and (9.26) consititute the second Gans-Jeffreys connection formula.

Sharper bounds. Somewhat improved bounds for the error terms of this section can be
achieved by application of Theorem 3 of [15].1 and, in the case of the Bi-type solution, of an in-
equality of the same character as (3.03) above. The results are expressed by

pL = exp {7V _.o(H)+ N7 o, (H)} —1, (9.27)
and
2 ) 2 I\,
lo-(oo)| < exp \7?_’7/ o H)F N7 0, (H);—1— %—E V.o H), (9.28)

where \s=0.521 . .. and \;=0.520 . . . .

10. Summary

The primary purpose of this paper has been to investigate approximate solutions of the dif-
ferential equations (1.01) and, more generally, (4.01) in a complex domain containing no singu-
larities of the functions flz) and A(z), and a simple zero of fiz). Some preliminary results concerning
the Liouville-Green approximation are given in sections 2 through 4. The connection formula for
the three fundamental approximations of this kind is then established in section 5, complete with
strict error bounds, by considering limiting behavior at the point at infinity. An illustrative
application to Airy’s differential equation is made in section 6, and some general circumstances
in which the error terms vanish are investigated in section 7.

An important special case concerns real variables: the problem here is to connect the exponen-
tial-type solutions on one side of the turning point with the oscillatory solutions on the other.
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This is solved in section 8 by use of the general formula of section 5. An alternative solution is
constructed in section 9 solely from real-variable theory, by re-expansion of known uniform Airy-
function approximations. Naturally, different hypotheses on fiz) and h(z) are made in the two
methods, but the principal difference lies in the forms of the error bounds. In the first method
the bounds depend on the variation of a certain function along an infinite path of specified type in
the complex plane. In the second method the bounds depend on the variation of a more compli-
cated function along the real axis.

The error bounds given in this paper have computational applications. As shown in the paper
which follows [19], they may also be used to provide theoretical insight into the accuracy of the con-
nection formulas in various circumstances, including cases when the differential equation contains
a large parameter. Hitherto, in certain applications it has often been difficult to assess the validity
of assumptions which have been made.

11. Addendum

The problems studied in the present paper and its sequel [19] have also been considered in
a recent monograph by Froman and Froman [20]. These authors have the same principal objec-
tive, that is, the determination of strict error bounds for the coefficients in the connection formulas.
The method they use resembles the first method of the present paper in that it is a rigorous formula-
tion of the procedure of Zwaan. The difference in the approaches is as follows.

We constructed (in sec. 5) the connection formula for the three fundamental Liouville-Green
solutions associated with a simple turning point of the differential equation (4.01) by examining
the asymptotic behavior of these solutions in the neighborhood of the point at infinity. Froman
and Froman, following Kemble [3], express the general solution of (4.01) in the form

w(@) =a1@) [~ exp ([ f1? dz) + ax(2) f~* exp (— [ 12 dz),

and derive a pair of first-order simultaneous differential equations for the functions a;(z) and ax(z).
These equations are then used to determine the changes in these functions as z passes from one
principal subdomain to another. Error bounds for the changes are expressed in terms of contour
integrals which are equivalent to the variations of our function F(z).

Generally the path for the contour integrals consists of the real z-axis with indentations by-
passing the turning points. Froman and Froman show that the appropriate form of monotonicity
condition is fulfilled when the indentations are semicircles of sufficiently small radius ([20], p.
39). Owing to the singularities of F(z) at the turning points however, the error bounds tend to
infinity as the indentations shrink to zero. In consequence Froman and Froman assume that the
indentations can actually be taken sufficiently large to yield small error bounds, without violating
the monotonicity condition. In the present paper we allow greater flexibility in the choice of paths,
with a view to achieving minimum bounds in applications.

Other comparisons with the ‘first method of the present paper are as follows:

(i) There is greater emphasis in [20] on the case in which the coefficients f(z) and A(z) in the
differential equation (4.01) are real on the real axis. ‘

(i1) Approximations and expansions are frequently used in [20] to simplify the error bounds.
There is greater emphasis on strict bounds in the present paper and [19].

(iii) In the special limiting case in which z is at infinity the error bounds can be sharpened
by a factor of 2 (see Theorem 2 of sec. 3 above). This refinement is freely used in the present paper
and [19], but is not in evidence in [20].

The author acknowledges helpful criticisms of the draft of this paper by Drs. J. Heading, L.
Maximon, and F. Stenger.

The work described above has been supported by the U.S. Army Research Office, Durham,
North Carolina (Project No. 4238-M).
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