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A Variant of the Two-Dimensional Riemann Integral 

A. J. Goldman 

(December 1, 1964) 

For a va riant of the two-d imensional Ri e mann int egra l suggested by S. Marcus , it is shown that 
the only integrab le fun c tions which are continuous (o r merely continuou s se parately in one of th e 
variables) are the cons ta nt fun ctions . The int egrab le di scontinuou s functions a re proven to be con
s ta nt except poss ib ly on a se t which is "s ma ll" in a sense made precise in the paper. 

In this note the term rectangle means a nondegen
erate closed rectangular region in the (x, y)-plane, 
with sides paralle l to the coordinate axes . The area 
and maximum side length of a rectangle R are denoted 
I RIA and I R Is res pectively. 

A partition a- of rectangle R is a finite collection of 
nonoverlapping rectangles with R as union. If/is a 
real-valued function defined on R, then to each par
tition a- there corresponds the class of Riemann sums 

resulting from various choi ces of points PJEJ for each 
JEa-. The ord inary Ri e mann integral of / over R can 
be defined as the limit (if it, exists) of Riemann sums 
for parti tions a- with 

THEOREM 1. Let f be bounded on the rectangle 

R = [a, bl X [c, d]. 

Then f is (A)-integrab le on R i/ and only i/ there exists 
a constant C with the property that for each n > 0, 
the projections XI! on [a, bl and Yn on [c , dl a/the set 

Sn= {PER: I f(P)-C I ~ n- 1} 

have closures Xn and Y n 0/ measure zero. 
PROOF: (a) Necessity. Let / be (A)-integrable over 

R. For xE[a , b], set 

/ +(x) = sup {f(x , y): yE [c, d]}, 

j '-(x)=inf {f(x , y):YE[C, d]} , 

Ia-I s= max {IJ ls: Jw}--,;O. (1) and let h+(x) and h- (x) be members of [c , dJ such that 

Marc us 1 proposed studying the analogous integral
which we will call the (A)-integral ... which arises 
when (1) is replaced by 

(2) 

He observed that the continuous function lex, y) = x 
fails to be (A)-integrable. 

We shall show in the present note that thi s is all 
too typical. It follows readily from our first theorem 
that the only (A)-integrable function s which are con
tinuous (or merely continuous in at least one variable 
at each point of R) are the constants. The following 
results and arguments extend in a natural way to 
higher di mensions. 

I S. Marcus. 0 11 the Rie mann Integral in Two Dimcns iuns. A Tllf' r. Math. Monthl y 71 
(1964), pp. 544- 545. 

lex, h+(x» ~ / +(x) -1/3 [f+(x) - I - ex)], 

lex , h- (x» :%f(x) + 1/3 [f+(x) - / - (x)]. 

The value I of the (A)-integral of / over R can be 
obtained as the limit of Riemann sums involving par
titions a- of R into vertical strips J. We may on the 
one hand choose all the points PJ to have the form 
(xJ, h+(.i» , or on the other hand to have the form 
(xJ, h7 (xJ». This shows that 

I =(d-c) flex, h+(x»dx=(d-c) Jab /(x, h- (x))dx 

(ordinary I-dimensional Riemann integrals), and thus 
that 

1: [{(x , h+(x» - lex, h-(x))] = o. (3) 
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From this and the inequality 

F(x) = f +(x, h +(x)) - f - (x, h- (x)) ~ 1/3[f+(x) - f - (x)] ~ 0 

(4) 

it follows that f+ = f - except on a subset of [a, b] of 
measure O. Thus there is a set X C [a, b] of measure 
b - a, and a function g{x) defined on X, such that 

f(x, y)=g(x) for (x, y)EX X [c, dl. 

We can alternately obtain I as the limit of Riemann 
sums involving partitions of R into horizontal strips ], 
with all the points PJ having the same xEX as abscissa. 
This shows that 

1= (b - a) (d - c}g{x) for xEX 

and thus that g is constant, i.e., 

f(x, y)=c for (x, y)EX X [c, d]. 

Similarly, there is a constant C' and a set Y C [c, d] 
of measured-c such thatf=C' on [a, blxY. Since 
X X Y is non empty , we infer that C = C' and thus that 

f=C on (Xx[c, d])U([a, b]xY). (5) 

For the nonnegative integrand F of eq (3), set 

Zn= {xE[a, b]: F(x)~ 1/3n} . 

We shall prove that Xn C ~n and that f.1-(Z/l) = 0; it 
fol!9ws (as desired) that f.1-(Xn) = 0 and similarly that 
f.1-(Yn)=O. 

Consider any XEXn. By (5), f(x, y) = C for some 
YE[C, d]. Hence xEXn implies that f +(x) - f - (x) ~ n- 1 

and thus, by (4), that XEZn, i.e., Xn C Zn. Now 
consider any partition 1T of [a,b]. 

f.1-(Z,,)='i, {f.1-(~n n K): KE1T} _ 
= 'i, {f.1-(Zn n K): KE1T, f.1-(Zn n K) > O} 

~ 'i, {f.1-(Zn n K): KE1T,Zn n K~ cf>} 

~ 'i, { 1 K 1 : KE1T, Z n n K ~ cf>}, 

wh~re we have used the fact that f.1-(Zn n K) > 0 only 
if Z n, and hence Z n, meets the interior of K. For 
each KE1T choose XKEK, with the proviso that XKEZ" 
if Z n n K ~ cf>. Then the preceding chain of inequali
ties can be continued to 

f.1-(Z n) ~ 3n 'i, {F(XK)·I K 1 : KE1T, Z n n K ~ ¢} 

~ 3n 'i, {F(XK)' 1 K 1 : KE1T}' 

For fixed n, it follows from (3) that the last line (a 
Riemann sum) can b~ made arbitrarily close to 0 for 
suitable 1T. Thus f.1-(Z,,) = 0, completing the necessity 
proof. 

(b) Sufficiency. To clarify the situation, suppose 
initially only that f = C on a dense s uQ.set of R. Then 
the oscillation of f at each point of S" is ~ l/n. On 
the other hand any point oCR, at which the oscillation 
of f is > 2/n, must lie in Sn. From these two easily 
proved remarks, plus well-known material on Riemann 
integrability, it fol19ws that f is Riemann integrable 
if and only if each Sn has measure zero, a requirement 
weaker than the condition for (A}-integrability given 
in the theorem. 

Suppose now that f satisfies the condition. Re
place f by f- C, which is (A)-integrable if and only if 
fis. Thus we can assume C = 0. Next introduce 

f +) = max (f,0) f-) =max (-f, 0); 

then f= f +)-f - ) is (A)-integrable over R if f +) and 
f-) are. Thus we can assume at the outset thatf ~ 0, 
and that Xn and Yn are the projections of 

Consider any 8 > O. First choose n so large that 

(b - a) (d - c)n - I < 8/5. (6) 

Since /LeXn) = 0, we can cover Xn by the union of 
the interiors of a finite set {Ii: 1 ~ i ~ m} of closed 
subintervals of [a, b], such that 

In 

~ 1 Ii 1 < {8/5B}1 /2, (7) 
m 

~ 1 Ii 1 < 8/5B(d - c) , 
(8) 

where B is~n upper bound for f on R. Similarly, we 
can cover Yn by the union for the interiors of a finite 
set {Ij: 1 ~j ~ n} of closed subintervals of [c, d], 
such that 

It 

L 1 I; 1 < {8/5B} 1/2, 
1 
n + 1 I; 1 < 8/5B(b - a). 

(9) 

(10) 

In terms of the N = mn rectangles R ij = Ii X IJ, we 
have 

(11) 

Now consider any partition (J of R such that 

1 U IA < 8/20BN, (12) 

and any associated Riemann sum 

(13) 

We partition the members of (J, and thus the sum
mands of (13), into five classes. First are the members 
j of (J which do not meet any Rij , and hence by (11) 
do not meet Sn. Then f(P j ) < l/n for each such j, 
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and so by (6) these J's contribute < 0/5 to (13). Second 
come the members of (J" which lie within some Rij; 
the contribution of these to (13) is ~ B L; ,j I Rij I A, 

which by (7) and (9) is < 0/5. Third are the members 
of (J", not considered so far, which contain a vertex 
of some Rij; there are at most 4N of these, each of 
area ~ I (J" I A, and so by (12) they add < 0/5 to (13). 
Fourth come those members of (J", not previously con· 
sidered, which meet a horizontal side of some Rij. 
Among these, consider for example those which for 
fixed i meet at least one horizontal side of any 

I 
Because these rectangles contain no vertex of any 
R;j, they all lie in the vertical strip (ai, bi ) X [c, d], so 
that their contribution to (13) is <B(d-c)II;I. 
Summing over i, we find that the contribution of the 
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fourth class to (13) is ~ B (d - c) 2: I Ii I, which by (8) 
1 

is < 0/5. The fifth class is analogous to the fourth 
except for referring to the vertical sides of the rec
tangles R ij ; like the fourth class it contributes < 0/5 
to (13). 

We have shown that the Riemann sum (13) is < 0 
whenever (12) holds. Since f ~ 0, it follows that the 
(A)-integral of f over R exists (and is zero), completing 
the sufficiency proof. 

THEOREM 2. Let X* and y* be subsets oJ[a, b] and 
[c, d] respectively. A necessary and sufficient condition 
for the existence of an (A)-integrable function on R, 
constant except on a set whose projections are X * and 
Y*, is that 

X* = U X';" Y*= u Y,;, 
n " where each 

PROOF: Necessity follows from theorem 1. To 
prove sufficiency, assume X* and y* admit representa
tions of the indicated type. Set 

then we have 

" X" = U X,;' , 
1 

X*= U X n , 
n 

n 

Yn= U Y,;,; 
I 

Y*= U Yn, 
n 

Let F" and Gn be the characteristic functions of 
Xn and Y" respectively, and set 

F(x) = sup {n - IF,,(x)}, 

G(y) = sup {n- I Gn(y)}, 

f(x,y) = min {F(x),G(y)}· 

Then f ~ 0, and furthermore 

X* X Y*={PeR :f(P) > a}, 

x" X Y,,= {PeR :f(P) ~ n-.I }, 

so that fis (A)-integrable by theorem 1. 

THEOREM 3. Let X* and y* be subsets of [a, b] and 
[c, d] respectively. A necessary and sufficient condi
tion for the (A)-integrability of every bounded function 
which is constant except on a set whose projections 
are X* and Y*, is that the closures ofX* and y* have 
measure zero. 

PROOF: Sufficiency follows directly from theorem 1. 
To prove necessity, let f be the characteristic function 
of X* X Y*; then in the notation of theorem 1 we have 
XI = X* and YI = Y*, so that by theorem 1 the (A)
integrability of f requires that the closures of X* and 
y* be of zero measure. 

By specializing f(x, y), we can obtain results on 1-
dimensional integration (which could o( course be 
proved much more directly). Let F be a function 
defined on [a, b] and X* a subset of [a , b], and con
sider the conditions 

X*= {xera , b]: F(x) > a} , 

Ib F(x)dx = 0. 
(I 

(14) 

(15) 

(16) 

Note that (16) asserts the existence along with the 
vanishing of the Riemann integral. 

THEOREM 4. A necessary and sufficient condition 
for the existence of an F satisfying (14), (15), (16) is 
that X* be an at most countable union of sets, each 
with closure of measure zero. A necessary and suffi
cient condition that every bounded F obeying (14) and 
(15) should also satisfy (16), is that the closure of X* 
have measure zero. 

PROOF: (a) To any F satisfying (14) and (15), we can 
associate a function f defined on R = [a , b] X [0, 1] by 
setting 

f(x, 0) = F(x),f(x, yJ = ° for ye(O, 1]. 

Then f is zero except precisely on X* X {OJ, and is 
bounded if and only if F is. It is easy to show that f 
has a (necessarily vanishing) (A)-integral over R if 
and only if (16) holds. 

If there exists an F satisfying (14), (15), and (16), 
then the corresponding f is (A)-integrable and so X* 
is as in theorem 2. This proves the necessity part 
of the first assertion. 

If the closure of X* has measure zero, then for each 
bounded F obeying (14) and (15), it follows from 
theorem 3 that the corresponding f is (A)-integrable 
and thus that F satisfies (16). This proves the suffi
ciency part of the second assertion. 
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(b) Assume X* is an at most countable union of sets 
whose closures have measure zero. By the sufficiency 
proof of theorem 2, there is an (A)-integrable function 
/ on R s uch that f ~ 0 and 

X* X {OJ = {PER :j(P) > OJ . 

Thi s implies that F(x) = /(x , 0) satisfies (14), (15), and 
(16). Thus the sufficiency part of the first assertion 
is proved. 

(c) Suppose every bounded F whic h obeys (14) and 
(15) also satisfies (16). In particular this applies to the 
characteristic function Fo of X*. The function /0, 
which is associated to Fo as in (a), is simply the char
acteristic function of X* X {OJ. Because Fo obeys 
(16), /0 must be (A)-integrable , and as in the necessity 
proof of theorem 3 it follows that the closure of X* has 
measure zero. Thus the necessity part of the second 
assertion is proved. 

(Paper 69B3-152) 
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