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The algorithm is most closely related to three existing procedures: the simplex method of G. B.
Dantzig for linear programming problems, the Gomory all-integer integer programming algorithm,
and the direct algorithm for integer programming of Ben-Israel and Charnes.

The algorithm is similar to the Gomory all-integer algorithm in these respects: (i) it is an all-integer
algorithm: (ii) it uses the same cut generation procedure: (iii) it uses the cut row as the pivot row; and
(iv) the pivot coefficient always has unit value.  While the dual method provides the vehicle for moving
from tableau to tableau in the Gomory all-integer algorithm, the simplex method has the analagous
role in the primal algorithm. Thus in a general sense this algorithm is a primal analog to the (dual)
Gomory all-integer algorithm.

The direct algorithm of Ben-Israel and Charnes also has the above similarities to the Gomory
all-integer algorithm, but has one significant difference: an iteration or cycle of the direct algorithm
must frequently include the solution of an “auxiliary problem™ (which is itself an integer programming
problem) or a determination that no solution to the “‘auxiliary problem™ exists. In contrast, the
cycles of the primal algorithm include only the adjoining of a Gomory cut and the execution of the
change of basis procedure of the simplex method.

The procedure of the algorithm and the proof of finiteness are founded on a classification of cycles
of the algorithm and on two theorems. Two types of procedural restrictions are imposed as a basis
for proving finiteness: (a) selection of the incoming variable is subjected to regulation (beyond that
required by the simplex method), and the rules applied are a function of the type of cycle being executed:
(b) selection of the row used as the source of the data for the Gomory cut is restricted (in addition to

the restriction implied by (ii), (iii), and (iv) above) in certain cycles of the algorithm.

Part I. A Primal Algorithm: Arntecedents,
Goals, and Problems

1.1. Introduction and Summary

The principal result reported in this paper is a new
primal (all-integer) integer programming algorithm
and a proof that the algorithm is finite —i.e., that it
always terminates in a finite number of cycles. The
general idea of a primal algorithm is not new.! The
difficulty has been in the development of some specific
primal algorithm —or a class of primal algorithms—
which (a) can be shown to be finite and (b) is capable
of obtaining a solution without recourse to supple-
mental ad hoc procedures and problems.

In part II we shall give a careful statement of the
algorithm, and in part III present a proof that the
algorithm is finite. In part I we discuss connections
between the primal algorithm and several related
topics. Although we shall summarize the relations
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'See, e.g., Ben-Israel and Charnes [1], and Harris [14].

of the primal algorithm to existing integer programming
techniques, we do not intend to undertake here a
careful and exhaustive review of the literature.?
Our intent, rather, is to provide a summary in which,
by selection and emphasis, we can spotlight critical
aspects of the primal algorithm in terms of similarities
and contrasts with existing techniques. We shall
also comment on the general significance of integer
programming, the particular significance of improved
computational techniques for integer programming,
and the possible contribution of the primal algorithm
to improved computational efficiency.

1.2. Integer Programming: Definitions

Integer programming problems may be regarded as
a special® class of linear programming problems in
which the variables are required to take on zero or
positive integral values. Mixed integer programming
problems only require that some proper subset of
the variables be restricted to zero or integral values.

2This task has been nicely accomplished in Ben-Israel and Charnes [1, pp. 227-238.]

3We acknowledge, of course, the existence and usefulness of alternative viewpoints,
from which, e.g.. ordinary linear programming problems are represented as a special case.
at one extreme of a scale which continues through mixed integer programming problems
to integer programming problems at the opposite extreme. And in terms of the char-
acteristics required of real world problems for valid formulation as linear or integer
programming problems, real world integer programming problems constitute the more
general —i.e., the less restricted — class.
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The primal algorithm and most of the other integer
programming procedures discussed in this paper are
integer — as distinct from mixed integer — programming
algorithms.

A special class of linear programming problems
exists in which all the basic solutions are also integral
solutions. Transportation problems in which all
demands and capacities are given as integers are
typical of this class. Such problems, which have
been termed ‘“implicit integer programming’’* prob-
lems, will obviously yield an integral solution to stand-
ard linear programming techniques which locate an
optimal basic solution; these problems, therefore,
generate no need for special integer programming
solution techniques.

The primal algorithm, in common with some other
integer programming techniques such as the Gomory
all-integer algorithm and the Ben-Israel and Charnes
direct algorithm, requires that the initial statement
of the problem be in terms of a system of constraints
and a criterion function in which all the constants
are given as integers. In principle this requirement
is not restrictive, since appropriate rescaling of
equations and/or variables will convert any system
given in rational constants to a system of integers.

1.3. Integer Programming: Significance and
Computational Limitations

The potential significance of integer programming
is directly related to the significance of the problems
which are amenable to valid formulation as integer
programming problems.> Some measure of the scope
of integer programming applications is provided by
Charnes and Cooper:

[The general definition of integer programming]

. carries within it as varied (and curious) a variety of problems
as construction of Latin squares, analyses of switching circuits,
solution of interrelated ‘‘either-or’ reﬁnery -equipment-running
plans, sequencing or staging operations as in job-shop scheduling,
and a general solution of the problem of uptlmlzalum of an drbnrary
piecewise linear functional over a disjoint union of convex pmyhedra
It by-passes the historical (and ineffective) methods of scanning the
possible local critical or local optimal points and proceeds directly
to a global optimum, thereby providing a constructive calculus for
such problems which, when perfected, may have efficiency com-
parable to the usual linear-programming methods on the usual
linear-programming problems . . .6

Implicitly included in this listing are such specific
problems as fixed-charge problems and more generally
many of the problems which require nonlinear or
dynamic programming formulations. It is probably no
exaggeration to contend that the class of real world
integer programming problems is at least as extensive
and important as is the class of real world linear
programming problems.

The ability to formulate a problem in terms of a
mathematical system may be of great value for pur-

4The term is due to Ben-Israel and Charnes [1].
class of problems see Hoffman and Kruskal [15].

5Important papers on the economic significance of i integer programming inc lude (;nmur\
and Baumol [13], and Weingartner [20]. For a discussion of managerial and other appli-
cations see Dantzig [4].

$Quoted from Charnes and Cooper |3, p. 695].

For an analysis which defines this

poses of clarification and understanding. But with
respect to the utility and knowledge provided by
actual applications it is of limited value if the re-
sulting mathematical problem cannot be efficiently
solved. While it is not correct either to state or to
suggest that current integer programming solution
techniques are too inefficient to be of practical value,
it is fair to state that a significant increase in integer
programming computational efficiency is required to
make integer programming a practicable tool with
power that is comparable to ordinary linear program-
ming. In a subsequent section we shall advance
some general qualitative arguments suggesting that
the primal algorithm may contribute to an increase
in computational efficiency. Such comments are
necessarily speculative; they are not designed to
develop faith in a conclusion that would be better
based on experimentation; they are designed to
suggest some of the motivation behind the develop-
ment of the primal algorithm and to offer some hy-
potheses that can now be investigated with the primal
algorithm.

1.4. Solution Techniques: Search Routines

There are many possible methods of solving integer
programming problems. We may distinguish two
general classifications for these methods: (i) combina-
torial search routines and (ii) cutting plane methods.
While there is clearly some overlap in these categories,
the distinction is useful to identifying the conceptual
orientation of most methods for solving integer pro-
gramming problems.

We shall give brief descriptions of some search
routines. As a preliminary, we note that if the linear
programming problem which contains the integer
programming problem is bounded, attention can be
confined to a finite set of integer solutions which can
be systematically and exhaustively listed. Then the
optimum can be selected, in accordance with any
criteria that may be specified. Thus the existence of
a finite algorithm is easily established.

Two methods, one developed by Land and Doig, 7
another by Szwarc 8 and Elmaghraby, exemplify com-
binatorial search routines. Both of these methods
work with a tree graph which has nodes corresponding
to all the solutions of a given integer programming
problem. In both cases the tree graphs contain nodes
that do not correspond to integer solutions. Both
methods search the tree in a pattern designed to guar-
antee that the first integer solution node located will
be an optimal integer solution node. Both methods
guide the search process with information provided
by solving parametric linear programming problems.

This general similarity should not suggest an ab-
sence of significant difference between these tech-
niques. The Land and Doig ‘“tree” has integer
solutions only at its terminal nodes. Each node cor-

7 See [16].
8 See [18].
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responds to a collection of subsidiary constraints of
the form
x,-=k;, iGI,

where x; is a variable and £; is a positive integer or
zero. At the terminal nodes the set [ contains a
sufficient collection of indices to fully determine a
solution; at the preterminal nodes these subsidiary
constraints do not fully determine a solution. In
the Szwarc and Elmaghraby ‘tree” each node cor-
responds to a solution, which may or may not be
integral, to the linear programming problem that con-
tains (in its solution set) the solutions to the given
integer programming problem. The structure of this
tree is such that earlier nodes on a given branch or
path have better criterion values than later nodes.

The Szwarc and Elmaghraby routine is restricted
in its application to problems in which each integer
variable must assume either the value 1 or 0. This
restriction is shown by Szwarc and Elmaghraby to
preclude certain nonbasic solutions to the linear pro-
gramming problem from being uniquely optimal integer
solutions; and this permits construction of a search
process that systematically ignores such nonbasic
solutions. The restriction to zero-one variables is
not a serious limitation in principle, since reformu-
lations exist ® whereby any bounded integer program-
ming problem can be reduced to this form. But the
fact that these two methods are of a tree search variety
and therefore require exponentially increasing time
and memory requirements is a serious limitation for
practical computation.

The “Stopped Simplex Method” of G. L. Thomp-
son !0 is also a search routine, but utilizes a multi-
dimensional search method that does not search the
tree of possibilities in the usual manner. Instead,
tests are made to show when enough search has been
made so that a complete search of the entire tree is
unnecessary. The memory requirements for the pro-
gram are fixed in size and go up linearly with problem
size.

The inadequacy of our simple classification for
uses beyond the role of an expository device is revealed
by the all-integer algorithm of F. Glover.!! This
algorithm proceeds from tableau to tableau by alge-
brait transitions that are evidently more elemental
and flexible, than the usual pivot operation, and pro-
gresses to an optimum solution through the generation
of a sequence of successively greater lower bounds
on the values of the variables in an optimum integer
solution. This might be classed as a search tech-
nique. However it appears that the Gomory all-integer
algorithm (a cutting plane method) can be represented
as a special case of the Glover procedure. Thus we
proceed to the discussion of cutting plane techniques
with the realization that those methods may also be
capable of interpretation as combinatorial search
procedures.

9See [5, pp. 515-516.
10 See [19].
11 See [7].

Still another basically different approach to integer
programming is contained in the recent paper!? of
R. E. Gomory, in which he considers very general
types of “round-off”” procedures to go from the con-
tinuous to the integer solution of a programming
problem. Imbedded in that method is an auxiliary
dynamic programming problem.

1.5. Solution Techniques: Cutting Plane Methods

While there are other conceptual designs for integer
programming algorithms, most attention has centered
on cutting plane methods.’® These methods use a
standard linear programming algorithm to locate a
basic solution to the linear programming problem.!
We shall call this solution the trial solution. If the
trial solution is not integral, cutting plane methods
generate and adjoin to the tableau a new constraint,
called a cut, that is designed to destroy the feasibility
of the trial solution while leaving undisturbed the
feasibility of every integer solution. Each cycle of a
cutting plane algorithm typically contains these two
steps.

Preparatory to distinguishing among cutting plane
algorithms, we note that the trial solution which is
interdicted by the cut may or may not be the basic
solution of the tableau to which the cut is adjoined.
We illustrate three possible situations. Figure 1/1
depicts the case where the trial solution and the tableau
basic solution are identical. The points in the tri-
angle A were feasible before the cut was adjoined
and are made infeasible by the cut. The points in
region B remain feasible after the cut has been ad-
joined. A and B have similar interpretations in figure
1/2. Figure 1/2 illustrates the case where the cut
intersects the tableau basic solution while eliminating
the trial solution which is an extreme point adjacent
to the tableau basic solution.  Figure 1/3 is a schematic
presentation of a third case, in which the tableau basic
solution and the trial solution are distinct vertices and
both solutions are infeasible with respect to the cut.
The tableau basic solution, the trial solution, and the
solution at point d are all assumed to satisfy primal
optimality conditions, while none of these points, with
the possible exception of point d, satisfies primal
feasibility conditions.

It is desirable, of course, to organize the procedure
so that the sequence of tableau basic solutions and
trial solutions that are selected must lead to the op-
timum integral solution in a finite number of cycles.
We may distinguish a cutting plane algorithm by the
characteristics of the tableau basic solutions it utilizes
and by the method used to generate cuts.

The first efforts to achieve a finite (cutting plane)
algorithm shared a common method of locating the
tableau basic and trial solutions but used different
methods of generating cuts. For these methods the

12 See [12].

3For a systematic discussion of cutting plane methods, see Ben-lsreal and Charnes
[1. pp. 234 ff.] and Charnes and Cooper [3, pp. 698 ff.]. The Manne and Markowitz paper
[17] is an early example of cutting plane methods.

4je., the linear programming problem which contains, in its set of solutions, all the
solutions to the integer programming problem.
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trial solution was identical to the tableau basic solution,
as in figure 1/1. The natural choice for the tableau
basic solution was the optimal solution to the linear
programming problem, since cutting the solution set
back from the optimum solution would seem intuitively
to lead to the integer optimum in a fairly direct fashion.

Several methods were' suggested for generating
cuts —by Markowitz and Manne, by Dantzig, by
Charnes and Cooper, and by Gomory.

The cut generation procedure developed by Gomory
should be distinguished because he developed a proof
of finiteness, and because most subsequent develop-
ment of integer programming algorithms has been
based on his work. A brief description of the cut-
generation procedure of the Gomory algorithm —some-
times called the method of integer forms—will be
given presently.

Subsequent to the development of the first Gomory
algorithm, three other integer programming algorithms

> Recently F. Glover has developed a very general formulation for cut generation. See
[8] and Harris [14].

have been developed which employ a common method
of generating cuts but differ with respect to the
character of the tableau basic solutions. These al-
gorithms are the Gomory all-integer algorithm, the
direct algorithm developed by Ben-Israel and Charnes
and the primal algorithm which is the subject of this
paper. The Gomory all-integer algorithm uses the
dual method to locate the trial and tableau basic
solutions, while the direct algorithm and the primal
algorithm use the (primal) simplex method. These
three algorithms will all be described subsequently.

The optimum solution sought by any cutting plane
method should have the following three properties.
The solution must satisfy the usual linear programming
tests for (i) optimality, (ii) feasibility, and in addition,
(iii) the solution must be in integers. The cutting
plane algorithms discussed here differ with respect
to which of these properties characterize the tableau
basic solutions generated by the algorithm en route
to the optimal solution. The original Gomory algo-
rithm generates a sequence of tableau basic solutions
which are feasible and optimal but not integral before
the solution generated by the final cycle of the algo-
rithm. The Gomory all-integer algorithm generates
a sequence of tableau basic solutions which are in-
tegral and optimal (i.e., dual feasible) but not (primal)
feasible before the final solution. In contrast, our
primal algorithm and the direct algorithm generate
solutions which are integral and feasible but are not
optimal before the final solution.

As we have noted figure 1/1 represents the typical
relations among the cut, the trial solutions and the
tableau basic solution in the original Gomory algo-
rithm. Figure 1/2 represents these relations for the
primal and the direct algorithms, while figure 1/3
represents these relations for the Gomory all-integer
algorithm.

1.6. The Original Gomory Algorithm

The first step of the original Gomory algorithm is
location of the optimal solution to the linear program-
ming problem which contains in its solution set the
solution to the given integer programming problem.
Suppose we express the tableau which corresponds
to this solution by the following matrix equation:

IXp+AXN=0G, (1.1)
where I is an m by m identity matrix, 4 is an m by n-m
matrix of constants, G is an m by 1 vector of non-
negative constants, Xz is an m by 1 vector of variables,
and Xy is an n-m by 1 vector of variables. The op-
timal solution is Xp=G = 0;: Xy=0. If G only contains
integral or zero components then the desired optimal
solution to the integer programming problem has been
attained. If G contains some nonintegral components,
then a cut can be generated which will render the
solution to (1.1) infeasible.

The following procedure is used to generate the
required cut. To write the new equation we must
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consider in detail a row (or equation) from (1.1) which
has a fraction on the right side. Accordingly, let

x,<+2 Qr, Xj= & (1.2)
J

be an equation from (1.1) where g, is nonintegral, x,
is a component of Xj, and the summation ranges over
all components x; of Xy. In addition we require these
definitions.  For a given real number y, we define

Ju] = the largest integer < y.
We symbolize the

We call [y] the integer part of y.
fractional part of y by

AvI=y—ilyl

We note that y= {y|+ /y], and that {y]is never nega-
tive and is equal to zero when y is an integer.

Now to write the Gomory cut we first select some
row, such as (1.2), from the tableau (1.1), the only spe-
cial characteristic of the row being its fractional com-
ponent in the G vector. Then we use the data of that
row, (1.2), to generate the following new equation:

s— > Aav. jlxj=— gl

J

(1.3)

where s is a new slack variable, and the summation
ranges over the indices of the nonbasic variables.
This equation is adjoined to the system (1.1); the new
s variable is inserted in the basis, which is thereby
extended into one more dimension.

Gomory has proved that any feasible and integral
solution to the system (1.1) must determine a non-
negative (and integral) value of s.'"*  This proof holds
for any system such as (1.1) independent of whether
the basic solution associated with the identity matrix
is optimal.

When the cut (1.3) is adjoined to (1.1) the basic solu-
tion is changed by letting s=— Jg.], and is no longer
feasible. A new cycle is initiated by solving for the
optimal solution to the new linear programming prob-
lem generated by adjoining (1.3) to (1.1). The most
convenient method of reoptimizing is the dual method,
since the system that results from adjoining (1.3) to
(1.1) is dual feasible and has one basic variable with
a negative value.

Gomory proves that this algorithm will proceed to
an optimal solution for a given integer programming
problem in a finite number of cycles.!$

1.7. The Gomory All-Integer Algorithm

The preceding section discussed Gomory’s method
of integer forms. Dr. Gomory has also introduced
another algorithm called the all-integer algorithm.
There are several important differences between the
Gomory all-integer algorithm and the original Gomory

3 See Gomory [9] and [10].

16 See Gomory, [10].
17 See Gomory, [11].

algorithm. In addition to the all-integer characteristic
of this algorithm, there is a more general cut genera-
tion mechanism. The tableau basic solution and the
trial solution coincide in the method of integer forms.
In the all-integer algorithm they are distinct. In the
method of integer forms the tableau basic solutions
are optimal, feasible, and noninteger. In the all-
integer algorithm the tableau basic solutions are
integral, optimal—i.e., dual feasible—and (primal)
infeasible.

Figure 1/3 can provide some insight into the me-
chanics of the all-integer algorithm. The tableau
basic solution is integral and optimal and nonfeasible.
The trial solution, which shares the line e with the
tableau basic solution, is a solution that would become
the basic solution after the execution of the usual
dual method change of basis procedure. The trial
solution is optimal and is typically nonintegral and
nonfeasible. Instead of moving the tableau basic
solution to the trial solution the cut is adjoined. The
cut is so constructed that after it has been adjoined
an ordinary dual method change of basis will move the
solution to point d, which is integral and optimal, and
ma}y or may not be feasible.

This case is special: the trial solution need not be
infeasible with respect to the cut and need not be on
the same edge as point d and the tableau basic solution.

This algorithm requires that the all-integer property
be present in the initial statement of the problem as a
system of equations,—i.e., all the constants must be
given as integers.'®  The means by which this property
is preserved in subsequent tableaus are both simple
and ingenious. If the pivot coefficient used in accom-
plishing the transition from a given to a subsequent
tableau is equal to =1 (where the sign depends on
whether the dual or the simplex method is being used)
then the resulting tableau will be all-integer provided
the initial tableau is all-integer. This conclusion
follows from inspection of the formulas which describe
the simplex method (or dual method) change of basis
procedure.

To insure that a unit pivot coefficient is always used,
the all-integer algorithm generates a cut in the course
of each cycle of the algorithm. The cut generating
mechanism and the method of employing it are such
as to guarantee:

(i) That the cut can serve as the pivot row,

(i) that the pivot coefficient (at the intersection of
the cut row with the pivot column) always has the
value — 1, and .

(iii) that the cut only contains integer constants.

Every prefinal tableau basic solution of the Gomory
all-integer algorithm is dual feasible,!? is associated
with an all-integer tableau and has some primal in-
feasibility. Thus we may let (1.1) serve as a represen-
tation of such a tableau (less the criterion function
information) if we assume all-integer data and that
G is not = 0.

To provide a cut which satisfies the requirements
listed above, in addition to preserving the feasibility

18 This is not a significant limitation. See section 1.1.
¥j.e., the solution would be optimal if there were no primal infeasibility.
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of every integer solution to (1.1) while increasing the
infeasibility of the tableau basic solution, the all-
integer algorithm uses the following formulation:

s+ ilan A2+ [UN] - xo=1[g/A].  (1.4)

We shall presently discuss the determination of a
value for the positive parameter A. The constants
in (1.4) with the subscript v are taken from some row
v of (1.1) that has been selected as the source of the
data for the cut (1.4). Gomory has proved 2° that for
any row v and any positive A, every feasible integer
solution to (1.1)2! determines a solution to (1.4) in
which s is an integer = 0.

Thus to generate a specific cut from a specific
tableau requires the selection of a source row v and
the determination of a value for A. Since the cut is
to be used as the pivot row it is required by the dual
method that ; [g,/A] < 0. This requires that the source
row be selected from among the rows i which have
&< 0. The value of \ is determined by two require-
ments: (a) the pivot coefficient must be —1, which
can always be secured by making \ sufficiently large,
and (b) the value of X should be as small as possible —
consistent with the satisfaction of (a)—in order to
achieve as large as possible a change in the criterion
function as a result of the subsequent pivot on the cut
row.22 Gomory provides an algebraic routine which
will select A so as to satisfy (a) and (b).

Roughly, then, each cycle of the Gomory all-integer
algorithm consists of a cycle of the dual method in
which the execution of the change of basis procedure
is preceded by augmenting the system with the cut
(1.4). This cut, once adjoined, will qualify as the
pivot row and will have a pivot coefficient of —1.
Gomory proves that this algorithm is finite and bases
his proof on, among other things, the fact that

1 [gv/}\] <0.

This guarantees that each cycle will result in a finite
“lexicographic” decrease (assuming the goal is max-

imization in the primal problem) in the column vector

% . . N
[G] where the scalar quantity z is the criterion value

of the basic solution of (1.1) and G is the right-hand
side in (1.1).

1.8. An Analogous Primal Algorithm: Motives and
Problems

A natural sequel to the Gomory all-integer algorithm
is the development of an integer programming algo-
rithm that is related to the simplex method as the
Gomory all-integer algorithm is related to the dual
method. Most of the details of such a procedure can

20See Gomory [11].
21 The proof does not depend on the properties of the basic solution (such as primal in-
feasibility) in (1.1).

22 Gomory suggests the possibility of using other rules for determining A.  See [11, p. 198].

be derived, as we shall show presently, in a straight-
forward way from the Gomory all-integer algorithm.
There are several motives which might propel such a
development. We shall be content here with a brief
discussion of some of these motives.

In the development of linear programming solution
techniques, much progress in the development of
special algorithms has been based on the joint exist-
ence of the primal (simplex) and dual methods, which
have provided the foundation for a variety of com-
posite algorithmic procedures. A primal counterpart
to the Gomory all-integer algorithm might open the
way to a class of composite integer programming algo-
rithms. And such a class might well contain efficient
algorithms based on special problem structures.

Additionally there are situations that intrinsically
favor a procedure which proceeds to an optimum
solution through a sequence of primal-feasible tab-
leaus. Development of interpretative connections
between the mathematical operations and the real-
world counterparts of the elements of the mathe-
matical system may be easier with a primal-feasible
system. Where calculations cannot be continued until
a known optimum solution is obtained, the current
primal-feasible basic solution—which in an all-
integer system is also integral —may be useful as a
“good” answer—capable of execution and possibly
controlled by suitable bounding techniques—to the
real-world decision problem. Finally it may be con-
venient and useful in many cases to express good
solutions —achieved by heuristic or other means—
as initial basic solutions to an integer programming
problem. Such advanced starts should reduce the
calculation required to solve the integer programming
problem. Thus a primal integer programming algo-
rithm might provide the most convenient means to
test, calibrate, and improve the power of a heuristic
solution technique.?

As indicated, the procedures of the Gomory all-
integer algorithm provide an easily followed model for
the development of the details of a primal algorithm.
The integer programming problem would be given in
terms of an initial primal-feasible all-integer system
of equations with an all-integer criterion function. A
typical cycle of such an algorithm would include the
procedures of a cycle of the simplex algorithm. A
cycle would also include adjoining a Gomory cut—
generated from the formula (1.4)—in such a way that
the cut qualifies as the pivot row and has a pivot co-
efficient with value 1.

For the purposes of exposing critical problems with
a minimum of extraneous detail we shall outline a
simplified algorithm. Suppose the following problem
has been given:

n
maximize > v (1.5)
=

23 The direct algorithm of Ben-Israel and Charnes, discussed below, provides a convenient
method of incorporating an advanced start as a basic solution. The advanced start is ex-
pressed as a solution to the ‘‘auxiliary problem’ (defined below). This will lead, by a
simple and direct procedure, to a basic solution that corresponds to the advanced start.
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subject to
n
xit Y apx=g =0, i=1,2, ..., m.(.6)
Jj=m+1
% = 0 and integral, i=1,2,.. ., n

We assume all the 7j, a;, j and g; constants are given as
integers or zeros. We associate the basic solution,
xi=gi, 1 <m+1,x;=0, m+1=j=<n, with this system
of equations. We assume this solution is not optimal,
i.e., for at least one xj, m+1<j=<n,

m

¢i=v— > aijyi>0. (1.7)
i=1

In (1.7) the term ¢; has the meaning of the term usu-
ally symbolized by ¢;—z in the linear programming
literature. The y’s in (1.7) are original criterion co-
efficients and it is assumed for notational convenience
that the variable that is basic in row i is x;.

Now we describe the events of one cycle of a simpli-
fied primal algorithm, which will achieve all the
features specified in the previous paragraph. We
shall call this the rudimentary primal algorithm.

I. Select an incoming wariable x; according to the
usual simplex method criterion for making that choice.

II. Select as the source row, v, the row which wouid
be the (natural) pivot row ?* given the prior selection
of x; as the incoming variable.

III. Set A= a,,;, where a,, ; is the natural pivot
coefhicient, implied by the selection of x;.

IV. Adjoin the Gomory cut (1.4) to the system. The
slack variable s will enter the basis and have the initial
value [gv/ay. ;. (We shall assume that a, ;> 1 and
that therefore x, does not appear in the cut. In cases
where a, ;=1, we shall assume that no cut need be
adjoined.)

V. Execute the usual simplex change of basis pro-
cedure with the cut serving as pivot row and the col-
umn associated with x; serving as the pivot column.

It is easily demonstrated that this procedure does
provide a cut which qualifies as the pivot row and has
the pivot coefficient equal to 1.

The central difficulty with this procedure is in prov-
ing that it is finite. The core of the difficulty arises
from the possible occurrence of

Glay, ;<1 (1.8)
for every permissible selection, J, of a pivot column
(and the natural pivot row, v, determined by the prior
selection of xj). When (1.8) is true, the cut has

8w/ av, ;1=0. (1.9)
Thus s is placed in the basis at a zero level and, as a
result of executing the pivot operation, x, replaces s

in the basis at a zero level. The basic solution in the
tableau that results from such a cycle has been changed
(in relation to the previous tableau) in composition
and dimension but not with respect to the value of
any basic or nonbasic variable. Thus no change
occurs in the G column or in the criterion value of the
basic solution.

The possibility that (1.8) may occur precludes a
direct (and comparatively simple) proof of finiteness
analogous to that developed for the Gomory all-intege
algorithm. It is also impossible to remedy this diffi-
culty by a straightforward appeal to the degeneracy
theory developed for linear programming situations.
Those procedures, and the arguments that prove they
will avoid cycling, are based on the assumption of a
convex polyhedron of solutions which has a finite and
fixed number of extreme points. The nature of the
cutting plane methods is to systematically alter and
frequently to increase the number of extreme points
on the set of solutions.

Two primal algorithms have been developed which
share, in a general way, the procedures and problems
which have been described and discussed in this
section. They are (1) the direct algorithm developed
by A. Ben-Israel and A. Charnes and (2) the primal
algorithm which is the subject of this paper. The
essential difference between these two procedures is
their contrasting response to the problem posed by
the possibility (1.8).

Some summary intuitive notion of the characteristics
of these primal algorithms may be developed by the
following brief discussion of figure 1/2. Here we have
a simple representation of the typical situation for the
primal algorithms. Since the tableau basic solution
is feasible and integral with these algorithms, this
solution must be feasible with respect to the cut.
(Neither of the Gomory algorithms shares this charac-
teristic.) The trial solution is a (typically) nonintegral
solution must be feasible with respect to the cut.
procedure were carried out without adjoining the cut.
The cut is shown intersecting the tableau basic solu-
tion, which is the geometric equivalent of the occur-
rence of (1.8). If (1.8) is not true then the cut will not
intersect the tableau basic solution, but will intersect
instead some point (with integral coordinates) such as
h in figure 1/2, or even possibly the trial solution point.
In these circumstances the change of basis procedure
“moves’’ the basic solution along the edge (conneciing
the tableau basic solution and the trial solution) to
the point where the cut and the edge intersect.

In the following discussion we shall see that the
direct algorithm systematically avoids the situation
where (1.8) is true and the cut intersects the tableau
basic solution, while the primal algorithm permits
this circumstance.

1.9. The Ben-Israel and Charnes Direct Algorithm

The direct algorithm of Ben-Israel and Charnes will
now be reviewed. The direct algorithm calls for a

24 The natural pivot row is a row which minimizes the pivot ratio, gi/a;, 5, over the set of | N . X
rows, i, which have a;,; >0. Since we shall make the natural pivot row the source row, procedure essen[lally ldentlcal to the rudlmenta]'y
the index v may represent both concepts. In part II, we shall restrict v to identifying the . o o o a . 0
TS S primal algorithm described in the previous section
779-532 O-65—6 219



whenever a nonbasic variable x; exists such that

gl:/U«v,J2 1, (1.10)

and x; would improve the criterion value of the solution
by becoming positive,—i.e., CJ:'YJ_E ai. i > 0.

1

Any nonbasic variable which satisfies those two con-
ditions may be selected as the incoming variable. If
no nonbasic variable satisfies both conditions, but some
nonbasic variable exists which would improve the solu-
tion by becoming positive, then (1.8) is true and the
direct algorithm invokes a special procedure. In
these circumstances it is necessary to solve an auxil-
iary problem 2 the goal of which is the generation of a
new nonbasic variable —which we shall label x°.

To describe the necessity for and purpose of the
auxiliary problem, let (1.6) represent the constraints
of the current tableau, and let (1.5), represent the
criterion function. Also suppose we have a value

m
- 2 i, jYi
i=1

(for each nonbasic variable x;).
Now if we let (1.6) be represented by the equivalent
matrix equation

(1.11)

where Xp contains the x; with 1 <i<m—+1, while Xy
contains x; with m+1<j=<n, and the coefﬁc1ents of
A and G are given by (1.6), a succinct algebraic test is
available to distinguish (1.8) from (1.10). Let 4; sym-
bolize a column of 4 and let C+ denote the set of all
such columns 4; for which ¢ >0. If (1.10) is true
then

A<G for some A;eC +. (1.12)
If this were not the case then in particular 4, <G
would be false, which would imply the existence of
a row r, for which a, ;> g.. Since the smallest pivot
ratio for column J is, by (1.10), = 1, this must contradict
one of the following: (i) G =0, (ii) (1.10), or (iii) the
definition of the row v in (1.10). Thus (1.10) implies
(1.12). Accordingly, if (1.12) is not true, then (1.10)
must be false, which implies (1.8) is true.

In these terms the solution of the auxiliary problem
is called for whenever (1.12) is not true. The goal
of the auxiliary problem is the generation of a new
column A° and a corresponding new nonbasic variable
x°, to be adjoined to 4 and Xy respectively. To solve
the auxiliary problem, A° must make (1.12) true.
Thus it is required that A° <G and A%C+. Finally
A° is required to be a nonnegative integer combination
of the existing columns of A.

Thus we may state the goal of the auxiliary problem
as follows: find a vector ¢, with typical component

% The primal algorithm contains no such procedural detour.

¢ and the same dimension as Xy, which satisfies

7
chd)lzco >0 (1.14)
]

¢ =0 and integral for all L. (1.15)

We note that the auxiliary problem requires an integer
solution and in general it will not be a priori evident
that a solution does or does not exist for the auxiliary
problem. If the auxiliary problem can be (and is)
solved, the column A° is adjoined to A and a new
variable x° is identified with this column. Clearly
x° qualifies as the incoming variable which satisfies
(1.10) as well as the usual requirement that ¢y > 0.
If the auxiliary problem cannot be solved—i.e., if no
vector ¢ =(cs, . , b, , Grast) exists Wthﬂ sat-
isfies (1. 13), (1. 14) and (1 lS)—then the current basic
solution is optimal. Ben-Israel and Charnes provide
a proof of this proposition.

Thus the direct algorithm only executes cycles in
which ¢; > 0 and

1<;lg/av, /] <8glav,,

This condition implies that each cycle of the algorithm
results in at least a unit increase in the criterion func-
tion value of the solution. A proof of finiteness fol-
lows directly from the assumed boundedness of the
given problem.?¢

The central weakness of the direct algorithm is the
absence of a general method for solving the auxiliary
problem or for making positive identification of every
situation where no solution exists.?” Ben-Israel and
Charnes discuss several devices that will simplify
or solve the auxiliary problem in particular cases. The
strength of this algorithm, aside from the fact that it is
a primal procedure, is in the efficiency of the procedure
when applied to problems where special structure
permits solution of the auxiliary problem in a simple
and reliable fashion. In section 1.11 we shall present
an example problem which is solved with the direct
algorithm.

1.10. The Primal Algorithm

Now we shall provide a brief description of some of
the distinguishing characteristics of the primal algo-
rithm. The primal algorithm pursues an alternative
course to that taken by the direct algorithm. The
primal algorlthm avoids whenever possible a selection
of the incoming variable x;, which will lead to (1.8).

26 Charnes and Cooper in [3, chs. VII and XII| provide the theoretical foundation for
assuming a bounded solution set.

27, . the auxiliary problem may be no smaller in size than the original problem. . . .
However it may often be completely transparent, particularly for special structures. We
will treat the auxiliary problem as a “black box™ in presenting . . . a direct algorithm for
integer programming. Although no simple systematic way to resolve this difficulty is given,
we will show that in spite of it the direct algorithm is effective at getting feasible ‘“‘close
to optimal” solutions, or dually feasible integer solutions to which one may apply Gomory’s
algorithm.”  Quoted from Ben-Israel and Charnes [1, pp. 249-250].
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If no other choice is available (and the primal optimality
conditions are not satisfied) then an incoming variable

which implies (1.8) is selected and a cut is generated
which has

S=1[g1-/ar.,/]=0- (1.16)
Thus the major task associated with this algorithm is
establishing a guarantee that (1.16) will occur for at
most a finite sequence of successive cycles.

In the detailed description of the algorithm given
in part II, several departures are taken from the
rudimentary primal algorithm described in section
1.8. There elaborations, while consistent with the
goals behind the rudimentary algorithm, complicate
and constrain the selection of the incoming variable
and of the source row. These elaborations serve two
general purposes: to guarantee a finite algorithm and
to avoid?® arbitrary restriction of choice beyond that
required to attain a finite algorithm. The rudimentary
primal algorithm may be regarded as a prototype for
our primal algorithm and can usefully serve as a com-
paratively simple vehicle for introducing a procedural
outline of the primal algorithm, provided the necessity
of subsequent elaboration is borne in mind. It has
been our intent to provide in part I a description of
some of the major characteristics of the primal
algorithm, and to discuss these characteristics in terms
of contrasts and similarities to existing integer pro-
gramming techniques, particularly the Gomory all-
integer algorithm and the Ben-Israel and Charnes
direct algorithm, which are the “closest relatives”
to the primal algorithm. In the following section,
which concludes part [, we present two example
problems with solutions by the rudimentary primal
algorithm. We also present a solution to the second
problem by the direct algorithm.

1.11. Exemplification

In this section two small example problems are
solved by the rudimentary primal algorithm. Both
examples are chosen because they have been used
elsewhere to illustrate the operation of some of the
other integer programming algorithms discussed in
this chapter. An interested reader will therefore be
able to make comparisons of the examples given here
with the referenced source of the problem.

Problem #1. The first problem was used by Charnes
and Cooper? to illustrate the operation of Gomory’s
method of integer forms. The problem is

max 3x -ty
subject to 2x+3y<6
2= oYy = o)

28 This goal is not perfectly satisfied as will be observed from part 1. In addition we
specifically disavow any suggestion that the procedures of the primal algorithm are neces-
sary to secure finiteness even though they are sufficient. See [21].

29 See Charnes and Cooper [3, pp. 702-709].

x, y:=0
x, y to be integer.

Converting this problem to one in equation form we
adjoin two slack variables, #; and t», and obtain the
following initial tableau. The first row contains the
—c¢j values, or in the usual linear programming ter-

minology, zj—c; values. P, denotes the constant
column.

Py X y ty o (T1)
Z 0 —3 —1 0 0
ly 6 2 3 1
ta 3 2 — 1

According to the usual simplex criteria both x and y
are eligible candidates for the incoming variable.
Either of these variables would lead to gy/a, ;= 1.
If x,=x this quantity is 3/2; and if x,;=v, glav,J
=6/3. Thus either x or ¥ may be selected as the in-
coming variable. We shall arbitrarily select y. Then
a cut must be adjoined to (T1) using the formula (1.4)
with the natural pivot row (¢; row) serving as the source
row v and with A=a,,;=3. The resulting cut is

[§]=st [51+ [3]+ [3le

2=yt s

or

(1.17)

The tableau (T1) with (1.17) and the new
adjoined becomes

variable s;

P 5% y ty t $1 (T1")
VA 0 -3 —1 0 0 0
* 6 2 3 1 0 0
ts 3 2 — 0 1 0
<« s 2 0 1 0 0 1

Here y is designated as the incoming variable and s;
as the outgoing variable. We shall repeat the con-
ventions employed in (T1’) in subsequent tableaus:
the arrows designate the incoming and outgoing
variables, the (*) designates the natural pivot row
and the source row, and the new cut equation appears
below a horizontal dashed line. Since (T1’) contains
(T1) we shall in subsequent tableaus only present the
primed version which contains the cut and designates
the source row.

When the indicated simplex method pivot operation
is all)‘glied to (T1’) the result is (T2), which is contained

l)'

in
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Po ;CL y b1 to S1 S2 (T2’)
Z 2 =g 0 0 O 1 0
* 0 2 0 1 0O —3 0
9 2 0 0 1 3 0
y 2 o 1 0 0 1 0
“ 0 1 0 0 0 -2 1

The only eligible incoming variable in (T2) is x. If
x=2x; then the t; row is the natural pivot. This row
becomes the source row v with a,, ;/=A=2. The new
cut, which is the bottom row of (T2’), contains as co-
efficients (in the Py, x, y, t1, t2, and s; columns) the
integer parts of the quotients that result from dividing
the #; row by 2. The new variable s, is of course the
slack associated with the new cut. The simplex
change-of-basis procedure is applied to (T2') to yield
(T3).

Py x vy t b sil S» (T3)
Z 2 0 0 0 0 —5 3
~t, 0 0 0 1 0 [
2 9 0 0 0 1 A
y 2 0 1 0 0 1 0
x 0 1 0 0 0 -2 1

In tableau (T3) only s; qualifies as an incoming variable.
The natural pivot row is the ¢ row and the natural
pivot coefhicient is equal to 1. Thus no cut need be
generated.?® Pivoting as indicated by the arrows in

(T3) yields (T4).
v
Py x y itz 81 So s3 (T4
z 2 0 0 5 0 0 —7 0
si 0 0 O - © 1 =2 0
¥ 9 0O 0 —7 1 0 12 0
y 2 o 1 -1 0 0 2 0
x 0 1 0 2o 0 0 =g 0

In (T4) s» is the only permissible incoming variable.
The natural pivot row is the 2 row which becomes the
source row v for generating the cut, and a, ;=A=12.
Applying the formula (1.4) yields the cut in the bottom

row of (T4"). Then s, replaces s3 in the basis to yield
(T5).
}
Py x y ty ta S1 S2 S3  S4 (T5")
Z 2 00 —2 0 0 0 7 0
s1i 0 00 —1 0 1 0 2 0
¥ 9 0 0 51 0 0 —12 0
y 2 0 1 10 0 0 —2 0
x 0 1 0 —1 0 0 O 3 0
ss 0 0 0 —1 0 0 1 1 0
«<s; 1 0 0 1 0 0 0 —3 1

30 See step IV of the rudimentary algorithm in section 1.8.

In (T5) there is again only one permissible incoming
variable: ¢;. The associated natural pivot row is the
t, row. This row is made the source row and A = a,, ;*
=5. Applying (1.4) we get the cut row—the s; row
in (T5'). When #; has replaced ss in the basis the
result is (T6), which satisfies the primal optimality

conditions. Thus the basic solution in (T6) is optimal.
Py, x vy t1 tx si s2 S3  S4 (Te)

Z 4 0 0 O 0 0 0 1 2

s1 1 o 0 0 0 1 0 -1 1

i 4 0 0 0 1 0 0 8 =8

y 1 0O 1 0 0 0 o0 I =1

x 1 1 0 0 0 0 0 0 1

sz 1 o 0 0 0 o0 1 -2 1

1 o 01 0 0 0 -3 1

In this example problem we have not dropped s
variables which reenter the basis—e.g., s; and s» in
(T6). We shall discuss in appendix A the conditions
under which such s variables can be dropped from the
system. The possibility of eliminating such variables
is of course important to limiting the size of the system.

We may note that in only two cycles of the algorithm
in the above problem was there a nonzero entry in
the Py column of the (ultimate) pivot row. Hence we
may conclude that a different course would have been
followed had the same problem been solved with the
Ben-Israel and Charnes direct algorithm. In this
regard note tableau (T2)—i.e., (T2') without the s»
row. The direct algorithm would not have chosen x
as the incoming variable since the x column in (T2)
is not less than or equal to the Py column. Instead
the direct algorithm would have instituted a search
(the auxiliary problem) for a (nonnegative) integer
combination of the nonbasic columns of (T2) which is
less than P, and has a negative first (Z row) com-
ponent. Such a combination exists, namely s;+x.
The Ben-Israel algorithm would. create a new variable,
say t3, defined by ¢3=s; +x and adjoin the appropriate
column to (T2). This new variable #; would be desig-
nated as the incoming variable and the cycle would
be accomplished by executing steps II-V of the rudi-
mentary primal algorithm.

To provide a more comprehensive example of the
contrast between the rudimentary primal algorithm
and the direct algorithm we shall present solutions of
a second example problem by both algorithms.
Problem #2. We provide below, in a quotation,?!
the statement and solution of a problem by the direct
algorithm of Ben-Israel and Charnes. This problem
has also been solved elsewhere by the original Gomory
algorithm.3? The statements, near the end of the
quotation, which argue for the optimality of basic
solution of tableau (4) merely assert that only the three
listed combinations would have a negative first com-
ponent, and that none of these combinations is less
than or equal to the stipulations column. Hence
there is no solution to the auxiliary problem.

31The quotation is from [1, pp. 256-257.]
32See [10, pp. 297-299.]
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Max z=3x1 — x

S = = &
-—SX| _411§_]0
2x1+ x2= 5

x; integer = 0

i=1,2

We rewrite the constraints as

3x; —2xz+x:;
—5x1 —4x, AR5
201+ x2

= 3
— X =—10
==y = 5)

xj integer = 0

i=1...,6

where x3, x4, x5 are slacks, and x4 is a variable bearing a heavy

penalty.

In this example we omit the unit vectors in all the tableaus.

(1

()

P
« Pg
Ps
Py
P

Py

—10M

Py
=Nil=2

Py

Py
SoNMESS

!
Py
—M—4

Py

—4aM -3
3
4
2
0
=l

!
P Py
—4M +1 M
=32
4 =1l
1
1 =1l
Py S
SOMER! aM—1
= 2
3 —4
1 =1l
il 1
=1l 0
!
Sy S, P;=
3P+
25+
332
4aM—1 M+4 —M+1
2 =5 ==
—4 =1 1
=]l =1l 1
1 =1l = I
0 1 0

(4)

Py Py Ps Si S,

1 -7 M-1 3 5
Py 4 1 2 -6 -7
P; 1 4 —1 —4 -1
Py 1 -2 -1 3 0
P, 2 —4 1 -3 —-2
P, 1 -1 0 0 1

Tableau (4) is optimal since it is case (A2) [see above, p. 222].
This is easy to check, since here one has to check only three
nonnegative integer combinations of the nonbasic columns
with ¢x > ¢ ygr, namely

( and none of them is such that

YBo = YBk

The optimal solution is

=1
x2=2
x_-;=4

x4=23 (this follows from x;=1
x5=1 and the definition of P7)

X(;:()

with value z=1.

The primal algorithm could yield an identical pro-
cedure to that followed by the direct algorithm through
the generation of tableau (3). In tableau (3) if Py
is selected as the incoming variable, g,/ a,s="%a
<1 results. This is the circumstance that distin-
guishes the procedure of the two algorithms. The
direct algorithm evokes the auxiliary problem in this
situation. The incoming variable P; in tableau (3)
is the result of successfully solving the auxiliary
problem.

The primal algorithm simply makes P4 the incoming
variable. The resulting cut has a zero in the P,
column, which is the circumstance the direct algorithm
avoids.

The solution of this problem by the primal algorithm

is recorded in the sequence of tableaus (T3’) through
(T10) below.
We have dropped s variables when they have reentered
the basis. Following the practice of Ben-Israel
and Charnes, we have omitted the basis columns in
all these tableaus.

l

Py P, S1 S2 (T3")
Z —M+2 —4aM-—-3 AM—1 M+4
P; 2 3 2 =
* Pg 1 4 —4 =1l
Ps 2 2 == =1
P, 1 0 1 =1
P, 1 =1 0 1 -
<53 0 1 =1l =1l



!
P, S3 S1 S2 (T4")
Z —M+2 4M+3 —4 —3M+1
P; 2 =g ) =7
* Pg 1 —4 0 3
Ps 2 =2 1 1
P, 1 0 1 = 1l
P, 1 1 =1l 0
Py 0 1 =1l =1l
€54 0 =) 0 1
l
Py 3 1 S4 (T5")
Z —M+2 —2M+5 —4 3M—1
P3 2 =7 5 2
* Pg 1 2 0 =3
Ps 2 0 1 =1l
P, 1 =% 1 1
P, 1 1 = |l 0
P, 0 —1 —1 1
“«s5 0 1 0 =2
J
Py S5 $1 S4 (T6")
Z —M+2 2M—5 —4 —M+9
Ps 2 7 5 = 1%
Ps 1 =2 0 1
Ps 2 0 1 =1l
P, 1 2 1 =g
* Py 1 =1l =1l 2
P, 0 1 =]l —1
<S¢ 0 -1 —1 1
!
Py S5 S1 S6 (T7)
Z —M+2 M+4 —M+5 M—9
Ps 2 -5 —17 12
P 1 =1l 1 =1l
Ps 2 =1l 0 1
Ps 1 =1l =% 3
P, 1 1 1 =7
Py 0 0 = 1

Tableau (T7) is noteworthy in several respects.
In contrast to the preceding tableaus, the incoming
variable has a natural unit pivot. Thus no cut is
required. Rows Ps and P; are “tied” as candidates
for the natural pivot row. Here we arbitrarily choose

the Ps row, and since the pivot row has a positive
quantity in the P, column, the next tableau, (T8),
must have a changed —and improved —basic solution.

!
P(j S5 P(,' S6 (TS')

Z =3 9 M—-5 —4
* Py 9 =1 7 &)
S1 =l 1 =1l
Ps B =l 0 1
P, 8 =d 2 1
P, 0 2 =1l =1l
57 I =g 1 1

Note in (T8’) that again the pivot row, this time the cut,
has a positive entry in the stipulations column. This
implies a new and improved solution will occur in (T9).

!
Po s Ps S7 (T9")
A L =& M—1 4
P, 4 3 2 =&
S1 2 —4 2 1
* Ps 1 2 =1l =1
P, 2 0 =1 =1l
124 1 =l 0 1
P, 3 =8 3 1
S6 1 =8 1 1
<sg 0 1 =1l = 1l
Py S8 Ps S7 (TIO)
VA 1 3 M—4 1
P3 4 =5 S =%
S1 2 4 =2, =8
Ps 1 =2 1 1
P, 2 0 =1l =1l
P, 1 1 =1l 0
Py 3 5 =% —4
S6 1 3 =% =

We note that the optimal solution is first attained
in (T9’) but that the transition to (T10) is required to
prove that fact.

From this example we observe that the direct
algorithm achieves its objective with greater dispatch
than does the primal algorithm. This fact would
suggest the advantage of combining the two procedures
to achieve the efficiency (in certain circumstances)
of the direct algorithm combined with the guaranteed
finiteness of the primal algorithm.
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Part II. Description of the Algorithm
2.1. Introduction

Our goal in part I is to provide a comprehensive and
explicit statement of the primal algorithm. The de-
tails of the procedure are presented in sections 2.3
through 2.8. Section 2.9 contains a flow-chart sum-
mary of the algorithm. Some notational conventions
are explained in section 2.2.

2.2. Notational Conventions and Assumptions

The assumptions and notational conventions listed
below will be employed here and in part Il

1. We assumel a given, bounded, and solvable
integer programming problem which, at some stage
can be written in matrix terms as

maximize
C-Xy (2.1)
subject to

[X[f+AX\:(I‘Z()

Xg, Xy = 0 and integral.

All the constants in (2.1) are assumed to be integers.
[ is an m by m identity matrix. A4 is an m by n—m
matrix. G is an m by 1 vector and C is a l by n—m
vector. Xp is an m by 1 vector of basic variables,
and Xy is an n—m by 1 vector of nonbasic variables.

The system (2.1) may or may not be the original or
given form of the constraints. In any event let vy,
represent the criterion coeflicient associated in the
original statement of the problem, with .a typical
variable x,, which may be a component of either X
or Xy in (2.1). We note that the components of C
correspond (one-to-one) to the components of Xy.
The typical component c¢; of C is related to the original
criterion coefficient by

Bg = yJ—Ey;-(li_j» (2.2)

in which the summation index i ranges over the set
of all rows of 4 in (2.1), and vy; is the original criterion
coefficient of the basic variable associated with the
column of I which has a 1 in row 1.

The systems which evolve from (2.1) as a result of
our attempt to solve (2.1) will contain new (slack)
variables introduced into the system as part of new
equations. To designate a scalar variable from (2.1),

IThe theory which permits the assumption of boundedness to be made generally for
linear programming problems is given by Charnes and Cooper [3. pp. 187-191].  Compara-
tively minor modifications are required to apply this theory to the primal integer progra
ming situation.  The assumption of solvability is also based on linear programming
precedents. If an initial feasible basis is not available artificial variables may be ad-
joined to provide an initial basis. A “‘Phase —I" problem is then solved with the objecti
of securing a basic solution in which the sum of the artificial variables is minimized. If
the optimal sum of artificials is zero feasibility is assured: otherwise there is no feasible

solution.

or from a successor system to (2.1) we shall frequently
use the symbol u; when it is desirable to avoid distin-
guishing the variable either as a scalar component of
Xp or Xy in (2.1) or as a (slack) variable generated at
some later stage.

The system (2.1) contains no slack variables created
as the result of adjoining Gomory cuts to the system.
Accordingly we may regard (2.1) as a representation
of the original system of equations. We shall see
subsequently that (2.1) may also serve as the rep-
resentation of a tableau that follows a transition?
cycle. For a more general representation of any
tableau we employ the following notation

IR - Ug+A® . [ y=GHk 2.1a)
where %) is a m'®) by m®) identity matrix; 4 is a
m®) by n® —m®) matrix; G*) is a m¥) by 1 vector,
and Up and Uy are variable vectors of appropriate
dimensions. The interpretations made of (2.1a) differ
from (2.1) in several respects. The variable designa-
tion U, instead of X means that the components, uj,
of U in (2.1a) may represent either structural variables
of the given problem (x variables such as appear in
(2.1)) or slack variables of Gomory cuts (s variables)
which have been adjoined to the system. The tableau
designator k& appears as a superscript in (2.1a). In
the following elaborations of (2.1a) we shall drop this
superscript in the interest of less cluttered notation
and with the understanding that the suppression of
the superscripts does not suggest a general absence
of change in the constants of the system (2.1a) as a
function of the cycle or tableau index £.

We shall let (2.1a) represent either the original given
tableau or any subsequent tableau which is generated
in the course of solving the problem. We rely on the
boundedness of the given problem, and the fact that
the procedures of the primal algorithm do nothing
to enlarge the original solution set, as the foundation

for a system of subsidiary constraints to (2.1a). These
constraints are
[-Up <Gy,
[-Uy <Gy,
or
[-Hg+1-Upg=Grp>0 (2.1b)
I-Hy+1-Uy=Gy >0 (2.1¢)

where the vectors Hp, and G5 have the same dimen-
sions as Up, while Hy and G.y have the same dimen-
sions as Uy. The identity matrices have appropriate
dimensions. Grp and Gpy are vectors of positive
integer constants. Hp and Hy are vectors of non-
negative variables. The vectors Giz and Gpy are
limits respectively on the values of Up and Uy. The

2 Transition cycles will be defined below: essentially they are cycles in which g,/a,, =1
and ¢, > 0.
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typical component, hq, of either Hy or Hp is simply
a slack variable representing the amount by which
the current value of uq falls short of its limiting value
8Ld-

The values of the components of Gz and Gry are
specified so as to insure that constraints (2.1b) and
(2.1c) are redundant in this sense; every feasible
solution to (2.1a) is also feasible for (2.1b) and (2.1c).
We may also express (2.1b) in terms of Uy by substitu-
tion from (2.1a). The result is

I-Hp—A-Uy=G—G. (2.1d)

Now we may combine (2.1a) (2.1¢) and (2.1d) in
the following system

1 A | U &
il —A — (2.1e)
1 1 HB GLB —G |
H’V GL;’\' J
Uy

Ug, Hg, Hy, Uy = 0 and integral.

Subsequently it will be necessary to base definitions
and procedures on elements of the system (2.1e)
which are not explicitly present in (2.1a). This does
not imply a computational requirement for continually
keeping account of the full system (2.le), since
(2.1e) can always be constructed at any stage from
(2.1a) and the (fixed) vectors Gz and Gpy.

2. Rows of the system will usually be designated
by the subscript i, and columns usually by the sub-
scriptj. Tableaus will be designed by £ and ¢.

3. The incoming variable is identified by the index
J; thus u, signifies the incoming variable.

4. The cycle of the algorithm which transforms
tableau k to tableau £+1 will be labeled cycle k+1.
The incoming variable for cycle £+1 is wx) since
uy is determined from the data of tableau k.

5. The symbol v will be used to index source row
for the Gomory cut. The source row for cycle k+1
will be designated v(k).

6. The natural pivot row, determined after u, is
selected and befcre the cut is adjoined, is identified
by the index I. The actual pivot or cut row is identi-
fied by the index p.

7. Data from, or derived from, the column J(k) in
tableau k are usually identified by the subscript J.
Thus ) and a’) are not in the same column while
af¥) and af*),, are in the same column of different
tableaus.

8. If a vector A is lexicographically greater than a
vector B we shall symbolize this relation by 4 > | B.

9. The symbol ;[y] means the integer part of vy,

i.e.. the largest integer <y. For example, ;[11/2]
=5; ;[—5/2]=—3; 1[1/3]=0.

2.3. General and Preliminary Cycle Description

This algorithm, in common with other linear pro-
gramming procedures —e.g., the simplex method —
generates a sequence of tableaus. Each such tableau
may be represented as a system of equations such as
(2.1).> A cycle of the algorithm, or a complete itera-
tion is defined here to include the decisions and al-
gebraic manipulations required to accomplish the
transition from any given tableau to the subsequent
tableau.

A cycle of the primal algorithm includes the deci-
sions and procedures that constitute a cycle of the
simplex algorithm: a pivot row and a pivot column are
selected and the pivot element thereby determined
is used to execute the usual simplex change of basic
procedure. Additionally the typical cycle of the
primal algorithm includes adjoining a Gomory cut to
the system of equations or tableau before the simplex
change of basis procedure is executed.

The primal algorithm we shall describe here differs
from the simplex algorithm in this fundamental re-
spect: to execute a cycle, the simplex algorithm re-
quires no more information than is contained in the
current tableau, while, as will presently become
apparent, the primal algorithm requires in addition
some information from the history of the computations
that led to the current tableau.

From the description already given we may conclude
that a cycle of the algorithm must include the follow-
ing decisions and procedures:

1. Selection of the income variable;

2. selection of the row (equation) in the tableau
which will serve as the source, or source row, for the
Gomory cut;

3. selection of the particular Gomory cut to be de-
rived from that source row;

4. adjoining the cut to the tableau;

5. selection of the outgoing variable (or pivot row);

6. execution of a change of basis in accordance
with the usual simplex procedure.

Several of the above steps are virtually automatic
and require no special description here. If steps 1
through 4 have been completed, then steps 5 and 6
are completely specified by the usual simplex pro-
cedures applied to the tableau with the cut adjoined.
If steps 1, 2, and 3 have been completed, then step 4
is also essentially mechanical.

All aspects of the algorithm will subsequently be
elaborated. For the moment it will simplify matters
if we confine our attention to some aspects of and
constraints on the choices made in steps 1, 2, and 3,
above.

Now we shall state two characteristics of the algo-
rithm which contribute to the following effect: step 3
will be completely determined by the decisions made
in steps 1 and 2; and the range of choice available in

3This is sometimes referred to as the Beale form of the tableau. See Charnes and
Cooper [3, pp. 198ff] for a detailed discussion covering the interpretative significance of

this formulation.
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step 2 will be restricted. These two characteristics
are

(1) the selection of the Gomory cut will be made in
such a way that after the cut has been adjoined to
the system, the cut will be selected as the natural
pivot row in the new tableau, and

(ii) the pivot coeflicient (i.e., the coefficient in the
tableau which is common to the pivot row and the
column of the incoming variable) will always have
the value 1.

First we shall discuss the way these characteristics
contribute to making step 3 automatic. We shall
suppose that an incoming variable u; and a source
row v have been selected. Then the set of Gomory
cuts which can be derived from row v is given in
(2.3) below as a function of the positive parameter
N

s+ dlav, j/Nu;+ [1/Mus = ilgo/A] (2.3)

J

In (2.3) we have assumed for notational convenience
that the basic variable u, is associated with row wv.
Thus we know from (2.1) that the coefhicient of w,
in row v is unity. In terms of (2.3). the choice required
by step 3 is the assignment of a specific value for A.
If steps 1 and 2 have been made in such a way as to
satisfy (i), we must have

flae, jIN=1 (2.4)
to satisfy (ii).
To satisfy (2.4) it is necessary® that
@y, 5 = \ = v, J/2 (2.5)

We shall resolve the problem of determining A\ within
the range (2.5) by stipulating

(2.6)

A= Ay, J.

We shall find that the stipulation (2.6) has the useful
effect of simplifying the selection of the source row so
as to satisfy (z), given a prior selection of the incoming
variable.

To see this, we may assume that the incoming vari-
able u; has been selected. Also we assume that from
the data of (2.1)—specifically from the column G and
the column of A corresponding to u; (in which g; and
ai, j respectively represent the components of a typical
row i)—we have calculated

0;= min [gi/ai, J],
1el’

4#This formulation is given by Gomory in [11]. ) .

* Since we require that A > 0, (2.5) implies a,,; > 0. Since by assumption we are dealing
with a bounded problem, for any selection u,, there must be at least one row v for which
ayy > 0.

where iel’ if and only if a;, ;> 0. Note that the set
of rows I' specifically cannot include the Gomory
cut to be written as part of the cycle being discussed.
In other words, we presume that 6; = 0, is determined
before the cut is written. Then to satisfy (i), (pre-
suming that (ii) can be satisfied as in (2.6)), it is neces-
sary and sufficient that

0= /gas, ] <0, (2.7)
where v is the source row. We shall satisfy (i) if we
select as source row any row v satisfying (2.7). It
should be noted that at least one such row is always
available: the natural pivot row—i.e., the row [ for
which g//a;,,=6, which gives [[g/a; ;] <6, if 6, is
fractional and /[g//a;,;]= 0, otherwise.

Thus if A is determined by (2.6) and the source row
is selected so as to satisfy (2.7), (i) and (ii) will always
be satisfied.

For the sake of convenience we have foregone some
of the freedom provided by (2.5) in the selection of A.
It may be noted parenthetically that there appears to
be no straightforward line of reasoning—such as that
applied in the Gomory all integer algorithm ¢ —whereby
selecting A (either as large or) as small as possible is
desirable.

It should be noted that (ii) guarantees the all integer
character of the algorithm if the first tableau (the origi-
nal statement of the problem) contains only integers.

Given a selection of the incoming variable u; and
of the source row v, we shall define

0; = lgv/av, Jl.
We may also note that

0,=0,=6,]

follows from (2.6), (2.7) and the definitions of /[y], ),
and 0,.

For the sake of definiteness we have assumed in
the preceding discussion that we are able to select an
incoming variable and a source row. Rules covering
these decisions—1 and 2 on our list on p. 226 —remain
to be determined, although we have by (2.7) narrowed
the range within which the selection of the source
row must be made. And we have made a commit-
ment to a sequence of decision making in which the
incoming variable is determined first and the subse-
quent selection of the source row is influenced —via
(2.7)—by the prior selection of the incoming variable.
The details of the selection of the incoming variable
u; and of the source row, v, are given in sections 2.6
and 2.8, respectively. In the next section, 2.4, we
undertake a brief discussion of some aspects of the
algorithm that depend on the characteristics we have
already specified. In section 2.5 we discuss two prob-
lems that are implicit in the procedures we have speci-
fied in this section.

6 See Gomory, [11, pp. 197-198].
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2.4. Cycle Classification: Transition Cycles and
Stationary Cycles

In the proof of finiteness in part III and in the sub-
sequent description of the primal algorithm in part II,
much depends on an organization of the operation of
the algorithm in terms of cycle categories. In this
section we shall introduce the major distinctions to be
used as a basis for classifying cycles of the algorithm.

We may begin by noting two possibilities: the value
of

0, =llglav, ] (2.8)
where v is the index of the source row, may be zero
or a positive integer. The expression (2.8) assigns
the value of s, the slack variable in the Gomory cut
(2.3). 6; also is the value assumed by w,, the incoming
variable, upon entering the basis.

Consider the case in which (2.8) is equal to zero.
Adjoining the Gomory cut (2.3) to the tableau and
installing s in the basis results in a degenerate solu-
tion. We permit this degeneracy. In case other
rows are “‘tied”” with the cut row as the natural pivot
row, i.e., if 8)=6,, then the cut row is arbitrarily estab-
lished as the pivot row. In part III we prove that this
procedure does not lead to endless cycling. As we
noted in part I, the subsequent pivot on the cut row
results in a “new” basic solution in which all variables
retain the values they had in the previous basic
solution. Cycles in which the incoming variable
enters the basis at a zero level—or equivalently in
which 6;=0—will be called stationary cycles.

Cycles in which the incoming variable enters the
basis at some positive integral level—or in which 6,
= 1—will be classified transition cycles. Transition
cycles are so called because as the result of such
cycles the solution actually moves to a new feasible
lattice point. We shall further restrict the definition
of transition cycles to cycles which yield an improve-

ment in the criterion value of the solution.” Thus any
variable u; for which
¢;.>0 and 6;=min [gi/a;, ;]| = 1 (2.9)

ai, ;=0

will yield a transition cycle if uyj=u;. We shall use
the symbol T to designate the set of all nonbasic vari-
ables which would, if designated the incoming variable,
lead to a transition cycle. Thus 7T is set of all nonbasic
u;j for which (2.9) is satisfied.

Corresponding to the interpretation of transition
cycles as moves from one lattice point to another lattice
point, a stationary cycle may be interpreted as moving
the sclution an infinitesimal distance along the edge
that connects the tableau basic solution with the trial
solution—i.e., the basic solution that would result
from pivoting on row I and column J without adjoin-

"The rules for selection of the incoming variable given in section 2.6 below preclude a
selection u, such that ¢;=0 and 6, = 1.

ing a Gomory cut. The distinction between sta-
tionary and transition cycles will be significant in the
remaining description of the mechanics of the algo-
rithm and in the-proof that the algorithm is finite.

Since each Gomory cut adjoined to the system brings
an associated s variable into the basis, and since each
such cut row immediately becomes the pivot row, the
set of nonbasic variables will typically contain some
of these s variables. We shall now define an s variable
more precisely as any slack variable from a Gomory
cut which has been generated since the most recent
transition cycle. The other variables —which were
part of the system that resulted from the most recent
transition cycle —are all defined as x variables.

We shall classify every stationary cycle either as an
x cycle or as an s cycle. If the incoming variable is
an s variable, the cycle is defined as an s cycle. If the
incoming variable is an x variable, the cycle is defined
as an x cycle. Now we have three fundamental types
of cycles: transition cycles, x cycles, and s cycles.

As implied by the definition of transition cycles
and the discussion in part I of the primal algorithm
and the direct algorithm of Ben-Israel and Charnes,
the essential difficulty of constructing a finite primal
algorithm resides in showing, if one starts with the
initial tableau (or a tableau that results from a tran-
sition cycle), that a finite member of stationary cycles
will be sufficient to achieve either (a) another transi-
tion cycle or (b) a tableau in which primal optimality
conditions are satisfied. Thus, our description of
the primal algorithm will concentrate on the details
of stationary cycles, and will be limited to the follow-
ing brief discussion of the details of executing a tran-
sition cycle.

The pivot operation in a transition cycle may be
accomplished by selecting, as u;, an arbitrary element
of T. Any row, v, for which 1 < /[g,/a,. ;] < 6, can be
used as the source row for a Gomory cut and the cut
can then be employed as the pivot row. If a, ;=1,
then it is permissible to pivot on the row v without
adjoining a cut. When a, ;=1 it is also possible to
adopt the special procedure described below in section

Following a transition cycle a number of house-
keeping details need specification—e.g., what is to be
done with nonbasic and basic s variables? etc. Many
procedures are possible. We shall be content here
to outline a simple procedure taken from Ben-Israel
and Charnes [1], as an example which will prevent
troublesome growth in the number of equations and
variables.

Let (2.1) represent the original tableau. We note
that each transition cycle specifies the coordinates
of a new and better feasible lattice point than was
previously available; and the solution that results
from a transition cycle can be (uniquely) expressed

as a nonnegative integer combination, A°=2¢1Ai,
7

of the columns of 4 in (2.1). Following the procedure
of Ben-Israel and Charnes, the column 4° and an as-
sociated variable x° may be adjoined to 4 and Xy in
(2.1) and a pivot operation may then be executed
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(according to the rules of the rudimentary primal
algorithm) to bring x° into the basis at a positive level.

This procedure will (i) generate a feasible, all
integer tableau in which the new and improved solu-
tion is basic, (ii) add one new row and one new column
to the system, and (iii) require that a record be kept
of the vector ¢ which relates the new variable x° to
the variables in Xy. The tableau that results from
this procedure is either optimal or serves as the start-
ing point for a new sequence of stationary cycles.
We emphasize that each new solution resulting
from a transition cycle is expressed by the procedure
we have described in terms of the original A matrix.
This permits discarding all information and variables
related to previous transition cycles.

2.5. Special Procedures

In this section we describe two supplementary pro-
cedures designed to overcome difficulties which would
result trom unmodified application of the procedures
given in section 2.3.

We begin with a description of a special procedure
to be used when

av,s=1. (2.7)

Then (2.6) and (2.3) imply that the basic variable u,
has a unit coefficient in the cut equation. Adjoining
the cut to the tableau would create a second nonzero
element in the (otherwise “basic”) column correspond-
ing to u,. To avoid this difficulty, we introduce (and
use) the following “weakened” cut:

s+ lav /N - w;= iigi/A]. (2.3w)

J

When A >1, (2.3w) is identical to (2.3). When A
=1, (2.3w) is weaker than (2.3) in this sense: every
solution which is feasible with respect to (2.3) is also
feasible with respect to (2.3w). To demonstrate this
it is sufficient to rewrite (2.3) as

s= &N =3 dav i\ 3= (1] e,

J

and note that since u, = 0 in any feasible solution, if
the coefhicient of u, is arbitrarily set at zero (as in the
cut (2.3w)), then the value of s cannot decrease. Thus
any set of specific values for the u variables which
determine a nonnegative s in (2.3) will also determine
a nonnegative s in (2.3w). We may conclude, then,
that (2.3w) carries the same guarantee against inter-
diction of an integer solution as does the Gomory cut
(2.3).

When the cut (2.3w) is adjoined with A\=a,, ;=1,
the source row and the cut row are identical except
for the basis entries: there is a 1 in the cut row and
the s column and a 1 in the source row and u, column.
Then, as the result of pivoting with the cut serving as

the pivot row, the source row, v, is changed to the
following form

uy—s=0

where u, remains a basic variable and s is a (newly)
nonbasic variable. This permits us to interpret s as a
nonbasic proxy for the zero-level basic variable u,.
The row v will not be changed by subsequent pivots
until and unless s becomes the incoming variable at
some later stage.

One of the implications of this procedure that will
be of interest later is this: since the cut row always
serves as the pivot row, no x variable will ever be re-
moved from the basis by a stationary cycle. We may
note that this procedure is a departure from the ri-i-
mentary primal algorithm described in part I: in the
rudimentary algorithm if the source row has a 1 in the
pivot column, then the source row is used as the pivot
row and no cut is adjoined.

The second supplementary procedure is applied
whenever an s cycle occurs. An s cycle has the fol-
lowing effects: the s variable created during the cycle
is driven out of the basis; the incoming s variable re-
enters the basis. If there were no means of eliminat-
ing s variables from the system a large number of s
cycles would lead to a large number of new rows and
variables, since each cycle creates a new row and
variable.

This difficulty is avoided by the following procedure:
after each s cycle the incoming variable (which has
become basic with a 1 in the pivot row) is dropped
from the system, along with the rest of the pivot (cut)
row. The justification for this procedure is given in
appendix A.

As a result of the procedures described in this sec-
tion we may conclude that the algorithm will exhibit
the following properties: (i) each x cycle will increase
both the number of rows and the number of columns
(or variables) by one, and (ii) each s cycle will leave
the number of rows and the number of columns un-
changed. Thus the number of nonbasic s variables
will always equal the number of x variables which have
entered the basis at a zero level as the result of x
cycles.

2.6. Selection of the Incoming Variable

A formal statement of the rules for selection of the
incoming variable is given at the end of this section.
As will be observed from those rules. a transition cycle
is executed whenever possible. For transition cycles
the incoming variable is selected from the set 7. If
the set T is empty, a stationary cycle must occur and
the selection of the incoming variable must lead to
either an x cycle or an s cycle. For stationary cycles,
the incoming variable is selected from a set E|+),
which we shall now proceed to define. It will be con-
venient to use the following definitions as a basis for
discussion:

C+={Uj|Cj>0} (2.10)
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X +={uj|lujeC+ and u; is an x variable} (2.11)
x0= A single (nonbasic) variable, arbitrarily
selected from X +. (2.12)

Every sequence of stationary cycles follows a tran-
sition cycle, or follows the initial tableau of the prob-
lem. We shall establish the tableau that has resulted
from the most recent transition cycle (or the initial
tableau of the problem) as the natural starting point,
or set of initial conditions, for any sequence of sta-
tionary cycles. Accordingly, we let ¢t signify the
tableau index of (the initial tableau or) the tableau
that has resulted from the most recent transition cycle.
Then the index of a typical succeeding stationary cycle
is given by t+k, with k=1. The s variable created
during cycle t+k (which generates the tableau in-
dexed by ¢+ k) is designated by s;i.

The set E[+), will be defined as a subset of a set
Eo. The composition of the set E, will vary from tab-
leau to tableau: thus the symbol E{** is used to denote
a set, associated with tableau ¢+ %, from which the
incoming variable for cycle t+k+1 is selected.
We shall first develop a formal definition for E,.
The definition of E, is recursive: i.e., E{**) is defined
in terms of EY{**~V. The initial set is defined by:

EP = {xo} (2.13)

Although, as indicated, E{*® is essentially a func-
tion of E{+*~V  we shall write the recursion formula
in terms of another set, S“*%  which is the set of all
nonbasic s variables in tableau ¢+ k.

SR = (B0 U {544 — {waerr-n}  (2.14)
EfH0 =800 SHD N C+# @, and (2,15
= S+k) U {xo}, otherwise. (2.16)

From (2.13) and (2.14) we can generate
SEV=(EY U {ser1}) — {wsn}
=({xo} U {sex1h)—{x0}

= {51}

In the above we have assumed

W) = {xo},

which is based on the hypothesis that cycle ¢+1 is
a stationary cycle and therefore the incoming vari-
able, uyy, for cycle t+1 must be in E{. Generally
after tableau ¢+£% is generated by cycle t+k, we
first revise S0 by (2.14). This keeps S¢+% coinci-
dent with the set of nonbasic s variables by (i) adding
to Sk the s variable newly created by the preceding

cycle and (ii) deleting the variable which entered the
basis during the previous cycle. Then, by (2.15),
E{+® is made equivalent to S+% unless S5 fails to
contain a variable in C+. In the latter case xo—
selected by (2.12)—is included in E§{*%. In the
normal 8 operation of the algorithm, if xy is added to
Stk to form EY*®), then xo, will be chosen as the in-
coming variable for cycle t+k-+1 and will therefore
not be included in S“+*+1) as defined by (2.14). Thus
normally if Ef+0=Sk+0 the next cycle, t+k-+1, is an
s cycle, and if Ef*® 7 Sk+0 the next cycle is on x
cycle with w0 = xo.

Before defining E[+), as a subset of E, we must

first define a special row of the tableau. Let the
tableau be given by
U+ A®PUy=G®,
or in expanded form
I A4) Us Gk
Hp | _
I — A&) Hy | GLB_G(k)
I I Uv] LGy (2.17)

Let xo be the x variable that has most recently been
selected according to (2.12) and introducing into Eq
according to (2.16). The special row referred to above
is the limit row associated with xo. If xy has not en-
tered the basis then this limit row has the form

h0+1 “X0= &Lo

where hy is basic and x, is nonbasic. If x, has
entered the basis during some preceeding cycle, then
this limit row is

ho+ Y (—ao, ) =gLo— &1 =8uLo
7

where A is basic and the summation is over the index
set of nonbasic variables.

— AW
If we define  A®) =
GLB = G(k)
G(k) =
L
Glﬂ\'
H= (H[g, H\)
® Variations of the algorithm are evidently possible in which x, might not immediately
enter the basis after being included in Eo. This raises no essential difficulty with the pro-
cedure or set definitions given here and only contradicts—for a limited sequence of tab-
leaus —our interpretation of S“*¥) as the set of all nonbasic s variables. By placing restric-

tions on the assignment of rows to the sequence of indices in (2.22) below we can insure that
xo will always enter the basis inmediately. However, we need not and do not make this
assumption; see also appendix B.
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we may rewrite (2.17) as

I AWK Uy G
I A® | H|=|GP (2.18)
LUy
where U, H, Uy are nonnegative and integral. Now

we may give as a general expression for the limit row 0,

ho+ 2 &9, j= &Lo- (2.19)
J

The set E[+), may be defined in terms of this row, as
follows:

E[+)o={uj|ujeE, and a,, ;= 0}. (2.20)
This set contains uy for any stationary cycle.
We shall also define, for the later reference,

E(+)o= {uj|ujeEs and a,, ; > 0}. (2.21)

Selection of the incoming variable within E[+), is
accomplished by reference to a collection of vectors
R;. One such vector is associated with each wjeE[+),.
To define R; we require notational conventions to
distinguish those rows of the tableau associated with
x variables that have entered the basis since the most
recent transition cycle and before the entry of the
variable x¢ discussed in the previous paragraph. We
shall let the sequence of indices

1,2,. . .,i,. . ., r (2.22)
symbolize these rows. The assignment of particular
rows to particular indices is arbitrary. The assign-
ment of rows to indices may be revised after each x
cycle and after each s cycle which decreases? ¢,/ay, ;.
The vector R; associated with the variable u; is de-

fined by
@,
. an’j).

The incoming variable is selected by choosing the
ujeE[+)o associated with the lexicographically largest
R;.

]We may now summarize the procedure for selection
of the incoming variable with the following collection
of rules.

Rule 1(J) The incoming variable u, will always
have ¢, = 0.

Cj ap,j az,j
s T s s .
Ag,j Ao,j Qo,j

R; (2823)

91.e., for each cycle k for which

- A k-1)
i )
./U\l -

ai’  al o

Rule 2(J) If possible, the incoming variable should
lead to a transition cycle (which will improve the so-
lution): i.e., whenever possible, we select u; such that
0, =1 and ¢; > 0. An arbitrary choice is permissible
among several variables, in the set T, which satisfy
these criteria.

Rule 3()J) If no variable satisfies the criteria in
Rule 2(/) and if €+ is not empty, then u; is selected
from E[+)o. The particular variable selecied from
Eo as w; is associated with the lexicographically
largest vector R; over E[+).

Rule 3(J) and the definition of R; generate a prob-
lem of interpretation, namely: how is the lexico-
graphic priority of a vector R, determined when
a),j=07 We require the following rule to resolve
this difficulty:

Rule 3a(J) To determine the lexicographic order of
two vectors R; and R when (all) the components of
one or both of the vectors have zero denominators,
we employ the following conventions:

Case I: ay, j >0 and a,, ;=0.

Ia. If the first component of R; with a nonzero
numerator has a positive numerator, then:

Ry <.R;.

Ib. If the first component of R; with the nonzero
numerator has a negative numerator, then:

RJ' =1 Rjr.

Case II: ag, =0, ap,;=0. Compare R; to Rj to
find the first component in which the numerators are
unequal. Let a;, j and a;, j symbolize this first unequal
pair of numerators. Then, ai ;> a; ; implies:
Rj > ij.

The rules for the selection of the incoming variable
raise two natural questions:

1. What happens if C+#(, so that the current
basis is not optimal, and 7=, so that a transition
cycle cannot occur, and C+ N E[+)y=0?

2. Are we assured that rule 3(J) as supplemented
by Rule 3a(J) will always yield a unique selection of
the incoming variable? The answer to (1) is that the
indicated situation cannot occur. This is demon-
strated ' in part III, after the necessary foundation
(theorem 1) has been established. The answer to
(2) is that these rules do invariably yield a unique
choice. This is proved in appendix B.

2.7. Some Implications and Explanation of the Rules
for Selecting the Incoming Variable

This section covers two topics. First there is a list-
ing of some implications of the rules for selection at
the incoming variable. Then there follows a short
discussion of some of the rationale for these rules.

The following propositions can be proved on the
basis of the rules for the selection of the incoming

10 See below, p. 241 proposition (3.18) and the proof of corollary I1A.
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variable and appropriate theorems from part III.
They are stated here in the hope that they may ex-
pedite insight into some characteristics of the
algorithm.

1. For all UjEE(), Cj = 0:>a)‘j =(0),

2. c;>0<=—>ag,>0.

3. c;=0<=>a, ;=0.

4. a, j=0==> the first component in R, with a
non-zero numerator has a positive numerator.

5. Only a finite number of successive cycles can
occur with ag, ;=0; therefore, only a finite number of
cycles can elapse while xeE).

6. The vector R, is lexicographically positive.

7. RYiE)) undergoes a monotonic lexicographic
decrease as k increases.

While the source of much of the rationale for the
incoming variable selection in stationary cycles is
theorem I of part III, some aspects of the motivation
for this procedure may be usefully discussed here.
Our main goal in this duscussion is to develop the
essentials of an interpretive connection between the
“original” tableau (by which term we include any
tableau that results from a transition cycle) and the
data of the tableaus that are generated in the course
of a succeeding sequence of stationary cycles. To
support this goal we require the following notational
development.

We shall suppose that a transition cycle has occurred
and that the constraints of the resulting tableau may
be represented by

[-Xg+4-Xy=0, (2.1)

in which 7 is an m by m identity matrix, 4 is an m by
n—m matrix and G is an m by 1 vector. All the com-
ponents of A and G are assumed to be integers and the
components of G are nonnegative. The variable col-
umn vectors X; and Xy have appropriate dimensions;
the basic solution is Xzp=G, Xy=0. By definition
(2.1) contains no s variables. Let the criterion func-
tion (to be maximized) which is associated with the
above constraints be

VA C S Xy
where a typical (integer) component of C is defined by

C.i:‘)’j_E ai, j’Yi, (2.2)

and where y; and the v; are criterion coefficients given
in the original statement of the problem. The sum-
mation is over all rows i. For convenience we have
assumed that row i of the tableau is associated with
the basic variable x;. We assume that at least one
cj 1s positive.

Now we assume that a sequence of £ successive sta-
tionary cycles has occurred. As a result the system

(2.1) will have evolved to this form:

maximize 5
X
C2), G (2.24)
S
subject to
s X‘w-‘ G
7 o + A% A® | = =G®.
Xy | S G (2.24)

The terms in (2.24) have this interpretation:

Xp: a subvector that contains the variables that
were basic in (2.1) after the latest transition
cycle and remain basic after cycle £,
subvector that contains those variables of
Xy in (2.1) that were nonbasic after the latest
transition cycle and are basic after cycle £,
subvector that contains the s variables that
have been created by the cycles after the
latest transition cycle and are basic after
cycle k,

subvector that contains the variables of Xy
in (2.1) that remain nonbasic after cycle £,
submatrix that consists of the columns of
A® that correspond to components of Xy
submatrix that consists of columns A®) that
correspond to components of S,

subvector that consists of the components of
C® that correspond to components of Xy,
subvector that consists of the components of
C™ that correspond to components of S,
subvector of G® which corresponds to X,
subvector of G*) which corresponds to Xy,

Xy a

Gk
C¥): a

GP: a
G¥): a

The dimensions of terms in (2.23) are as follows: Xp
and G'%) are m by 1; G\), Xy and S are k' by 1;

N2

Xy is (n—m—k") by 1;
2A®) is (m+£k") by (n—m—k');
A% is (m—+k") by (k'); and

k" <k is the number of x cycles in the sequence of k
stationary cycles.

All the constants in (2.24) are integers and G* = 0.
The basic solution is Xz =G, Xy = G Xy» =0, S=0.

Since the cycles which have converted the system
(2.1), (2.2) to the system (2.24) are stationary cycles,
G in (2.1) is equal to G¥) in (2.24), and all the compo-
nents of G& are zeros. These conclusions follow
from the fact that a stationary cycle always has a zero
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in the constant column and pivot row, and only adds
zeros to each component of the constant column.

In summary form our rationale for certain aspects
of the incoming variable selection procedure is based
on these considerations:

1. Each column of (4% in (2.24) is equivalent (in a
sense to be discussed presently) to an integer combina-

tion, Z(i)lAl, of the columns A4 in (2.1). Thus each
7

component s; of S represents a potential solution to
the auxiliary problem!' of Ben-Israel and Charnes.

This establishes a linkage between the problem in
“original” form and any tableau generated in the course
of an immediately following sequence of uninterrupted
stationary cycles. It will be recalled that a solution
to the auxiliary problem must have (i) all ¢, nonnega-

tive and integer, (ii) E diA; < G and (iii) 2 b =1,
{ 7
A “‘potential solution™, E @A), which is related to a s

7
variable s; of (2.24) need not satisfy all three of these
conditions. If all three conditions are satisfied
then s;eT. Typically the potential solution to the
auxiliary problem associated with the incoming vari-
able s; of an s cycle will satisfy (iii), will not satisfy
(i1), and may or may not satisfy (i).

2. Each stationary cycle, k, generates a new sub-
matrix A% and hence a new collection of potential
solutions to the auxiliary problem.

3. The vectors Xy and Xy in (2.24) constitute a par-
tition of the vector Xy in (2.1). There exists, then, a
corresponding partition of ithe columns of A4 in (2.1).
The integer combination of columns of 4 in (2.1) that
corresponds to a particular s; in (2.24) only has non-
zero weights for the columns 4; of 4 that correspond
to variables x; of Xy which are also in Xy.. During a
sequence of s cycles the composition of the vector
Xy in (2.24) does not change. Thus a sequence of s
cycles (which includes cycle k) generates potential
solutions to the auxiliary problem in which nonzero
weights are only assigned to columns Aj in (2.1) cor-
responding to variables xj of Xy.

4. When, in some tableau k, the condition C + NS®
=0 occurs, the following conclusions are implied:
(i) an x cycle is a necessary condition for obtaining a
better solution, (ii) since an x cycle would expand and
redefine Xy, no solutions to the auxiliary problem
exist which assign nonzero weights only to those
columns of A4 that correspond to x variables in the
vector Xy as currently constituted.

5. Thus we generally interpret s cycles as generating
new integer combinations in which nonzero weights
are associated only with the variables in Xy.. By con-
trast an x cycle expands and redefines Xy and thereby
expands the scope of the solutions to the auxiliary
problem associated with the s cycles that follow.
Our definitions (2.16) and (2.17) which determine the
constitution of E, insure that an x cycle will only occur
if no possiblity remains for a solution to the auxiliary

11 See above, section 1.9.

problem which has zero weights for all 4; associated
a variable x in Xy.
The relation between a column (4% in (2.24) and an

integer combination 2 ¢4, over the columns of 4 in

7
(2.1) will now be developed.

Since the process that leads from (2.1) to (2.24) is one
of pivoting and adjoining Gomory cuts, every solution
to (2.24) must also be a solution to (2.1). Moreover
all solutions to (2.1) can be expressed in terms of values
for the “independent” variables Xy, and the corre-
sponding values for components x; of X are uniquely
determined by (2.1). Thus if the values of the vari-
ables in Xy are known for some solution to (2.24)
this is sufficient to determine a corresponding solution
to (2.1).

Now let jA(\’f‘" represent the part of a column of

A% which relates a typical s variable, s;, to the basic
variables of Xy. If a solution (not necessarily feasi-
ble) to (2.24) has s;=1 and all other nonbasic variables
in (2.24) equal to zero, the value of Xy in this solution is

Xy=0—;4%®-1. (2.25)
This determines a corresponding solution to (2.1),
which is not necessarily feasible. We may also

express (2.25) as a solution, z biA;, to the auxiliary
7

problem by defining
¢ =—a'f)

in which the index i corresponds the same component
of Xy that corresponds to the column A; of 4.

The preceding discussion has been aimed at show-
ing some of the rationale for the definitions (2.14),
(2.15) and (2.16). We shall make no such protracted
attempt to develop a rationale for selecting u; from
E[+)y or for the use of the lexicographic domination
test with the vector R.  We shall be content to note
that because of the restriction (2.15) on the composition
of Ey, it turns out that restricting the selection of u,
to E[+), is equivalent to requiring that ¢, = 0.

The role of the lexicographic test in terms of the
vector R is closely related to the development in
part I[II.  We can, however, at least offer the following
remark here.

The proofs of part III establish that

Ry > 1 Rygesn

where k and £+ 1 are s cycles. This can be shown to
imply that the potential solution to the auxiliary

problem, E ¢4, related to incoming variable, s,
1

for cycle k, cannot be identical to the solution E /A,
7

related to the incoming variable for cycle k+1, or
the solution related to any succeeding s cycle.

In the next section we give the procedure for
selecting the source row.
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2.8. Rules for the Selection of the Source Row

The rules for selection of the source row fall into
two categories; special and normal. The normal
rules are in essence the source row selection rules
given in the rudimentary primal algorithm in part L.
In the formal statement of the rules given below, rule
1(v) is the normal rule and rules 2(v), 3(v), and 4(v)
are special.

Particular circumstances are required to evoke the
special rules. The rules are designed to insure that
these special circumstances persist for at most a
finite subsequence of cycles. Thus the ‘“normal”
(i.e., nonspecial) circumstances must reoccur at
finite intervals. This fact is used as a basis for prov-
ing that the algorithm is finite. It will probably not
be transparent to many readers how the “normal”
circumstances contribute to a proof of finiteness or
how the special rules work to eradicate the circum-
stances that bring these rules into operation. Ac-
cordingly it may be most efficient to postpone a
serious attempt to appreciate the rationale for the
special rules until these rules are cited in the proofs
given in part III. It should also be recalled that
alternative special source row selection rules may be
employed.

The rules for source row selection are founded on
two definitions. The first of these is comparatively
simple: the definition of the set V' (J), the set of row
indices from which the source row, v, may be selected
when wu; is the incoming variable and the normal
source row solution rules are operative: Recalling

(2.7) we define!2

Vi) ={il|ilgilai,1<86,} (2.26)

The second concept to be defined is both more com-
plex and less obviously germane to the source row
selection decision. As we have indicated, and will
eventually prove, the vector R; undergoes a strict
lexicographic decrease from cycle to cycle during
a sequence of s cycles. Let the first component of
R, which decreases (as the result of a given cycle)
be called the change component. Let k be a tableau
generated in a sequence of s cycles and let i be any
index in the sequence (2.22)—i.e., i is the index of a
component’® of Ryk). Let k,;<k be the index of
the most recent cycle in which i was the change compo-
nent. We may now define the component i of R
to be out of bounds if the following are true:

(1) ap,y > 0,
(i)' ag,s > gro or a;.; > gL;,

2]n the interest of simplicity we may interpret ¥(J) as a subset of the rows of the tab-
leau. However, there is no logical barrier to letting i in (2.26) range over a set which
includes indices that correspond to every positive linear combination of the rows of the
tableau.

13 Strictly speaking, i indexes the numerator of a component of R,. Since the denomi-
nator is identical for all components, we may let the index of the numerator serve to indentify
the entire component.

14When the index i is the first index in R, (i.e., the index of the component c,/ao.; we
need not define a limit on the row of the numerator; if no limit has been defined on the ¢
row then the first component can be out of bounds only if ap.; > gro.

(iii) for each cycle k', where k,, < k' < k, the change
component has been a component identical to or after
iin Ry,

(iv) for every tableau £’, where k,,<k' <Kk,
(i) and (ii) have been true or ak) = ai(’kl') =%.

The rules for selection of the source row, v, follow:
Normal Source Row Selection:

Rule 1(v) Any row i€V (J) may be selected as the
source row if:

(i) a transition cycle is being executed, or
(i1) an x cycle is being executed, or

(i) an s cycle is being executed, and no component
of R, is out of bounds, and a,; > 0.

Special Source Row Selection:

Rule 2 (v) The limit row i, i.e., the row with-the
typical coefficient a;j, is the source row if:

(1) aps >0, and

(ii) i is the smallest! index i=1,2,...,r)
of R, which is out of bounds, and

(iii) a; /2,0 = gLilgLo

Rule 3 (v) The limit row 0, i.e., the row with the
typical coefficient ay, is the source row if:

(1) a0,/ > O, and

(ii) row i is the first component of R; which is out
of bounds, and

(iii) If a; /a0 < gui/gLo

Rule 4(v) The row i i.e., the row with the typical
coefficient a,  is the source row if:

(i) ap,=0, and

(ii) i is the smallest index of a component of R,
which has the form:

positive integer.
ZETO

It is easily verified that rules 2(v), 3(v), and 4(v)
always select a source row which satisfies (2.7), since
in all cases ([g/a,]=0.

As we have indicated the ‘“‘special” rules are de-
signed to insure convergence of the algorithm. The-
orems VI and VII of part III rely specifically on
properties of these rules. Rule 4(v) is designed to
guarantee that only a finite number of successive
cycles can have ap,=0. This is proved in corollary
ITA of part III. In all cases the desired result is
established on the basis of the properties of the source
row selection rules and theorem II of Part III. This
collection of rules is sufficient to guarantee finiteness,
but it is not unique'® in this respect. An analysis
of theorems VI and VII of part III will suggest alterna-
tive possibilities to the rules given here.

2.9. Summary Flow Chart

The primal algorithm is presented in summary flow
chart form in figure 2/1. While most of the ter-
minology of the flow chart is defined there, some terms
such as si4x, 81j, and gLo must be located in the ap-
propriate section of part II for a definition.

15 We have assumed here that no limit is placed on the ¢ row. If such a limit is available
!heﬁ the formulae of rule 2(v) and rule 3(v) may be extended to cover the first numerator
in Ry.

16 See [21].
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FIGURE 2/1.
References to Definitions and Discussion
1. The symbol # means that an arbitrary choice is permissible within the indicated set.
2. Most of the terms used but not defined in the flow chart are defined in section 2.2,
3. The routines for selection of uy are described and some of the terms in those routines are defined in section 2.6.
4. The routines for selection of the source row are described and some of the terms in those routines are defined in sec
tion 2.8.
5. The cycle execution procedures are described in sections 2.3, 2.4, and 2.5.




Part III. Proof of Finiteness

3.1. Introduction

Part III is devoted to proving that the algorithm
described in part II will locate an optimal integer
solution in a finite number of cycles. It will become
apparent quickly that the categories of cycles: transi-
tion cycles, stationary cycles, x cycles, s cycles have
a special relation to the problem of proving finiteness;
this is discussed in section 3.2.

It may be helpful to remark that the integer and
feasible solution which occupies the basis positions
may be (i) optimal for the linear programming problem
which contains the given integer programming prob-
lem; or (i) optimal for the integer but not the linear
programming problem; or (iii) optimal for neither the
linear nor the integer programming problem. The
proof we give here does mnot explicitly distinguish
between cases (ii) and (iii). We shall prove that a
finite number of cycles in which the basic solution
does not change is sufficient to achieve condition (i).
Hence if (iii) describes the current basic solution
a finite number of cycles must be sufficient to yield a
new basic solution.

In section 3.2 we discuss the general organization
of our finiteness proof.

3.2. A General Outline of the Proof

In proving that a finite number of cycles of the
algorithm is sufficient to yield an optimal solution to
the given problem we shall make repetitive use of the
following simple device. To show that a sequence of
cycles is finite we establish a two way classification of
cycles whereby every cycle is called either an A
cycle or a B cycle. Then we show that the total num-
ber of A cycles must be finite. This reduces the task
of proving finiteness to the simpler requirement of
proving that every subsequence of B cycles which
follows or preceeds an A cycle is finite. The
forthcoming proof uses this procedure twice, and in
that process three elemental cycle types are distin-
guished. These cycle types and the relations between
them are shown schematically in figure 3/1.

The definitions of the cycle types shown have already
been given.!

The diagram suggests the three major tasks which
we must accomplish to achieve the desired proof.
We must prove that:

(I) Only a finite number of transition cycles can
occur;

(2) only a finite number of x cycles can occur (follow-
ing the original tableau or any transition cycle); and

(3) every subsequence of s cycles following any x
cycle is finite.

! See part II, pp. 228 and 229.

All cycles

stationary cycles¥¥ transition cycles#®

s _cycles*¥% x cycles®
% A cycles
**% B cycles
FIGURE 3/1.

The rest of part III is devoted to proving these
three propositions. We are able to prove (1) and (2)
by a direct and simple arguments in sections 3.3.
and 3.4. The proof of (3), which is the task of the re-
maining sections of part III, is more difficult. In
section 3.5 we outline our approach to proving (3)
and there discuss the roles of the remaining sections
in terms of that outline.

3.3. Proof That the Total Number of Transition Cycles
Is Finite

A transition cycle always has ¢; >0 (which implies
c; =1 since ¢; must be an integer), and 6= 1; there-
fore each transition cycle results in at least a unit im-
provement in the criterion function value of the
solution. Since the given problem is assumed to be
bounded, a finite number of transition cycles must be
sufficient to increase the criterion value from its
level at the initial solution to the optimal criterion
value.

3.4. Proof That the Total Number of x Cycles Is
Finite

The original problem is assumed to have a finite
number, M’, of variables. In section 2.4 we showed
that after any transition cycle it is possible to start
with a system of equations which has at most M'+1
variables. In section 2.5 we described a procedure
that guarantees that each variable which is nonbasic
in the original tableau or immediately after a transition
cycle can enter the basis only once during the following
sequence of uninterrupted stationary cycles. Since
each x cycle brings one x variable into the basis, the
total number of x cycles (following any transition
cycle or the original tableau) cannot exceed M'+1.
Thus only a finite number of x cycles is possible.

3.5. s Cycles: Formulation, Goals, and a Guide to
Subsequent Sections

To lay the foundation for a proof that every sub-
sequence of s cycles which follows an x cycle is finite
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we shall in this section undertake a preliminary
~analysis.  We begin with a reduction of (2.24) in terms
of which our organization of the problem of proving
finiteness may be stated. When this has been
accomplished, we shall terminate this section with a
summary discussion of the content of the remaining
sections in this chapter.

The rest of part 111 is focused on a typical x cycle
and the typical sequence of s cycles that follows it.
We shall show that a finite sequence of s cycles is
sufficient to achieve the condition:

Cs<s0orSNC+=0- (3.1)
when (3.1) occurs an arbitrary x variable, (xoeX+),
enters FEy. Within a finite number of cycles after
the occurrence of (3.1), another x cycle must occur.?

 Therefore out main problem is in developing a proof
that a finite sequence of s cycles is sufficient to yield
(3.1).

We shall let k index the tableau which is the site of
the initial x cycle. A typical subsequent tableau will
be indexed by k£ + . Because our remaining concern
(after cycle £+ 1) is with s cycles and the condition
(3.1) it will simplify matters to focus our attention on
a truncated version of (2.24):

maximize
CF+0.S (3.2)
subject to
G(HT\'+t)
] s} o
I |Xy| +sAF+0.S= |GE0| =GE+0 (33

S = 0 and integral.

In the above system we note that Gy/**9=0. More
precise notation would call for S*+9 since the com-
position of this vector varies from cycle to cycle.
We shall omit the superscript where there is no danger
of confusion. By contrast, the variable vector Xy
does not change (within the sequence of s cycles) as
a function of ¢.

We may legitimately restrict our attention to (3.2)
and (3.3) since this truncated system must contain
the pivot column for any s cycle and since all the

2A proof follows from these considerations: (i) in the first cycle for which xoeEy, an s
cycle can occur only if s; has c;=aq., = 0; (ii) but such a cyel le does not alter the data of
the limit row 0 or the row c. thus every successive s cycle must have ¢, =ao, - 0; (iii)
corollary IIA, below, lmp||(\ that such a sequence must be finite.  Thus eventua ally xo

| must be selected as Ilu incoming variable. See also appendix B.

significant effects of the sequence of s cycles on the
criterion function are reflected in (3.2). We assume
of course that the pivot operations of the sequence
of s cycles are carried out on the full system (2.24).

Each s cycle, k+1¢, (t=2,3,. . . ) generates a new
problem of the form (3.2), (3.3). It will be convenient
to use an equivalent inequation form of these problems:

maximize
) &

C§+0- 8 (3.2)

subject to
SAU:H) S = G(I:arn (3.4)

S = 0 and integral.
The dual® problem is

minimize
W’(I\-+t) . (;(;-H) (3.5)

subject to
W ks . A+ = C(JEH) (3.6)

Wkt = ().

The sequence of s cycles generates a sequence of
pairs of primal and dual problems of the form (3.2),
(3.4) and (3.5), (3.6). Let an optimal solution to (3.2),

(3.4) be symbolized by S**+0  Then we shall have
achieved (3.1) when, for some ¢,

(k+1)
CS

. §EE+) < R+ L G0 < (),

(3.7)

The proof to be developed here will concentrate
on showing that a finite number of s cycles will yield

W' (k+0 = () (3.8)
This is of course equivalent to (3.1) since (3.8) implies
(3.7) which implies (3.1).

To develop the result (3.8), we shall construct a
sequence of feasible solutions, one for each of the dual
problems (3.5), (3.6). Each of the solutions will have
exactly one variable positive, and this variable will
correspond to the same row in each tableau. It will
be shown that the value of this single positive dual
variable declines monotonically as ¢ increases and that
it must eventually become equal to zero after a finite
number of s cycles.

3 This is the dual to the primal problem (3.2), (3.4) without the integer restriction. This
lack of congruity does not invalidate (3.7), since the inequality is valid for the primal without
the integer restrictions, and further restriction on the primal can only reduce the left side
of (3.7). Moreover in a tableau k+t, for which (3.7) holds, the integer restriction in (3.4)

is redundant.
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In the next section, 3.6, we shall establish the basis
for proving that the sequence of dual solution values
decreases monotonically. In the following section,
3.7, we specify the sequence of dual solutions and apply
the results of section 3.6 to show the monotonic de-
crease. In section 3.8, we shall establish the founda-
tion for showing that the monotonic decrease in the
value of the dual solution is of sufficient magnitude to
realize (3.8) in a finite number of cycles. In section
3.9 five theorems are stated and proved to establish
(3.8). The final section 3.10 relates theorem VII to
(3.8).

3.6. Theorem I and Corollaries

In this section we give a theorem which is funda-

mental to much of the subsequent development in
part III. We start with some necessary defini-
tions, and proceed to a preliminary discussion in which
we provide, along with more terminology, a lemma
basic to theorem I. Then we state and prove theorem
I and several corollaries. Algebraic proofs of the
major propositions of this section are given in appendix
C. The presentations and proofs here are informal,
geometric and heuristic.
Definitions. In theorem 1 below the goal. roughly
stated, is to show that if a set F® has certain prop-
erties, then in the next tableau a set which is a suc-
cessor to F'®) and is designated F*+1, also has these
same properties. Here the successor relationship
will be defined. F® is a set of nonbasic variables
in tableau k. Let D*+D (F®) signify a set of nonbasic
variables in the tableau £+ 1 whose definition is rela-
tive to the set F®- D&+ (F(k)) jg the “descendent”
of F®) in the next tableau.

sk+1 and all the elements
of F¥ except wu)

D(k+!)(F(k))EDUH»!)(D(A‘M*I)(' L. (D(k-&-l)(F(k))). L. ))

D+ (Fk)) =

In theorem I the following will be assumed:
Fk+1) = D(A~+1)(FU~))
Fle+0) = De+0) f (k).

Preliminary discussion. Let a tableau k£ be given and
let j index a typical nonbasic variable u; in tableau £.
Let two rows of the tableau indexed d and n, be
selected. Then we shall let the ordered pair

(k) (k)
(atl.j’ a:u_/')

represent the column j.

Since the elemental objects discussed in this section
are pairs of numbers, it is both useful and appropriate
to rely on geometric representation of assumed and
implied situations.

The pairs or points associated with any set of the (non-
basic) columns of a single tableau may be graphically

FIGURE 3/2.

represented in a diagram such as figure 3/2. In
figure 3/2, two points are labeled j and j'; this designa-
tion reflects the association of these (illustrative)
points with (hypothetical) columns j and j’, or variables
uj and wuj. Since the tableau under consideration
is tableau £, the set of points (or indices, or columns,
or variables) will be designated F®. The subset of
F™ which consists of points to the right of the vertical
axis will be designated F (+)%).

The general problem under consideration in this
section is the following: given a set F®) which is
represented graphically as in figure 3/2, how is a similar
representation of F*+1 related to the representation of
F®_ when Fk+)= D&+,

In considering sets F® Fk+0 " derived from
tableaus £, k+1,. . ., the rows d and n remain fixed
for all tableaus under consideration. The selection of
rows d and n is arbitrary except for this: neither row
can serve as the pivot row for any cycle in the sequence
k+1, k+2, . . ., under consideration.

We recall that if uj € F® and u; # wsu) then u;
€ F*®+U_ In the subsequent analysis the definition
of F*® will imply that u,u € F®; the variable which
is displaced from the basis by the entry of u,q is
an s variable, and this variable, s, ‘replaces”
W) in F(k+1).

To state the lemma that is fundamental to theorem
I we must define another concept: the ratio

associated with the incoming variable w;x). This
ratio is identical to the slope? of a line determined by
the origin and the point (a4, ax,s); an illustration is
provided in figure 3/3, where the point Jis arbitrarily
selected. This line is designated L,. The slope of
L,I is R.I:an‘.]/all.,l-

Now we may state our lemma which we shall call
the “rule of parallel movement:”

[Pt

Every point in F® will “move” to ‘‘its” position in
F®* qlong a line parallel to L.
4+ We assume for the moment that the point (aq4,5 @n,J) does not occur at the origin.
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FIGURE 3/3.

FiGURrke 3/4.

As a specific example, in figure 3/3 the line Z (which is
parallel to L;) will contain the point corresponding to
7 in k),

Proof of this rule follows directly from the observa-
tion that, excepting the the pivot row, the procedure
for changing the basis in the simplex method calls
for algebraically adding multiples of the pivot column
(/) to all the other columns. In terms of the points
represented in figure 3/3, multiples of J are added
to the other points such as j'. The rules for vector
addition apply here —specifically the parallelogram
law applies—whence it follows that each point is
displaced (if at all) along a line parallel to L,. The
point J will be replaced by a point associated with
“k+1. In the latter event we may note that the column
associated with sy, in tableau £+ 1 is the negative
f the column associated with ;) in tableau £ (with
he exception of the pivot row). Hence the “move-
ment” from the point J to the point that replaces it
‘'n F*+1D is along, and therefore parallel to, the line

Je
THEOREM 1. The hypothesis of theorem I is as
ollows: a set of points ¥ exists and has the following
roperties (which are exemplified by the set of points

epicted in figure 3[4):

(I1) At least one point in F® is to the right of the

vertical axis, (i.e., F(+)® is not empty).

(I2) Let a line L be determined by the origin and a
point® (J) in F(+) which maximizes the ratio
ap.jlaq; over all j € F(H)W. Then it is our
assumption that the line Liywill include or be
above all other points in F®.

5 We distinguish J from J only because we leave open the possibility that (a4, an.)
ay occur at the origin. Otherwise (see (I3)) we could identify J with J.

()
Ly .
+ a
n
J(k)
plK) \
J' ’
\ + a
d
: Sld'l,,} v I(k+1)
/ e - “T(k+1)
i >
¥ / 1) V¥

FIGURE 3/5.

(I3) The incoming variable u; for cycle k+1 is
represented by a point that is on the line Ly and is
either to the right of the vertical axis or is located at
the origin.

The conclusion of theorem I is the following: (II)
is true for F&+D=>(12) is true for F&+D),

PrOOF oF THEOREM 1. We shall consider two
cases: (i) Lyw=Lyx+n and (i) Lywx) # Lyw+r. In
case (i), (I2) must hold for F*+V  If some u; € F*+!
were above Lj@.1) this would imply either that (I2)
was not satisfied for F® or that the rule of parallel
movement had been violated in the transition from
tableau £ to tableau £+1. In case (i), the rule of
parallel movement and the definition of Ly in (I2)
imply that the transition from Ljyu) to Lygi1) is ac-
complished by a clockwise rotation of the line to the
position Lyg+n. Since Lygsr) is therefore above
Ly to the left of the vertical axis, (I2) and the rule
of parallel movement guarantee that no point on the
left of the vertical axis in F*+V will be above Lygt1).
By the definition of Ly+1), the rotation from the posi-
tion of Ly to the position of Ly is terminated when
the first point in F(+)®+) “touches” the line. Thus
all points in F(+)*+D are on or below Ljyx;1). Figure
3/5 contains a hypothetical illustration of case (ii).

In the following group of corollaries to theorem I
it is implicit in each case that the assumed conditions
of theorem I are satisfied. We shall generally desig-
nate the ratio a{)/ a((;‘)J byR‘J?‘" (n, d). In the statement

of the corollaries below, we shall simplify R(,-k) (n, d)
to R, since only one pair of rows—n and d—are

considered. If (aa.sx), an.s)) should occur at the
origin we shall stipulate that R ;) is equal to the slope
OfL(Jk). Proofs for the corollaries are given in appendix

(G

COROLLARY IA. [If all points on L{ are to the left
of or on the vertical axis in F&V, then

(k) (k+1)
RJ(l«x)> RJ(k+l)

COROLLARY IB. Some point j (where j € F® and
j#J (k) on L(_l") is on the right of the vertical axis in
F&Oif and only if

R® — R+

J(k) J(k+1)-

239



COROLLARY IC

k) = R&+)
RJ(k) RJ(k+1) .

" : . .
CoOROLLARY ID. If (a{)) al¥) ) is the only point

in F® on the line L“;’, then

(k) (k+1)
RJ(k) = RJ(k+1)'

COROLLARY IE. Let E designate the set of all
points in F% and on LY. For t>0, if

(k) — R(k+t) (k+t)(F (k)
RJ(k) RJ(kH), then Uon € D (En ).
() (k+t)
COROLLARY IF. IfRJ(k) = Rmm)’ then

E(+) = Dk+t(E (),
n n

K+1 k
COROLLARY IG. If R0, <R, then for all
ueERHD)

(k+1) >
agth = 0.

CoROLLARY IH. If R§) =0, R <0, and a§i?
=<0, then

alih < 0.
COROLLARY 1J. If (i) the assumed conditions of the-
orem I are satisfied by F®),
(i) FH®Y s not empty for
t<t', and
(i) uyyp s selected in conform-
ity to (13) fort < t’,
then the assumed conditions of
theorem I are satisfied for F&t),
We close this section with the statement of a self-
evident proposition that will be useful later.
If F*® is contained in the half-open half space to the
right of the vertical axis and including the lower
half of the vertical axis, and if (I1) is satisfied, then
(I2) must be satisfied. (3.9

3.7. The Sequence of Dual Solutions

In this section we shall specify the sequence of dual
solutions to (3.5), (3.6) which was described generally
in section 3.5. With the aid of theorem I we shall
show that the sequence of solution values declines
monotonically.

Our starting point is the system (2.24) when the
tableau index is £. Recall that k+1 is the index of
a typical x_cycle, that C§ < 0, that u, is an x variable,
and that ¢(¥1 > 0. We assume that a constraint which
bounds the incoming variable has been adjoined to
(2.24). This constraint is

X0 < &l (3.10)

Now let A4S} signify the column of ;4* which

corresponds to x;%, and consider the system which

results from adjoining this column and variable to

(3.4), (and (3.3)).

A S+ AP -y < GO, (3.11)

As the result of the cycle k+1, the system (3.11)
acquires the form of (3.4) with t=1. Generally, the
“descendants” of the system (3.11) have the form o
(3.4). To be more precise let a set E, be defined ® by

Ef,’;)———‘ {uj|u; is a component of S% or uj=x;(0}-
(3.12)

Then defining E{*+0 = D®+O(ER), it is clear that Eff+V
contains exactly the components of S*+1 and E{+9
contains exactly the components of Sk+9,

The criterion function corresponding to (3.11) is

) ®) o=
CPS+ G X

(3.13)

which is to be maximized.

Next we shall construct an initial feasible solution
for the dual problem to (3.11), (3.13). Consider the
row of (3.11) which corresponds to the bounding con-
straint (3.10):

0-S+1 -x,,(E)Sg“—‘)

By 3.14)
We shall assign this row the (arbitrary) subscript 0.
Tl_})us 810 = &\ and a},’f’}. =0 unless j=J, in which case
ak) =1,

0,J

The dual variable, wf, associated with the row
(3.14) is assigned the value c{%¥) ~ The rest of the dual
variables are zero. This solution is obviously feasible:
the dual constraint associated with the J column is
exactly satisfied; the other dual constraints are also
satisfied since w{" -ao ;=0 and ¢ <0 for all col-
umns j corresponding to components of S.

To show that every subsequent dual problem (3.5),
(3.6) has a feasible solution in which w{*? =0 and

w®+0=0 if i is not the index of the limit row 0, we apply
|

the results of the preceding section.

We identify the row n of theorem I with the row ¢
of (3.13) and (3.12). We identify the row d with the
limit row 0 in (3.1) and (3.4). We identify F® with
E and define 7 E(+ ), analogously to F(+).

With respect to these identifications we note that
the assumed conditions of theorem I are satisfied
in tableau k. (I1) is satisfied because ao,,=1. (I2)
is satisfied because ay, ;=1 and ¢; >0 while ao, ;=0
and ¢;<0 for all j# J, which with (3.9) implies (12).
(I3) is satisfied since x, is the only element in E(+)‘0").

We note that
ik
alf i)

w:)l;):

6 The definition (3.12) is consistent with and more special (in that it relates to ) than the
definitions given in section 2.6.
7This is consistent with (2.21).
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In general if (I1), (I2) and
tion to dual problem (3.5

(I3) are true, a feasible solu-
), (3.6) is given by

(k+0)
- @
(Frt) — I+ .
w =1
s a0 (3.15)
0, J(k+t)
wﬁ.’?‘f”:O, if 7 is not the index of the limit row 0.
(3.16)

Thus to show that a solution (3.15), (3.16) is avail-
able for each dual problem (3.5), (3.6) we must show
that the assumed conditions of corollary I] are satistied
in every tableau £+t which results from an s cycle.
Since we have already shown that condition (i) of Corol-
lary 1J holds, we shall now deal with (iii) and (ii). The
selection of the incoming variable according to rules
3(J) and 3a(J) of section 2.6 will always conform to
(I3). For all pertinent cases (I1) must also be satis-
fied, since if E(+)+9 is empty for some ¢, then we can
conclude from corollary IH that for some ¢t' <t, ¢; <0
for all ujeE .

Thus corollary IJ applies. This establishes the

sequence of feasible dual solutions (3.15), (3.16).
Corollary IC implies
ws)i—m > wg)/.”-wﬂ)_ (3.17)

Since g0 does not change during the sequence of s
cycles, (3.17) implies a monotonic decrease in the
value of the dual solution.

It is convenient to establish here, for later refer-
ence, the following proposition:

lf I\+1)

=0, then ¢k =0, (3.18)
0, J(F+0) J(R+1)

The rules for selecting u; imply ¢;=0. But ¢, >0 is
incompatible with the hypothesis of (3.18) because

the finite ratio c%) /a“" stands first in a monotonic-

18 0, (%)
ally decreasing sequence. Thus c‘l’(‘:" =0

In the next section we establish the basis for showing
that the monotonic decrease in (3.17) is of sufficient
magnitude to achieve (3.8) for a finite ¢.

3.8. Theorem II and Corollaries

Theorem 11 deals with the effects of a change of
basis on the source row, v, when A=a,, ; and the cut
row serves as the pivot row. Corollaries IIA and
IIB develop implications of theorem II that are useful
to proving finiieness.

THEOREM II. Let the incoming variable for the
cycle k+1 be uyu) and let v be the index of the source
row. It is assumed that once the new equation has
been adjoined to the system, it qualifies as the pivot
row for bringing uyy into the basis; and it is assumed
that ay, ;> 0. The cut is

al®),

k)
Sk+1+2 l:_LL—a(k) ]UJz [a(k) ]

J(k) J(k)

(3.19

With (3.19) serving as the pivot row, uyy) is brought
into the basis. The following results are implied:

a0 =0, for every j that is not the index ofsk+1.(3 o

alf§D < ag) yo, for all j. (3.21)

PROOF OF THEOREM I1. Both results stem from the
formula for afs%V:

alk).
o & v, ¢
a(z!‘.jl):a(n!‘,)j_ l:—J_:l a®yry (3.22)

a“‘)l(k)

Let al®); be expressed as a function of a¥®u), as
follows:

a®¥) =T - a¥4)+r j, in which (3.23)
a®4y>r., ;= 0, and T is an integer.  (3.24)
Then
ath),
a [a“\)l(l\)] (5-25)

Substitution of (3.23) and (3.25) into the right side
of (3.22) yields

at+V=r, ; for every uj except Siiq.

(3.26)

The coefficient of row v in the (newly nonbasic) col-
umn k+1 is

=—a§ - (3.27)

Thus (3.20) follows from (3.26) and (3.24); (3.21) fol-
lows from (3.26), (3.24), and (3.27) since the source row
will always have a4 > 0.
COROLLARY 1A. Ifk+1,k+2, , k+t,k+t+1,

. is a sequence of successive s cycles, and if
aply =0, then afif ., >0,

for some finite t.
PROOF OF mA. Let aff),, =0 and let i be the first
index of a component o(f R%) which has a nonzero
numerator. From (3.18) we may concludei =1. Rule
3a()Ib of section 2.6 implies ¥, >0 if EH)® is

not empty. Since we have shown 8 E(+){ is not empty,
we have a¥,) > 0. Rule 4(v) in section 2.7 deter-
mines that row i is the source row for cycle k+1.
Then as a consequence of theorem II we have

0 < qgk+D
i, J(k+1)

<a®
i, J(k)

(3.28)

If afit) | >0 the corollary is proved.
Suppose a{fil) =0. Since all the components

preceding aj, j/ao,; in R%) have the form 0/0, the

8See above section 3.7.
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rows which provide the data for these components will
not be altered by the change of basis in cycle £+1. Let
i’ index the numerator of any component which pre-
cedes i in R.  Then if alt4).,,) =0, we must also have
athiy =0. We can rule out alff},, >0 since this
implies a¥;,,,, >0 and a®, =0 which contra-
dicts the selection of wyg) over wyi+1) as the incoming
variable for cycle k+1. We can rule out a'f*) | <0
since this contradicts the selection of wys1) as the

incoming variable for cycle k+2. Thusifa it =0,
row i is again the source row, or af%l),,, =0. If
a(i"'fj(lzﬂ, > (), then i is the source row for cycle £+2

and the tableau indices in (3.28) can all be increased
by 1. Thus a finite sequence of cycles must result in
a;;=0. Then the index of the first nonzero numerator
in R; must become =i+ 1.

We have just observed that a finite number of cycles
is sufficient to increase the index of the first nonzero
numerator in R;by at least one. Since the number of
indices in R is finite, a finite number of successive
cycles for which ag, ;=0 will lead to a,,=0 for all
indices iin R. This is a contradiction since it implies?
that u; corresponds to a null column vector in A4*+0
for some finite t'. Hence for some ¢t < t" we must have
alkt0 > 0.

COROLLARY 1IB. The hypothesis consists of three con-
ditions that are assumed to hold for a sequence of s
cyclesk+1,. .., k+t,. .., k+t"

y j— k+t = !
if agyt 1, =0 then a(i, Rﬁm =0, fort<t’ (3.29)

if agkj(‘liﬂ) > g; then row i is the source row for cycle
k+t+1, fort<t'; (3.30)
(k) :
ai, J(k) = & (3.31)
The following condition is implied.
k+t! \ (e+17) irevr.
(I,’ j(k)ﬂ') <g anda()’f](kﬂ,)> 0 for some finite ¢'. (3.32)

PRrROOF OF 11B. In each tableau &+t one of the follow-
ing cases must occur:

(k+0) !

@ ey = 8i (3.33)
k+t) = (k+t) =

32,3(“,) 0 and @50, =0 (3.34)
(k+0) . (+0)

a3, <& and afi0 > 0. (3.35)

If (3.33) occurs a(l.”‘j(’,\flr’ﬂ) is reduced, because of (3.30)

and (3.21), by at least a unit. This reduction is not
lost by the occurrence of (3.34), since a cycle for which
(3.34) holds does not alter the data of row i. Corollary
ITA implies that (3.34) can only occur successively for
a finite number of cycles; thus (3.33) must reoccur at
finite intervals. A finite ' number of occurrences of
(3.33) is sufficient force the occurrence of (3.35).

9 See appendix B.

3.9. Theorems III, IV, V, VI, and VII

Definitions. 1In this section we state and prove five
theorems. The first three theorems (III, IV and V)
show that a sequence of s cycles generates a sequence
of vectors Ryx) with the property Ryu > (R
The next two theorems (VI and VII) use this result to
show that a finite sequence of s cycles must reduce the
first component of R, to zero.

The definitions below are a necessary preliminary
to the statement of the theorems. We shall provide
some informal discussion of the concepts defined
below since these definitions constitute the linkage
between the rules of part II which govern the pro-
cedure of the primal algorithm and the general con-
cepts developed by theorem I and its corollaries.

The procedure which selects u; in a stationary cycle
may be usefully viewed as a process of progressive
elimination, as follows.

First the set of all nonbasic variables is narrowed to
E,. Then the first component of Ris used as a test to
select a subset of E, in which all elements are tied
with maximal values for c¢j/ap,j. We call this subset
E.. Next the second component of R is used to select
a subset of E. in which all elements are tied with equal
and maximal values for the first two components of R.
We call this subset E,. This process continues until
a single element subset £j is obtained and we have, by
definition, E;={u,;}. We shall provide formal defini-
tions for this nested sequence of subsets. Before that
it may be helpful to give an example and a graphical
presentation.

In figure 3/6(a) we present a tableau segment
showing some of the coefficients at the intersection
of the columns of five nonbasic variables in E, with
the rows that provide the data for the first four com-
ponents of R. In figure 3/6(b) there are four pair of
axes corresponding to the first four components of R.
All points corresponding to uje€ E, are plotted on the
top graph, all points corresponding to u; € E. are plotted
on the second graph, and so on.

wy U us Uy us
¢ Tow 4 1 2 0 =]l
ag row 4 4 2 0 =1l
a, Tow 2 = 1 0 =8
ay TOW =% — =1l =1l =
ag TOW 0 = 2 = =

FIGURE 3/6(a)

10 It is necessary to assume, to achieve this result, that the “starting” value of ai,; on
the left hand side of (3.31) is finite. ~ This will be assumed, not on the basis that any a*, ;
generated as a result of the operation of the algorithm is certain to be bounded, since the
latter assumption actually can be shown to directly imply the conclusion which we shall
subsequently deduce with the aid of theorem II and its corollaries.

weaker assumption is sufficient namely: for every finite k, a finite bound M(k) exists
such that |a¥ ;| < M (k). This assumption is also implicit in corollary IIA.
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E0 = {ul, uz, ux, u4, ur}
EC = {ul, us, u4, us}
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FIGURE 3/6(c).

Figures 3/6(a) and 3/6(b) are representations of the
same data. In figure 3/6(c) we represent graphically a
distinct situation in which ao ,=0. We note that
since the horizontal dimension is identical for all graphs
in figure 3/6(b) or 3/6(c) all the points which represent
a given variable are on a single vertical line. There-
fore movement of a point horizontally (from tableau to
tableau) on one graph implies horizontal movement of
corresponding points on all graphs.

The reader may find diagrams such as 3/6(b) and
3/6(c) helpful as a means of visualizing and keeping
track of various details in the proofs that follow. We
shall now return to the task of developing formal
definitions.

The set E® has already been defined.!" Here we

define a sequence of nested subsets of EF.

E®) = {u;|ujeE® and dPaf .= max [cW/ak ]}
ujeE ()

EP) = {LL_;IuJGE""| and a"’/af,’")
= max |[d ‘I"]’ /a"" - (3.36)
upeE (),

This sequence of subsets of E, has the same order
of subscripts as the sequence of numerators in R.
Thus if i=1, theni—1=¢. The component (z‘i’j'l.’/zllf"“}?
of R% is derived from data from the same row i which
is used in the definition of E%. We use (3.36) to de-
fine subsets EF, EX), E(QIM where the definition
of the last index N k) depends on whether al®, =0

or al >0. If al =0, Nk)+1 is the mdex of
the ﬁr%t positive numerator in R“‘) For example, in

figure 3/6(c) N(k)=1. If a® >0 N(k)+1 is the

0, J(k)
first set in the sequence K E® - E® - which
contains only one element. The existence of such a
set is guaranteed (see appendix B). In figure 3/6(b)
N(k)=

As with the definition of R, a problem occurs in
interpreting (3.36) in relation to variables wu; which
have a“"J—O As we have observed, set E. is the

subset of all ujeE, for which the first component of R;
is not dominated by some other wuyeFE,. The subset
E, is the subset of ujeE. for which the first two com-
ponents of R; are not dominated by some other u;€FE.,
and so on.

Now if a,;=0 and ¢;=0 one cannot determine the
lexicographic priority of R; and R, when a,_j =0, by
reference to the first component of R. Therefore we
shall include in E. all y;eE, for which ¢;=0and a,. j =0,
and we shall include in E; all ujeE;—1 for which a,, ;=0
and ay j=0 for all i’ <i. This equivalent to stipulating
0/0=  max [a(lkj,/ag)’f)j,] in (3.36).

uyeE (),

11 See p. 230.
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In the following theorems and proofs the symbol

)
Im will be abbreviated to R“"( ).

We will employ the symbol B(k) to represent the
following circumstance:

(1) (I1), (I2), and (I3) are true with
F® = Ek)

row d = the limit row 0
row n=row i+ 1

B(k) = for all i < N(k).
2) If a})"’J(M > 0, then (1) is also true for
N(k).
(3) If aﬁ)" =0, then af)")J = () for all
ueEQ, .
THEOREMS

k k itmplies B(k)

B(k) implies RV > R

B(k) implies B(k SIS
For every k there exists a finite t such
that R{9(c) >R 9(c)

For every k there exists a finite t such
that R(Jk)(c) >0 implies R‘Jk“)(c) <0.

THEOREM III:
THEOREM 1V:

THEOREM V:
THEOREM VI:

THEOREM VII:

ProoFs
PROOF OF THEOREM I11I. From the definition of E;,
(i< N(k)), E; must contain at least one element of
E(+)i—i. Hence (I1) is satisfied for all i =< N(k).

It will be recalled !? that in tableau £, ao, ;=0 if j is
the index of an s variable; if j is the index of the unique
x variable in E, then a, ;j=1. Since every Ei is a
subset of Ey, ay,j = 0 for every u,eE(") From (3.9) we
can conclude that (12) is satisfied for i < N(k) if ao. ;=0
and for i < N(%) if ay. ;> 0.

The satisfaction of (I3) is guaranteed by the rules
3(J) and 3a(J) for the selection of the incoming variable.
This may be confirmed by noting that E; consists of
the variables which are tied with equal and maximal
values of the first i+1 components—c, 1, 2,
i—of R.

Since all ujeE; (for all i) have a, ;= 0, condition

(3) must also be satisfied.
ProoF oF THEOREM 1Iv. Corollary IC implies that
R® (i+1) = R**V +1) for all i <N (k). To estab-
lish the conclusion required by the theorem it is only
necessary to show that

O 0

R® (i+1)>R%V(i+1) (3.37)

when i=N(k). If aﬁ]’", w >0, (3.37) foliows from the
definition of N(k) and corollary ID. If a(ok,)JZ 0, then
from the definition of N(k), a{® /> 0. In this situa-

tion row i+ 1 will be selected as the source row, and

we can conclude from theorem II that a“‘“’ <af’;r)1 p

12 See section 3.7.

which from the definition of lexicographic priority
given in part IL,'3 implies (3.37).

PROOF OF THEOREM V. To prove theorem V we
must show, among other things, that condition (1)
of B(k+1) holds regardless of the value of a{%V.
Regarding condition (1) we shall show first that Il)
and (I3) are satisfied. Each set E¢*V must, defini-
tionally contain some wuje E(+){*1 which is also an
element of E(+)¥*). We may rule out E(H+)+*V=0
since this hypothesis together with corollary TH
implies!* E®+D) N C+=0.

Thus (I1) must be satisfied. The Rules 3(J) and
3a(J) of part II imply that (I3) must be satisfied.
Accordingly in the remainder of this proof we shall
assume that condition (1) of B(k+1) has been estab-
lished once (I2) has been established.

For any i <N(k), B(k+ 1) is implied by B(k) and
theorem 1 if EF+V=D®+D(ER)  Let i’ designate
the smallest index in R for which R x)(i") > R jx+1(’).
Theorem IV implies R i) (1)= R jx+1)(i) for all i <i'.
The proof of theorem IV also implies that i’ < N(k)+ 1.
Corollary IF establishes that for i <i’, E(+D) =D+
(E).

Thus B(k+1) is implied for i <i'.

Now consider the sets E”“rl withi=i'. Ifah=0
then condition (3) of B(k) implies
alf+V =0 for all w;eE%+V. (3.38)
If af)’",> 0, corollary IG implies (3.38).
Since all £; with i > i’ are subsets of E;, (3.38) also

holds for every u; in each such E,. This permits the
use of (3.9) to establish (I2) for

F+1) — Fle+1)
1
row d=Ilimit row 0

row n=row i+ 1

for all i such that i’ <i< N(k+1) if alk*1 >0, and for
i’ <i<N(k+1) otherwise. If al*V=0, and N(k+1)
=1, condition (3) is satisfied by (3.38).

ProOF oF THEOREM VI. We shall derive a contra-

diction from the assumption that theorem VI is false,
i.e., that for some k

R¥(c)=R{}*"(c) for every finite ¢. (3.39)

Theorem 1V indicates that a statement such as
(3.39) cannot be made for every index in R. There-
fore there must be a smallest index i’ for which (3.39)
never holds —with i’ substituted for ¢—for any value

of k.

13 See section 2.6, rule 3a(J).
14 See the proof of IH in appendix C.
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Let k' signify the last cycle which accomplishes
a decrease in R;(i' —1). Corollary IIA implies that
alk+0 >0 for some finite t. For notational conven-

ience we shall assume a{)’"; =),
Corollary IE and the hypothesis

Ry‘"(i' —1)= R},"'*’)(i' =1l) (3.40)
imply that wgr ) eD®+EE), ) for every finite t. In
tableau k' the set E¥) can be represented on a dia-

gram such as figure 3/7.
The entire set E*) is (as a consequence of corollary

IG and the definition of £’) to the right of or on the verti-
cal axis and on or below the line OA. The point J(k')
is somewhere on the line OA (to the right of the verti-
cal axis). The selection of a positive slope for the
line OA is arbitrary. The slope could be negative,
but in any case must be finite.

The horizontal line through C and B represents a
limit, equal to the distance from C to the origin,
on the value of the basic x variable associated with row
i’. If the point on figure 3/7 associated with u, falls
below the line CB, then the limit row i’ qualifies as an
acceptable source row in V(/J).

Successive occurrence of the wu; point below the
line CB and successive selection of i’ as the source
row will, (as a consequence of theorem II) eventually
force the entire set E; | above the line CB. The
line AB represents a similar limit or the basic x vari-
able associated with row 0. Similar comments apply
to the use of the limit row 0 as a source row. The
special source row selection rule applies whenever the
point associated with u; occurs to the right of or below
point B. If the u, point is outside the region OABC
and above the extension of the line segment OB
then the limit row 0 is the source row. If the u,
point is below the line segment OB (and outside
OABC) then the limit row i’ is the source row.

As t increases the set D®+0)E(®) —will be moved to

positions that remain below lines such as (first) OA’

!
/A ”
_A
-
==
e
. 0 o a
'\/ 0, ]
gLo
C S D3 -
|
|
© Py v n
I
FIGURE 3/7.

and (later) OA”, which result from clockwise rotations
of R,(i') from the initial position of the line OA. We
shall show that a finite number, ¢, of cycles is sufficient
to rotate this line to a position coincident with the
vertical axis—and thereby insure that no element of
D&+ (E “‘; ) is to the right of the vertical axis. This

would (by. reahung the assumed conditions of corollary
IA for the index i’—1) contradict the definition of

i’, and thereby prove theorem VI.
To prove that D“"'*”(Ei‘,"j’[) will eventually be swept

from the right-hand side of the vertical axis we shall
temporarily adopt this hypothesis: the point (a{’+?,

a't0) always occurs within the closed region OABC

in figure 3/7 and never occurs at the origin. By
taking ¢ large enough we can accomplish an arbitrary
number of decreases in the ratio ai j/ag,;. Since the
components of (ao,s, ay,;) must be integers and the
point must be within the region OABC, only a finite
number of different ratios can occur. Thus the ratio
must, after a finite number of cycles, attain the follow-
ing form: negative integer/zero.

Since it cannot be guaranteed that the point (ay,y,
ai,j) will never occur at the origin or outside of the
region OABC, we must relax that assumption.

Corollary 1IA guarantees that subsequences of
cycles during which (ay, s, ay, ) occurs at the origin
are of finite duration. Such cycles alter no aspect of
the set of points (ay,j, ai,;j) for ujgeEi_; since these
cycles only add a zero vector to each point in the set.
Therefore the cycles which decrease the ratio a, //a. J
must have ag ;> 0. Thus, for the purposes of proving
finiteness, it is perm1551ble to ignore the possibility
that the point (ay,,, a@;, ;) may occur at the origin,
since such occurrences are finite in number and neu-
tral in effect.

Suppose now that (ag, s, @) occurs outside the
region OABC —or more precisely, below and/or to
the right of the point B. Then either row i’ or the
limit row 0 is made the source row, depending on
whether (a,, ;, ,) is below or above the line deter-
mined by the ()rlgm and point B. Theorems III, IV,
and V, and corollary IIB combine to guarantee that a
finite number of cycles will be sufficient to force the
recurrence of (ag, s, a; ;) in the region OABC.

Let k'+t" represent a cycle which decreases
au J/a() ;. Let 7’ be the smallest value of ¢t for which
t'=1t" and for which (a("'+_”, a“‘“;’ )) is in the region

OABC Let ¢" be the smallest value of ¢ for which
t"=7t and for which the cycle k'+¢" decreases
ay, jlao,;. Then we may define 7’ analogously to
t', and define ¢''’ analogously to ", etc. Consider the
sequence of tableaus k'+7', k' +7', k'+7'', etc.
The ratio @ jlao,; is reduced in every succeeding
tableau in this sequence and the point (ao, s, ;. J) is
in the area OABC for every tableau in the sequence.
As we have already observed: this must lead to a
tableau in which a; s/ao,; has the form: negative
integer/zero.

Proor or THEOREM VII. To prove theorem VII
we note that theorem VI provides the same guarantee
that c¢,/ao, ; will decrease in the finite number of cycles
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as was available in the proof of theorem VI for the
index i’ (and the ratio a;, /a0, /). The proof of theorem
VII is a straightforward application of the same con-
siderations that were used to show, in the proof of
theorem VI, that a finite number of cycles is sufficient
to drive the ratio a; s/ao,, to negative infinity. The
only difference, which is not substantial, is that here
it is only necessary to show that a finite sequence of
cycles will drive c,/ay, s to zero.

3.10. Proof That Every Subsequence of s Cycles Is
Finite

In section 3/7 the connection was established be-
tween the solution (3.15), (3.16) to the dual problem
(3.5), (3.6) and the ratio cs/ao,,. Now we may apply
theorem VII and corollary IH to establish the existence
of a tableau in which a zero vector is a feasible solu-
tion to the dual problem, which establishes the suf-
ficient condition (3.1) for another x cycle.

Appendix A. Discarding s Variables That
Reenter the Basis

In this appendix we shall show that we may legiti-
mately drop an s variable from the tableau after the
variable has reentered the basis as the result of an s
cycle. In this circumstance we also eliminate the
row of the tableau associated with the (newly basic)
s variable. This row is, of course, the row that served
as pivot row in the s cycle that brought the s variable
into the basis.

We shall show that in the circumstances we have
described, nothing of significance to the operation of
the primal algorithm is lost by eliminating the s vari-
able and its associated row. To do this we shall show
that the s variable could remain basic and nonnegative
and its associated row need not be selected as the
source row if the s variable were permitted to remain
in the tableau. Thus the presence of the s variable
in the tableau is not required to prevent violation of
the Gomory cut in which the s variable has the role
of a slack variable. And if the row associated with
the s variable were never selected as the source row,
the presence of this row would have no effect on the
course of operation of the algorithm.

We shall assume that an s variable has entered the
basis as the result of an s cycle. For definiteness
and notational convenience we shall assume that this
basic variable s; is associated with row i. Now we
shall consider a typical subsequent stationary cycle.
This cycle might in general require the normal source
row selection routine or a special source row selection
routine. It is unnecessary to consider the case of a
special source row selection routine in detail, since
these routines always select a row associated with a
basic x variable as the source row: therefore, row i
could not be the source row in such a cycle.

Suppose the normal source row selection routine
were employed. We note that s; could only be driven

negative and row ¢ could only be the source row if
ai,; > 0. However, if a; ;> 0, there must also exist
a basic x variable associated with a row h such that
an,;>gn=>0. The nonexistence of such a basic x
variable implies a contradiction: a transition cycle
would be possible if row i were ignored!; and this
would imply that an otherwise feasible integer solution
is interdicted by the Gomory cut in which s; is the slack
variable. Thus a row h# i exists which is in V(J)
and can be selected as the source row. This is suffi-
cient to guarantee that row 7 need never be the source
row.

Since all stationary cycles have a zero in the pivot
(cut) row and the constant column, s; cannot be driven
negative by such a cycle. In a transition cycle we
must have (by the argument in the preceding para-
graph) a;,; <0, and therefore a transition cycle can-
not drive s; negative.

Appendix B. A Proof That Rule 3(J) and
3a(]) Will Always Lead to a Unique
Selection of u;

To show that no pair of variables u;, uj+, €Ey can
have R;j=Rj+, we shall utilize the notational foun-
dation established in section 2.7 of part II.

First, we shall show that if u; and u;+ are both s
variables then R;=R;- is impossible. To accomplish
this we shall, as a preliminary, establish the follow-
ing proposition:

If ay ;=XKay ., for some number K and for every

row index i associated with a component of Xy then
a;, ;=Ka; ;+ for every row i of the tableau. B.1)

To prove (B.1) we rely on the fact that every feasible
solution to (2.24) is also a feasible solution to (2.1).
Suppose the assumed conditions in (B.1) are satisfied,
but a;,j # Ka;,j» for some row i corresponding to a
component of Xz. This will lead to a contradiction.
Consider the two feasible solutions below. (« is
chosen sufficiently small to insure that both solutions
are feasible.)

Solution 1 Solution 2
uj=ao- K Ujx=ao
All other nonbasic variables All other nonbasic variables
in (2.24) are in (2.24) are
= zero = zero

All components of Xy take on identical values in solu-
tion 1 and solution 2. Regarding both of these solutions
as solutions to (2.1) in which the values of the variables
in Xp are functions of the variables in Xy (which con-

! We have assumed here, implicitly and for convenience, that s; is the only s variable in
the basis at the beginning of the cycle under discussion.
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sists of the variables in Xy and Xy, the values of all
the variables in X3 must be equal in solution 1 and
solution 2. This contradicts the above contrapositive
hypothesis (a; j # Kai j») whereby the value of the
component of Xy associated with the row i would have
a different value in the two solutions. Hence (B.1)
is true.

Now to establish our proof we must consider three
possible cases: (i) u; and uj+ are both s variables; (ii)
uj is an x variable and wj+ is an s variable; (iii) u; and
uj+ are both x variables.

In case (i) we assume that Rj=R;.and show that
this must lead to the conclusion that either u; or u;+ is
a redundant variable. There are three cases: (ia)
ay, j=ay, j»=0; (ib) ay j # 0, and a,_j+ =0; (ic) ay, j # 0,
and ag, j« #0. In case (ia) we must have ai, j=ap, -
for every row i’ associated with a component of Xy.
This satisfies the hypothesis of (B.1) with K=1 and
therefore leads to the conclusion that u; and w;- are
identical variables —one of which might be eliminated.
In case (ib) every component of Rj-has the form 0/0.
This 8atisfies the hypothesis of (B.1) with K=0, and
implies that u;- is associated with a null vector. In
case (ic) the hypothesis of (B.1) is again-satisfied with
K=ay j/ay;, and we may conclude that u; is pro-
portional to uj+ and that one of these variables may be
discarded.

More precisely, an all integer vector Aj«- with an
associated variable wj-« must exist such that A; and
Aj« can each be expressed as a positive integer
multiple of Aj«. It is evident that no solution possi-
bilities are lost if wuj«+ replaces u; and wj+. (It is pos-
sible, of course, that uj+ is equal to u; or uj+.) Since
uj and uj- are s variables, every feasible integer solu-
tion must determine integral values for these variables;
and this rules out integer solutions in which u;+ has
an integral value while the implicitly determined
value of u; or wj« is fractional. Therefore, substitu-
tion of uj++ for uj and w;+ introduces no new solutions.
Thus Rules 3(J) and 3a(J) are capable of discriminating
between any two nonredundant s variables.

Now we turn to cases (ii) and (iii). First we shall
show that case (iii) is impossible. Consider the first
cycle, t+ 1, following a transition cycle. E{’ contains
a single x variable from X+. Assuming without loss
of generality that the succeeding cycles are stationary
cycles, the incoming variable wy, must be the x
variable in E¥). This choice is clearly unambiguous

by Rule 3(J). S“*V must consist of the single variable
s(+1 which, having just been driven from the basis, can-
not be an element of C+. Therefore KV consists
of s;1 and some x variable chosen from X+. The
x variable is selected as the incoming variable on the
basis of the first component of R. Here again the rule
makes a unique selection of w,. S“*? will include
st+1 and s42. C+ may or may not include si+1; hence
some s cycles may occur before an x variable is brought
into Egbecause SNC+=@. During any such s cycles,
E, consists entirely of s variables and therefore, as
we have shown, rule 3(J) and rule 3a(J) must uniquely
select the incoming variable.  When another x variable
is eventually brought into Ey, there are two possibil-

ities: the x variable either is or is not immediately
designated as u,. If the x variable is selected as the
incoming variable immediately we would return to
the circumstances we have just discussed: all ujeE,
are s variables. Hence we need only discuss the case
in which the x variable does not immediately become
the incoming variable. Then a,, ;, and ¢, must both
be equal to zero and therefore the simplex change of
basis procedure will not change the value of ao ; or
cj for any u; in the transition to the succeeding tableau.

The x variable remains the only element in E, and
C+. This precludes another x variable entering £,
until the single x variable in £, has become the in-
coming variable and has been thereafter deleted from
Ey,. Thus E\ can contain at most one x variable.

In case (ii) u; is an x variable in E,. We have just
shown that u; must be xy and no other x variable can
be in Ey. Since x is not basic, we must have a,, ;-
=0, while ap,j=1. Thus R;=R;- only if every com-
ponent of R;. has the form 0/0; and this implies, be-
cause of (B.1), that u;. is a null vector.

Appendix C. Proof of Theorem I and
Corollaries

1.1. Introduction

The purpose of this appendix is to provide an alge-
braic restatement and proof of theorem I and the corol-
laries that appear in part III. While the connections
between the algebraic terminology used here and the
geometric development in part III are not developed
explicitly, reading this appendix in parallel with the
analogous development in part III should reveal the
relations, which are both simple and standard, between
the algebra here and the geometry there.

1.2. Definitions

The analysis in this appendix is focused on some
implications of the simplex change of basis procedure
when certain conditions exist in the tableau that pre-
cedes the change of basis. Accordingly, our notational
requirements will include (i) the usual algebraic repre-
sentation for the tableaus, (ii) a convention to distin-
guish the (original and derived) data of the given
tableau from the corresponding data of the tableau that
results from the change of basis, and (iii) some special
symbols to express the concepts in terms of which we
state the assumed and implied conditions of the
theorem and the corollaries.

1. The given tableau may be expressed by the matrix
equation

or equivalently by

n’
xi+ 2 ai,jxj=g >0,

Jj=m+1

i=1,2,. (C.2)

., m.
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The current basic solution is x;i=g;, 1=1,2, . . .,
and x;=0, j=m+1,m+2,. . ., n).

2. The two rows d and n are selected from the m
rows given in (C.2). These two rows are selected
arbitrarily except that neither row may serve as the
pivot row in the change of basis procedure.

3. We shall designate the pivot row by the index p
and the pivot column by the index J.

4. F is a set of nonbasic variables—i.e., a set whose
members are also components of Xy.
5. F(+)= {xj|xjeF and a4 ; > 0}.

6. R*= max [a,, jlaa,j].

xjeF(+)

7. For every x;eF we define

m),

(C.3)

Aj=R*aq,j— (C.4)

Ay, j.
Thus

R*aq, j=ay, j+ A,. (C.5)

8. We shall use the symbol © to identify data of the
tableau that results from carrying out the change of
basis operation on the system (C.1), (C.2). . Thus, the
coeflicient in row i and column j of the new tableau
will be signified by a; ;. The set which “descends”
from F (according to the rules specified by section
3.6) will be signified by F. In terms of this notation
we shall_symbolize the descendant relationship of F

toFbyF D"(F).

1.3. General Analysis and Proof of Theorem I

In this section we shall state theorem I in terms of
the notation we have established here and prove the
theorem. The analysis on which this proof is based
will also serve as the basis for the proofs of the corol-
laries in the next section.

THEOREM 1. The hypothesis is
F(+)# 9, (C.6)
A;=0, for all x;eF; (C.7)
A;=0; and (C.8)
a4,; =0. (C.9)
The conclusion is
F(+)# 0=>A,=0 for all x,ef'.  (C.10)

General analysis and proof. We shall let j be the
index of an arbitrarily selected element of F and show
that (C.10) holds for x;. The following formulas de-
scribe the effect of the change of basis procedure on
the data of column j in rows n and d.

-
Anj=Qn,j— Qp, jQn J:

(C.11)

o
Qd,j=Qad,j— ap, jAd, J-

(C.12)

To simplify the above expressions we have assumed
that ¢, ;=1. While the cycles of the primal algorithm
always satisfy this assumption, it is not necessary to
the proof of theorem I or the corollaries.
Since the existence of R* is guaranteed by (C.6), we
may multiply both sides of (C.12) by R*. The result is
R*ﬁd,jzR*ad,j— R*ap,jad, Je

(C.13)

Now we may use (C.5) as a basis for substitution into

the right side of (C.13). This leads to

R* ad ji=Qn,j + A —Qp, jan,J (Cl4)
which has been simplified by substitution from (C.8).
We can employ (C.11) as a basis for substitution into
the right side of (C.14) to obtain
R* a(l Jj an J+A_]7 (CIS)
which is, incidentally, an algebraic expression of the
rule of parallel movement stated in part III.
We shall prove theorem I for two mutually exclusive
and collectively exhaustive cases: (i) dq,;j=0, and

(i) da,j #0. Case (i) can be proved on the basis of

(C.15). If @q4,;j=0, then the right side of (C.15) must
equal zero. Since (C.7) requires that A; be nonnega-
tive, @y, ; must be nonpositive. By analogy to (C.4)
we have

A-=R*&d j— @, j. (C.16)
Now if F )# 0, then R* exists and is finite. There-
fore, A =—a,,;=0.

Before proceeding to a proof for case (ii) we shall
develop algebraically some further implications of
our assumptions. If a4 ;j# 0 we may divide (C.15) by
daq, j, which results in

R* = &",j/éd,j+ Aj/(‘l\d,}', or (Cl?)
_A /ad J an j/a(i Je (Clg)
We shall use (C.18) to relate R* to R*. By analogy
to (C.3) the definition of i
R*= max [d,, jlda,j]= max [R*—Aj/ay, ;.
xjeF(+) - xjeF(+) (C.19)

We shall use the 1ndex J* to designate a variable in
F(+) which has an, 7+ |Ga, 7> =R*. The hypothesis

of (C.10) establishes the existence of x7+. From (C.19)
it must be that for all xjeF(+),
AV |@g, 3+ < Ajlda, ;. (C.20)

We can use (C.18) and the definition of f* as a basis
for substitution into (C.19) to secure the following re-
lation between R* and R*:

A

R*=R*—Ap [da, 7.

(C.21)
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Now we are ready to undertake an algebraic re-
vision of (C.16) which will provide the basis for the
proof. First aq,; is factored out of the right side,
yielding,

Aj=aq AR*— (€.22)

&n,j/&(l,j]-

Next we use (C.18) as a basis for substitution into
(C.22). The result is

Aj=aq, {R* — R*+ Ajlda. ;). (C.23)
Finally we substitute on the basis of (C.21) into (C.23)
to obtain
Aj= aa, 1A/ aa, ;— A7 [da. 5. (C.24)
To prove theorem I for case (ii) we shall consider
two subcases: (iia) da.; >0, and (iib) da.;<0. In
case (iia), (C.24) and (C.20) imply A;=0. In case
(iib) both of the fractions in the brackets on the right
side of (C.24) must be nonpositive. This implies
Aj = ().

1.4. Proofs for Selected Corollaries to Theorem I

In this section we shall present proofs for most of
the corollaries to theorem I which are given in chapter
III. We omit proofs of IE and 1J. The proof of 1E
is omitted since this corollary differs trivially from
IF. Corollary 1J follows by induction from theorem I.
The assumed conditions of theorem I are implicitly
included with the assumed conditions of each of the
following corollaries.

COROLLARY IA

[A;=0=>44 ;< 0]=>R*>R*. (C.25)

ProOF. The assumed condition implies dq, ;>0
=>A; # 0=>A; > 0. Therefore, since by definition
dq, 7 >0, we must have An >0. These facts, in
conjunction with (C.21) imply R* > R*.

COROLLARY 1B  There exists an x; such that A;=0
and dq, ;>0 if and only if R* =R*. (C.26)

Proor. If R*=R*, then from (C.21), A% /dq, 7+ =0.
Since by definition d@gq, j» >0, the “if”” part of the
corollary is satisfied by xj= x7-.

Now if we assume x; exists, we can conclu% from
(C.20) that A7, =0. Then (C. 21) implies R* =

COROLLARY IC

R* = R*.
PROOF. A proof follows directly from (C.21) since

A7 =0 and dq4, > 0.
COROLLARY ID
Ay>0forall j#J=>R*>R*.  (C.27)

PRrROOF. Since x,¢F, clearly xp # x,. Moreover,
xf # xp (where x, is the newly nonbasic variable that

“replaces” x; in F), since —aq, ;=8q,, <0, and dy, 7
> 0. Therefore A >0, which together with (C.21)
implies R* > R*.

COROLLARY IF  Before stating this corollary we shall
define the sets E, and E,,.

E, = {x;|x;eF and A;=0}
En = {Xj|Xj€ﬁ and A,-ZO}.
The corollary is

RE— R =) (C.28)

Proog. We shall first consider any xjeE, which is
also in F'. Here there are two cases: (i) @4, ;=0, and
(11) da,j#0. In case (i), Aj7=0 and (C.15) imply
an, J—() This permits the conclusmn from (C.16),

that Aj 0. In case (ii) we note that the term in
brackets on the right side of (C.23) vanishes. Hence
Aj:().

It remains to consider x,, the newly nonbasic variable
which replaces x; in Since an, ,=0= aq, p, we may
use (C.4) to infer that A,=0. Depending on whether
da, p is or is not equal to zero we can apply an analysis
identical to case (i) or case (ii) above to conclude in
either event that A, = 0.

We have shown that if R*=R* then xjeD"(E,)
=> xjel,. Now we shall show that if R*=R*
xjell,=> xjeD*(E,). This is true if Aj:():> A;j=0.

Again we consider two cases (i) da,j=0 and (ii) a@q,;
20, Injcase (i) (C.16) and A;= 0 imply an. j= 0, which,
with (C.15) 1mplies Aj=0. In case (i) Aj=0 and
(C.23) imply A;=0.
COROLLARY 1G
>R¥=>[A=0=>4,,=0] (C.29)
Proor.
we obtain

By rearrangement of the terms in (C.16)

R*84, ;= 8n,;+ A, (C.30)
If (C.30) is subtracted from (C.15) the result is
Rearrangement of (C.31) gives
A Ai—A;
aq, j :——R":—I{* (C.32)

By hypothesis the denominator on the right side of
(C.32) cannot be negative. Therefore, A;=0 implies
aq,j = 0.

COROLLARY IH

R*=0
R*<o0l=>43,,=<0.

A
aq,;<0
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Proor. This follows directly from (C.15) where by
hypothesis the left side must be nonpositive. Hence
an,j <0, since A;=0.

We observe that the proof is independent of the
assumption R* < 0. This assumption is included for
a psychological rather than a logical purpose: to
emphasize the application of the corollary to the
tableau in which R* first “goes negative.”
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