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Lattice Points in a Sphere
M. Bleicher and M. I. Knopp *

(March 26. 1964)

Let Rs(x) be the remainder in the classical lattice point problem for a 3-sphere of radius Vx and
center (0. 0, 0). We prove that as x —> + o,

R3(x)= O(x* log x)
and
Rsx)= Qx'? log log x).
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1. Introduction

In this paper we consider the classical lattice point problem for the three-dimensional sphere.
The problem can be described as follows. Let x be a positive real number and let £ be a positive
integer. Consider a k-dimensional sphere of radius Vx and center (0, . . ., 0). Following the
notation of Walfisz [4],> we let A(x) be the number of integer lattice points in this sphere. A simple
geomeltric argument shows that as x =+, 4,(x) ~ V(x), where Vi(x) is the volume of the sphere in
question.  The problem then is to get an asymptotic estimate of the difference R(x)= A;(x) — Vilx).

4 , '
Here we are considering only Ra(x)=A3x)— = mx*?  We obtain the following results:

S
Ri(x) = O(x** log x), x > + = (1)
Ri(x)= Q(x'? log log x), x — + . (2)

Of course (1) is not new. Vinogradov [3]has in fact shown that Rs(x)= O(x e ), € >0, an upper
estimate better than (1). However this result depends upon his difficult theory of exponential
sums. Our estimate (1), on the other hand. is better than the elementary result A3(x)= O(x) and
depends only upon a fairly standard application of the circle method.

As far as we can ascertain (2) is new. It is based upon the Q-estimate for Ra(x) [4, p. 95]

Ra(x)= Q(x log log x), x = + . (3)

Walfisz [4, p. 94] gives only Ra(x)=Q(x'?), x— + . In[1]it is shown that JLH; | Ra(x)x 12| =+ o0,

but this is of course weaker than (3).

2. Preliminaries

Landau’s formula for Ax(x) - (k = 4) is [4, p. 29]

/2 ' - s
AA(X) _ v : 2 <5(h—,(])) . 2 nl.'/‘.%le—:f_‘ninh/q+ O(xk/al log x)’ x—>+ oo, (4)
F (%) 1=g=x"" h(mod q) q l<sn=<zx
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Here S(h, q)= E e2mha*lq js the famous Gaussian sum about which we need only the fact that
a(mod q)

[S(h. q)] < Kq'* (5)

where K is independent of h and g [4, p. 10]. The notation 2’ indicates that we are to sum over
only those h such that (h, ¢)=1.

If (4) held for £ =3 we could apply it to derive (1) without much difficulty. However since the
proof of (4) given in [4] fails for k£ <4, we replace it for £ =3 with the following formula obtainable
by the same general method.

As(x) = 2#2 n'2+ 0(x** log x), x —> + cc. (6)

nsx

Once we have (6), (1) is easily obtainable.

We will also need the following standard result [4, p. 25].

LEMMA [ (Euler Summation Formula). Let W(t)=t—[t]— 3. Iff(t) has a continuous deriva-
tive in the interval a <t <b(a <b), then

b )
2 f(m)= 4 f(t)dt+‘I’(a)f(a)—‘l’(b)f(b)+f! W)t (t)dt. (7)

a<m=b

b
This is proved by integrating f W(t)/'(¢)dt by parts.

3. Proot of (6) and (1)

Many of the calculations done in the proof of (4) [4, pp. 29-35] are valid for /=3. In par-
ticular we have [4, p. 33, formula (21)]

g=x1/2 h(mod q)

E exp {%—ZWin(y—F f—;) } dy+ O(x3* log x), x— + . (8)

nsx

In (8), w=x""'—2yi, and O(h, ¢) is an interval described as follows. Let h'/q" and h"/q" be the two
Farey fractions of order x'/2 closest to h/q with say h'[/q" < h/g<h"/q", and consider the interval
[h’ +h h+A"

q!+q9 q+qrr

]. Then 6O(h, q) is obtained from this interval by translating h/q to the origin, that is,

¢ +q ¢ q+q" qf

o, q):[h +h _h h+th h]

For our purpose here the essential fact about 6(A, ¢) is [4, p. 30]

ly| < ¢ 'x~'2, for yed(h, q)
)

ly| = 2-1q a2, for y¢6(h, q).

for any Farey fraction A/q or order x'/*
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By (8) we have

A; :f 2 {M—2 in } 4
5(x) 0(0.1)w E exp 1y mny ¢ dy

n=xr

. (S(h, (1))"‘ f o
+ 2 2 ( q o(h, q) "

2<g=x1/2 h(mod q)

> exp {7;_,1 —2min <y+ f]—l)} dy

n=r

+ O34 log x), x =+ . (10)

Again we observe that the calculations of [4, pp. 33-34] are valid for k=3. These yield

™ x mn
w32 ex {—- —2min } (lv=f w32 ex {— — 27rin.V} dy+ O(x34), x = + .
Jo(o’ , 'gx P ypdy=| __ > exp o yi dy

nsxr

Now

& VB mwn . 2 ol P
f w32 2 exp {__ _ 277”1},} dy: E eml/r f w—.i/le*.:mny([y,
X

G nsx n<ax e

and by [4, p. 35] (again valid for £=3),

3/2 . .
fx u}*:‘/zt”z”'""”dy = Y ‘"”/-",l,/l = 2#87""/1';1/2.

) ra/) ¢

Thus, we have

. s TR & . - o
f w2 N exp {— —Zmny} dy=2my n'?,
%

= n=ur n<r

and (10) becomes

As(x)=2m 2 n'/’2 + 2 Z' M)’

n=sx 2=q<x1/2 h(mod @) q

—3/2 ﬂ_z . <+ﬁ)} v+ O34 1 — 4. 11
fﬁ(h.qbu E GXp{ X wie \| 3 p dy (34 log x), x (11)

n=srxr

Let 3 denote the multiple sum on the right-hand side of (11); to prove (6) it is sufficient to show that
2 =03 log x), as x >+ .
By (5) and (9),

SI<K S gy [ e dy.  (2)

2=q=r1)2 h(mod q) <qix

E exp {777”-—27rin <y+£) }

We apply the familiar method of partial summation to estimate the inner sum. Let 7T'(n)

= e~ 2miky+hl9)  Then since T(n) is a geometric series

1shksn

T(n)| <2

(ﬂri(.wh/q)_e~~wiw+h/q)|4 = [sin T <_V+ l_L |- 1
q

h

Since |y|< ¢ a2, g (h—x"2)<y+ p < q '(h+x'?), while ¢= 2 implies that 1 sh<g—1:
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thus if x =1 (say), O < y+§ < 1. Therefore

_ R { 1 1 }
'S"”T(y +q>' = MaX 30 F hlg 20—y —hlg)"
Also,

1

qgy+h=h—x""2=h—3 and qg—qy—h=q—h—x"2=qg—h—3%,if x=4. We conclude that

1 1 11
| T(m)| =< q {2h—1+2q—2h—1} =4q {h+q—h}‘

Now,

2 exp {?—27#11 (y-f-g)}: Z e™ ™ {T(n)—Tn—1)}

Isn=ux lsn=ur

D i lemic= et e Kt )y}

l=sn=.ur

and we have

mmn h 1
: — ¢ 2 mn+1) o — ,mnlx
E exp { r 2min (y+ >}‘ {h p h} E {e el

Isn=ux lsn=ur

safprgta s el L.

where K’ is independent of 4. ¢, and x. This, with (12), leads to

=il
Z:0< > g Y {;lﬁ—qih”“ le*"zdy>,x—>+oo.

2<q=rl/2 I (mod q)

But |w|=32=2x%2 (14 4a2y?)~3/* < min {x-3/2, (2))73/2}, so that

=10 ( —-1/2 ’ {l+ 1 }{ f,r_lx‘/) ; +'[*q—11.~1/2 g }>
2 zsq<21 ! h (%:,d ) h q—h 0 4 21 y
0 ( S ogrr 3 {Lr 1 }x1/2>

2<q=r1/? I (mod )

0 <x1/2 E q 2 log q)
2SIIS.I']/2

Il

=0 (x*/* log x), as x — + o,

and (6) is proved.
To obtain (1) we simply apply (7) to 2 n'2. This gives

Isn=sux

0

J J
S oni= J t2dt — W(x)x2 +% V(1) t-12dp = %,xw +O0(x'?2), x— + .
lsnsx W ‘
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Together with (6), this implies
4
As(x)= 3 w324 O(x3/* log x), x =+,

and the proof of (1) is complete.

4. Proot (2)

We begin with two lemmas (cf. [4, pp. 49-50]).
LEMMA 2. A (x)= E Ay 1(x—m?), for k = 2.

—VX=m=\x

Proor: Clear.

\ X —
LEMMA 3. E (x—mz)"/2=f (x — t2)¥2dt + O(x o ), Xx—> + 0,

“VXsms\Vx VX

Proor: By Lemma 1,

T T k_
S a—my= ¥ (x—m2)k/2:f (x—t2)k/2dt—kf W(r)x—12) 2 edl.
—VISMs\NT —\NT<MsSVET -\ VT
But by the second mean value theorem of the integral calculus,
=)

\T k 5_1+_l b L
f V() x—e*2 ltdt=0x 2 2?2 )=0(x 2 ), as x—> + o,

7
since f W(t)dt is bounded, independently of x.

-VT
To prove (2) we assume
R3(x)= o(x'? log log x), x —> + o, (13)
and show that this leads to a contradiction. By lemma 2, and the definition of Rj(x),
Ay(x)= > Ag(x—m2)=é7r D (x— m2)32+ Y Rix—m?
: 3 : !
—VIx=m=V7¥ —VIrsm<VT —VIT=m<VT

By (13), given any € >0 there exists N >3 such that if x > IV, then | Ry(x)| < ex'/? log log x. Also
(13) implies that for any x > 3, | Rs(x)| < Kx'2 log log x, where K is independent of x. Therefore,
assuming that x > N, we have

2 Rs(x — m?) ’ < E ‘ Rs(x — m2) ’ + 2 ’ Ri(x — m?)
—VT=msVT —VI-N<m<VI—N VI-N<|m|<sVT
< 2€(x — N)'2x'2 log log x—i—(?é(—]]xwx”z log log x
+ Ry(0)+ Ro(1) + Ro(2),
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where we have used the fact that x/2 log log x is menotone and observed that there are at most
N/(x— N)'? integers in the range Vx—N < |m| < Vx. Now holding N fixed and letting x— 4+ o,
we have

2 Ry(x — m?)
i—ia —\NTEM<NT < 2e.
o x log log x

Since € > 0 is arbitrary, we conclude that

> Ryx—m?)=o(x log log x), as x =+,

—\NTIsms\T

so that

A4(x)=%77 2 (x —m2)P2+ o(x log log x), x = + 0.
-V f?erS\F

Lemma 3, with £=3, implies that

3
2 (x— m2)B32 == a2+ O(x), x— + o,
— .I'SI)IS\/‘_IT 8

and we get

x>

Asx)= 2

+o(x-log log x), x— + 0,

in contradiction to (3). Thus (13) is impossible, and the proof of (2) is complete.

5. Remarks

1. The method used here is the derivation of a o-estimate for Ry(x) from an assumed o-estimate
for Ri(x). Thus an improved -estimate for Ry(x) would immediately give an improvement on
(2), by the same method.

2. This process can be applied to give an O-estimate for Rj(x), given an O-estimate for Ra(x).
If we start with Vinogradov’s result [2]

e
Ra(x)=0(x 37¢), €>0, x— +oo,

87
Ryx)=0(x 16" ) >0, x— +x,
an estimate which is, however, weaker than (1).
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