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It is s hown th at a metri c on a linear s pace, if convex in each variable, must a lso be invarian t under 
tran sla ti on . and so mu st ari se from a norm. The ques tion occurs in connection with de te rminin g the 
optimal loca tion of a central facility. 

Introduction 
Given a finit e number of points PI, ., PI." in th e 

plane, consider the proble m of findin g a point x that 
minimizes the sum of Euclidean distances 'Ld(p; , x) . 
More general versions of thi s proble m arise in s patial 
economics, concerning opti mal locations for a central 
office , plant, or ware ho use (compare [3]). Mos t of 
these will be based on me trics d more general than th e 
Euclidean metric. Among them, th e class of metri cs 
that are convex fun ctions in each variable co mmand 
partic ular interest: in thi s case, local minima are 
automati cally global minima, facilitating minimization 
decisively. We s hall show in thi s paper that convex 
metrics are invariant under translation, and therefore 
arise from a norm. For th e concepts of topologies, 
metrics , and norms in linear spaces see, for instance, 
[1)2 and [2]. 
1. Metrics and norms. Le t L be a linear s pace over 
the fi eld R of real numbers. A fun ction f: L -7 R is 
convex if 

f('Ax + fLY) ~ V(x) + fLf(y) 

holds for all x, y ELand all A, fL ~ 0 with A + fL = 1. 
A weak metric in L is a fun ction d: L x L -7 R sati s­

fying the axioms: 

(Ml) d(x, y) ~ 0 for all x, y E L, 

(M2) d(x, x) = 0 for all x E L, 

(M3) d(x, z) ~ d(x, y) + d(y, z) (triangle inequality). 

d is not necessarily a full·fledged metric in that it need 
not satisfy the axioms of definiteness 

(M4) d(x, y) = 0 implies x = y 

and symmetry 

(MS) d(x, y) = d(y, x). 

1 Supported by U.S. Post Office Department , Office of Research a nd Ellgineerilll,!:. This 
does not imply offic ial e ndorse ment of t he vie ws exp ressed. 

2 fi gures in bracke ts indica te the litera ture refe rences at the end of thi s pape r. 

If d is a weak metric in L, then so is d*, which is 
defined by d*(x , y): = d(y, x). Both metrics coincide 
if d is symm etri c . 

The purpose of thi s paper is to examine weak me tri cs 
that are convex fun ction s. Such metri cs are, for 
instance, generated by "weak norms." A weak norm 
is a fun ction n : L -7 R whic h sati sfi es the followin g 
three axioms (for all x , y E L): 
(Nl) n(x) ~ 0 

(N2) n(ax) = an(x) for a ~ 0 (homogeneity) 

(N3) n(x + y) ~ n(x) + n(y). 

As a consequence of (N2) we have n(O) = O. If n ful­
fills also 

(N4) n(x) =0 implies x=O, 

then n is a proper norm. 
A weak norm may be employed to define a metric 

by putting 

d(x, y) : = n(x - y). 

The axioms (Ml), (M2), (M3) are readily verified. Note 
that n need not satisfy (N2) in order to define a weak 
metric. For instance n(x): = JXJl /2 defines a weak 
metric on R without being homogeneous. We call a 
weak metric which is generated by a weak (homo­
geneous) norm normal. 

2. Homogeneous weak metrics . Every normal weak 
metric is invariant under translation: 

d(x+u, y+u)=d(x, y) for all x, y, u. 

However, as the example d(x, y): = Ix - yll/2 illustrates, 
invariance under translation does not guarantee nor­
mality. We need additional hypotheses, and we there­
fore introduce the following concept of homogeneity. 
A weak metric is called homogeneous in the first argu­
ment if for all x, u ELand a ~ 0 one has 

d(x+au, x)=ad(x+u, x). 
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A weak metric d is normal if and only if it is both 
invariant under translation and homogeneous in either 
the first or the second argument. Indeed, if d is trans­
lation invarIant, then it ~an be written as d(x, .y) 
= n(x - y), where n is defined by n(v): = d(v, 0). If d 
is homogeneous, then so is n, and the triangle inequality 
implies (N3). 

Now it turns out that homogeneity implies invariance 
under translation. The following theorem was sug­
gested by A. 1. Goldman. 

THEOREM 1: If a weak metric d in a -linear space is 
homogeneous in its first argument, then it is also 
invariant under translation and therefore normal. 

PROOF: The theorem is a consequence of the follow· 
ing relation 3 

(T) 
1 

d(x, y) .s; - d(x, x + u) 
a 1 

+ d(x+u, y+ u)+- d(y+ u, y) 
a 

which holds for all x, y, u in L and all a > o. Indeed, 
letting a ~ + 00 we obtain d(x, y).s; d(x + u, y+ u) for 
all x, y, u in L. Replacing x, y, u by x + u, y+ u, - u 
gives d(x + u, y+ u) .s; d(x, y). 

We proceed to prove relation (T). By homogeneity 
and the triangle inequality (M3), we get 

1 
d(x, y)= - d(y+a(x-y), y) 

a 

.s;..!.. d(y+ a(x- y), y+ u) +1 d(y+ u, y). 
a a 

Again by homogeneity and (M3), it follows that 

1 
- d(y +a(x-y), y+u 
a 

1 
+ d(x + u , y+ u) =- d(x, x+u)+d(x+u, y+u), 

a 

which remained to be shown. 
In the presence of invariance under translation, 

there is no difference between homogeneity in the 
firs t and homogen eity in the second argument: 
d(x+au, x)=ad(x+u, x) implies d(x , x+a(-u)) 

:) The prouf of Theorem I via relation (T) has been suggested by the referee of the Ameri­
can Mathematical Monthly to which thi s paper had been submitt ed previously. The ori g­
inal more geometric version of the pruuf can be found in an infurmal communication by 
this author. 

= ad(x, x + (- u) ). Hence theorem 1 admits the 
following 

COROLLARY: If a weak metric d is homogeneous in its 
first argument, then it is also homogeneous in its sec­
ond argument. 

3. Convex weak metrics. If a weak metric d is convex 
in its first argument then, 

d(h + fl-Y, z) .s; 'Ad(x, z) + fl-d( y, z) 

for all x, y, zEL and all 'A, fl- ~ 0 with 'A + fl-= 1. Normal 
metrics are convex in each argument. The converse 
of this statement will be the main result of this section. 
As a first step in this direction we prove the 

THEOREM 2: A weak metric d which is convex in each 
argument is also homogeneous in each argument. 

PROOF. The equation d(x + au , x) = ad(x + u, x) is 
clearly correct whe n a = 0 or a = 1, and the case a > 1 
can be reduced to the case a < 1 by replacing a by 
1 
- and u by au. Thus we may assume 0 < a < 1. By 
a 

convexity in the first argument, 

d(x+au, x)=d(a(x+ u) +(1-a)x, x).s;ad(x+ u , x) 

+ (1- a)d(x, x) = ad(x + u, x). 

To prove the inequality in the opposite direction , we 
use the triangle inequality and convexity in the sec­
ond argument to write 

d(x+ u, x)-d(x + au, x).s; d(x+ u , x+ au) 
= d(x + u, a(x + u) + (1- a)x) .s; ad(x + u , x + u) 

+ (1-a)d(x+ u , x)= (1-a)d(x+ u , x), 

from which it follows that ad(x + u, x) .s; d(x + au, x) 
as desired. Homogeneity in the second argument is 
proved analogously. 

Theore m 2, together with Theorem 1, establis hes 
our main theorem: 
THEOREM 3. A weak metric d which is convex in 
both arguments is normal. 

Let us turn to another question. If L is a linear 
space, then so is Lx L. This brings up the question 
of how joint convexity of d, that is, convexity of d as 
a function on L x L , relates to separate convexity in 
each argument. H ere we have 

THEOREM 4: If a weak metric d is convex in each argu­
ment separately, then d is also a convex function on 
Lx L. 
The surprising fact about this theorem is that it is 
apparently not possible to conduct a proof by simple 
combination of the inequalities that define convexity 
in each argument separately. The proof presented 
here relies on our main theorem 3 in that it uses the 
fact that d can be expressed by a weak norm n. 
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Joint convexity requires 

d(A(X, y) + /L(u, v)) = d{Ax + /Lu , AY+ /Lv) 

~ Ad(x, y) + /Ld(u, v) 

to hold for all x, y , U, v and all A, /L ;:;: 0 with A + /L = l. 
Now we have for a normal weak metric 

d(Ax + /LU , AY + /Lv) = n{A(x - Y) + /L(u - v)) ~ An{x - y) 

+/Ln(u-v)=Ad(x, Y)+ /Ld(u, v). 

4. A counter example. Convexity in one argument 
only is not sufficient to establish invariance under 
translation. This is shown by the following example. 

Let L be the line of real numbers, and define d:L -7 R 
as follows 

d(x, y ): = 

2(y-x) 

2(x-y) 

2x-y 

x - Y 

if x < Y 

if 0 ~ y ~ x 

if y < 0 ~ x 

if Y ~ x < O. 

It is easily verified that d is a weak metric and convex 
in the first argumen t. However, d is not invariant 
under translation. 

The author is indebted to A. J. Goldman for his 
interest, criticisms and sugges tions, and to the referee 
of the American Mathematical Monthly for a simpli­
fication to the proof of Therom 1. 
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