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A Variant of the Two-Dimensional Riemann Integral

A. ]. Goldman

(December 1, 1964)

For a variant of the two-dimensional Riemann integral suggested by S. Marcus, it is shown that
the only integrable functions which are continuous (or merely continuous separately in one of the

variables) are the constant functions.

The integrable discontinuous functions are proven to be con-

stant except possibly on a set which is ““small” in a sense made precise in the paper.

In this note the term rectangle means a nondegen-
erate closed rectangular region in the (x, y)-plane,
with sides parallel to the coordinate axes. The area
and maximum side length of a rectangle R are denoted
|R |4 and | R |s respectively.

A partition o of rectangle R is a finite collection of
nonoverlapping rectangles with R as union. If fis a
real-valued function defined on R, then to each par-
tition o there corresponds the class of Riemann sums

S{f(P)|]|a:Jea}

resulting from various choices of points Pse/ for each
Jea. The ordinary Riemann integral of f over R can
be defined as the limit (if it exists) of Riemann sums
for partitions o with

|o|s=max {|J]|s:Jea}—0. (1)

Marcus ! proposed studying the analogous integral —
which we will call the (4)-integral . . . which arises
when (1) is replaced by

|o|a=max {|/J|4:Jea}—0. 2)

He observed that the continuous function f(x, y)=x«
fails to be (4)-integrable.

We shall show in the present note that this is all
too typical. It follows readily from our first theorem
that the only (A)-integrable functions which are con-
tinuous (or merely continuous in at least one variable
at each point of R) are the constants. The following
results and arguments extend in a natural way to
higher dimensions.

1S, Marcus. On the Riemann Integral in Two Dimensions, Amer. Math. Monthly 71
(1964), pp. 544-545.

THEOREM 1. Let f be bounded on the rectangle

R=[a, b] X[e, d].
Then f is (A)-integrable on R if and only if there exists
a constant C with the property that for each n >0,
the projections X, on [a, b] and Y, on [c, d] of the set
S,={PeR: [f(P)—C|=n"1}
have closures X, and Y,, of measure zero.

PROOF: (a) Necessity. Let f be (A)-integrable over
R. For xela, b], set

Sr ) =sup {f(x, y):yelc, d]},
f()=inf {f(x, y):ye[c, d]},
and let ~A*(x) and A~ (x) be members of [¢, d] such that
flx, k() = f1 () —1/3 [f1(x) —f ()],
S, () <f-(0)+1/3 [fHx0) —f ()]

The value I of the (4)-integral of f over R can be
obtained as the limit of Riemann sums involving par-
titions o of R into vertical strips J. We may on the
one hand choose all the points P, to have the form

(xs, h*(j)), or on the other hand to have the form
(xs, h=(xy)). This shows that

I=(d—c¢) fbf(x, ht(x))dx = (d—c) fbf(x. h=(x))dx

(ordinary 1-dimensional Riemann integrals), and thus
that

b
f [f(x, h*(x) = flx, h=(x))]=0. (3)
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From this and the inequality

F(x)=f*(x, h*(x) —f~(x, h=(x)) = 1/3[f*(x) —f~(x)] = O
(4)

it follows that f*=/~ except on a subset of [a, b] of

measure 0. Thus there is a set X C [a, b] of measure
b— a, and a function g(x) defined on X, such that

flx, p=g)  for (x, y)eX X[c, d].

We can alternately obtain [ as the limit of Riemann
sums involving partitions of R into horizontal strips J,

with all the points P, having the same xeX as abscissa.
This shows that

I=(b—a) (d—c)glx) for xeX
and thus that g is constant, i.e.,

flx, y)=C

Similarly, there is a constant C'" and a set Y C [c, d]

of measure d —c such that f=C’ on [a, b] XY. Since
X XY is nonempty, we infer that C=C" and thus that

f=C  on (X X[c, d)U([a, b] X Y). (5)

for (x, y)eX X|[c, d].

For the nonnegative integrand F of eq (3), set

Zn={x€la, bl : F(x)=1/3n}.

We shall prove that X, C Z, and that w(Z,)=0; it
follows (as desired) that w(X,;)=0 and similarly that
w(Yy)=0.

Consider any xeX,. By (5), f(x,y)=C for some
yelc, d]l. Hence xeX, implies that f*(x)—f(x) = n!
and thus, by (4), that xeZ,, ie., X, CZ, Now
consider any partition 7 of [a,b].

wZ)=3{w(Zy N K): Kem} _
=3{uZ,NK): Kemr,u(Z, N K)> 0}
<3S{uwZ.NK):Kemr,Z, N K+ ¢}
<3{|K|:Kem,Z, N K# ¢},
where we have used the fact that w(Z, N K)> 0 only
if Z,, and hence Z,, meets the interior of K. For
each Kem choose xxeK, with the proviso that xxeZ,

if Z, N K# ¢. Then the preceding chain of inequali-
ties can be continued to

w(Z)<3n3S{F(xp-|K|:Kem,Z, N K+# ¢}
<3n3{F(xx)|K|:Kem}-

For fixed n, it follows from (3) that the last line (a
Riemann sum) can be made arbitrarily close to 0 for
suitable 7. Thus w(Z,) =0, completing the necessity
proof.

(b) Sufficiency. To clarify the situation, suppose
initially only that f/=C on a dense subset of R. Then
the oscillation of f at each point of S, is = 1/n. On
the other hand any point of R, at which the oscillation
of fis > 2/n, must lie in S,. From these two easily
proved remarks, plus well-known material on Riemann
integrability, it follows that f is Riemann integrable
if and only if each S, has measure zero, a requirement
weaker than the condition for (4)-integrability given
in the theorem.

Suppose now that f satisfies the condition. Re-
place f by f— C, which is (4)-integrable if and only if
fis. Thus we can assume C=0. Next introduce

fP=max (f,0) f=max (—f, 0);
then f=f") —f) is (A)-integrable over R if f*) and

f) are. Thus we can assume at the outset that f = 0,
and that X, and Y, are the projections of

S,={PeR ;f(P)=n"1}
Consider any 6 > 0. First choose n so large that
(6)
Since ,LL(/—Y_,,)IO, we can cover X, by the union of

the interiors of a finite set {/;: 1< i <m} of closed
subintervals of [a, b], such that

(b—a)(d—c)n=1 < 8/5.

ﬁ |1;| < {8/5B} /2 )

Z|1i| < 8/5B(d— o), ®

where B is_an upper bound for fon R. Similarly, we
can cover Y, by the union for the interiors of a finite
set {I[[:1<j=<n} of closed subintervals of [c, d],
such that

ZII}I < {8/5B}1/2, (9)

SI1| < 8586 —a) 0

In terms of the N=mn rectangles R;=1; X1}, we
have

Sy C U ;i jRij. (11)
Now consider any partition o of R such that
|o |4 <8/20BN, 12)
and any associated Riemann sum
S{f(P))-|J|a:Jea}- (13)

We partition the members of o, and thus the sum-
mands of (13), into five classes. First are the members
J of o which do not meet any R;j, and hence by (11)
do not meet S,. Then f(P;) < 1/n for each such J,

186



and so by (6) these J’s contribute < §/5to (13). Second
come the members of o which lie within some Rjj;
the contribution of these to (13) is <BZX; ;|Rij|a4,
which by (7) and (9) is < 8/5. Third are the members
of o, not considered so far, which contain a vertex
of some R;j; there are at most 4N of these, each of
area < |o |4, and so by (12) they add < §/5 to (13).
Fourth come those members of o, not previously con-
sidered, which meet a horizontal side of some Rj;.
Among these, consider for example those which for
fixed i meet at least one horizontal side of any

Rij: [ai, bi] X [Cj, dj] =]; X IJ’

Because these rectangles contain no vertex of any

Rij, they all lie in the vertical strip (a;, b;) X [c,d], so

that their contribution to (13) is < B(d—¢)|L;].

Summing over i, we find that the contribution of the
m

fourth class to (13) is SB((I—-C)EII; [, which by (8)

1
is <8/5. The fifth class is analogous to the fourth
except for referring to the vertical sides of the rec-
tangles R;j; like the fourth class it contributes < 8/5
to (13).

We have shown that the Riemann sum (13) is < &
whenever (12) holds. Since /= 0, it follows that the
(A)-integral of f over R exists (and is zero), completing
the sufficiency proof.

THEOREM 2. Let X* and Y* be subsets of [a, b] and

e, d] respectively. A necessary and sufficient condition

for the existence of an (A)-integrable function on R,
constant except on a set whose projections are X* and
Y*, is that

X*=UX% Y*=UY*
n n

where each

wXi) =Y =0
ProOOF: Necessity follows from theorem 1. To

prove sufficiency, assume X* and Y* admit representa-
tions of the indicated type. Set

n n
- * — ke
Xn_ U va Yn_ U Yma
1 1

then we have

X*=U X,, Y*=UY,,

M(Xn) =0, ,LL()_/") =0

Let #, and G, be the characteristic functions of
X, and Y, respectively, and set

F(x)=sup {n=1F(x)},

G(y)=sup{n'G.(y)},
S(x,y)=min {F(x),G(y) }

779-532 O-65—4

Then f = 0, and furthermore
X*XY*={PeR:f(P)>0},
XaXY,= {PER f(P) = n”_‘},

so that fis (A)-integrable by theorem 1.

THEOREM 3. Let X* and Y* be subsets of |a, b] and
[c, d] respectively. A necessary and sufficient condi-
tion for the (A)-integrability of every bounded function
which is constant except on a set whose projections
are X* and Y*, is that the closures of X* and Y* have
measure zero.

Proo¥: Sufficiency follows directly from theorem 1.
To prove necessity, let f be the characteristic function
of X* X Y*: then in the notation of theorem 1 we have
Xi=X* and Y,=Y*, so that by theorem 1 the (A4)-
integrability of f requires that the closures of X* and
Y* be of zero measure.

By specializing f(x, y), we can obtain results on 1-
dimensional integration (which could of course be
proved much more directly). Let F be a function
defined on [a, b] and X* a subset of [a, b], and con-
sider the conditions

F=0, (14)

X*={x€la, b]: F(x) > 0}, (15)
b

f F(x)dx=0. (16)

Note that (16) asserts the existence along with the
vanishing of the Riemann integral.

THEOREM 4. A necessary and sufficient condition
for the existence of an ¥ satisfying (14), (15), (16) is
that X* be an at most countable union of sets, each
with closure of measure zero. A necessary and suffi-
cient condition that every bounded ¥ obeying (14) and
(15) should also satisfy (16), is that the closure of X*
have measure zero.

PRroOOF: (a) To any F satisfying (14) and (15), we can
associate a function f defined on R=[a, b] X[0, 1] by
setting

flx, 0)=F(x), flx, »=0

Then f is zero except precisely on X* X {0}, and is
bounded if and only if F is. It is easy to show that f
has a (necessarily vanishing) (4)-integral over R if
and only if (16) holds.

If there exists an F satisfying (14), (15), and (16),
then the corresponding f is (A4)-integrable and so X*
is as in theorem 2. This proves the necessity part
of the first assertion.

If the closure of X* has measure zero, then for each
bounded F obeying (14) and (15), it follows from
theorem 3 that the corresponding f is (4)-integrable
and thus that F satisfies (16). This proves the suffi-
ciency part of the second assertion.

for ye(0, 1].
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(b) Assume X* is an at most countable union of sets
whose closures have measure zero. By the sufficiency

proof of theorem 2, there is an (A4)-integrable function
fon R such that f=0 and

X*x {0} ={PeR:fiP) > 0}.

This implies that F(x)=f(x, 0) satisfies (14), (15), and
(16). Thus the sufficiency part of the first assertion
is proved.

(c) Suppose every bounded F which obeys (14) and
(15) also satisfies (16). In particular this applies to the
characteristic function F, of X*. The function f,
which is associated to Fy as in (a), is simply the char-
acteristic function of X* X {0}. Because F, obeys
(16), fo must be (4)-integrable, and as in the necessity
proof of theorem 3 it follows that the closure of X* has
measure zero. Thus the necessity part of the second
assertion is proved.

(Paper 69B3—-152) |
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