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It is s hown th at a metri c on a linear s pace, if convex in each variable, must a lso be invarian t under 
tran sla ti on . and so mu st ari se from a norm. The ques tion occurs in connection with de te rminin g the 
optimal loca tion of a central facility. 

Introduction 
Given a finit e number of points PI, ., PI." in th e 

plane, consider the proble m of findin g a point x that 
minimizes the sum of Euclidean distances 'Ld(p; , x) . 
More general versions of thi s proble m arise in s patial 
economics, concerning opti mal locations for a central 
office , plant, or ware ho use (compare [3]). Mos t of 
these will be based on me trics d more general than th e 
Euclidean metric. Among them, th e class of metri cs 
that are convex fun ctions in each variable co mmand 
partic ular interest: in thi s case, local minima are 
automati cally global minima, facilitating minimization 
decisively. We s hall show in thi s paper that convex 
metrics are invariant under translation, and therefore 
arise from a norm. For th e concepts of topologies, 
metrics , and norms in linear spaces see, for instance, 
[1)2 and [2]. 
1. Metrics and norms. Le t L be a linear s pace over 
the fi eld R of real numbers. A fun ction f: L -7 R is 
convex if 

f('Ax + fLY) ~ V(x) + fLf(y) 

holds for all x, y ELand all A, fL ~ 0 with A + fL = 1. 
A weak metric in L is a fun ction d: L x L -7 R sati s

fying the axioms: 

(Ml) d(x, y) ~ 0 for all x, y E L, 

(M2) d(x, x) = 0 for all x E L, 

(M3) d(x, z) ~ d(x, y) + d(y, z) (triangle inequality). 

d is not necessarily a full·fledged metric in that it need 
not satisfy the axioms of definiteness 

(M4) d(x, y) = 0 implies x = y 

and symmetry 

(MS) d(x, y) = d(y, x). 

1 Supported by U.S. Post Office Department , Office of Research a nd Ellgineerilll,!:. This 
does not imply offic ial e ndorse ment of t he vie ws exp ressed. 

2 fi gures in bracke ts indica te the litera ture refe rences at the end of thi s pape r. 

If d is a weak metric in L, then so is d*, which is 
defined by d*(x , y): = d(y, x). Both metrics coincide 
if d is symm etri c . 

The purpose of thi s paper is to examine weak me tri cs 
that are convex fun ction s. Such metri cs are, for 
instance, generated by "weak norms." A weak norm 
is a fun ction n : L -7 R whic h sati sfi es the followin g 
three axioms (for all x , y E L): 
(Nl) n(x) ~ 0 

(N2) n(ax) = an(x) for a ~ 0 (homogeneity) 

(N3) n(x + y) ~ n(x) + n(y). 

As a consequence of (N2) we have n(O) = O. If n ful
fills also 

(N4) n(x) =0 implies x=O, 

then n is a proper norm. 
A weak norm may be employed to define a metric 

by putting 

d(x, y) : = n(x - y). 

The axioms (Ml), (M2), (M3) are readily verified. Note 
that n need not satisfy (N2) in order to define a weak 
metric. For instance n(x): = JXJl /2 defines a weak 
metric on R without being homogeneous. We call a 
weak metric which is generated by a weak (homo
geneous) norm normal. 

2. Homogeneous weak metrics . Every normal weak 
metric is invariant under translation: 

d(x+u, y+u)=d(x, y) for all x, y, u. 

However, as the example d(x, y): = Ix - yll/2 illustrates, 
invariance under translation does not guarantee nor
mality. We need additional hypotheses, and we there
fore introduce the following concept of homogeneity. 
A weak metric is called homogeneous in the first argu
ment if for all x, u ELand a ~ 0 one has 

d(x+au, x)=ad(x+u, x). 
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A weak metric d is normal if and only if it is both 
invariant under translation and homogeneous in either 
the first or the second argument. Indeed, if d is trans
lation invarIant, then it ~an be written as d(x, .y) 
= n(x - y), where n is defined by n(v): = d(v, 0). If d 
is homogeneous, then so is n, and the triangle inequality 
implies (N3). 

Now it turns out that homogeneity implies invariance 
under translation. The following theorem was sug
gested by A. 1. Goldman. 

THEOREM 1: If a weak metric d in a -linear space is 
homogeneous in its first argument, then it is also 
invariant under translation and therefore normal. 

PROOF: The theorem is a consequence of the follow· 
ing relation 3 

(T) 
1 

d(x, y) .s; - d(x, x + u) 
a 1 

+ d(x+u, y+ u)+- d(y+ u, y) 
a 

which holds for all x, y, u in L and all a > o. Indeed, 
letting a ~ + 00 we obtain d(x, y).s; d(x + u, y+ u) for 
all x, y, u in L. Replacing x, y, u by x + u, y+ u, - u 
gives d(x + u, y+ u) .s; d(x, y). 

We proceed to prove relation (T). By homogeneity 
and the triangle inequality (M3), we get 

1 
d(x, y)= - d(y+a(x-y), y) 

a 

.s;..!.. d(y+ a(x- y), y+ u) +1 d(y+ u, y). 
a a 

Again by homogeneity and (M3), it follows that 

1 
- d(y +a(x-y), y+u 
a 

1 
+ d(x + u , y+ u) =- d(x, x+u)+d(x+u, y+u), 

a 

which remained to be shown. 
In the presence of invariance under translation, 

there is no difference between homogeneity in the 
firs t and homogen eity in the second argument: 
d(x+au, x)=ad(x+u, x) implies d(x , x+a(-u)) 

:) The prouf of Theorem I via relation (T) has been suggested by the referee of the Ameri
can Mathematical Monthly to which thi s paper had been submitt ed previously. The ori g
inal more geometric version of the pruuf can be found in an infurmal communication by 
this author. 

= ad(x, x + (- u) ). Hence theorem 1 admits the 
following 

COROLLARY: If a weak metric d is homogeneous in its 
first argument, then it is also homogeneous in its sec
ond argument. 

3. Convex weak metrics. If a weak metric d is convex 
in its first argument then, 

d(h + fl-Y, z) .s; 'Ad(x, z) + fl-d( y, z) 

for all x, y, zEL and all 'A, fl- ~ 0 with 'A + fl-= 1. Normal 
metrics are convex in each argument. The converse 
of this statement will be the main result of this section. 
As a first step in this direction we prove the 

THEOREM 2: A weak metric d which is convex in each 
argument is also homogeneous in each argument. 

PROOF. The equation d(x + au , x) = ad(x + u, x) is 
clearly correct whe n a = 0 or a = 1, and the case a > 1 
can be reduced to the case a < 1 by replacing a by 
1 
- and u by au. Thus we may assume 0 < a < 1. By 
a 

convexity in the first argument, 

d(x+au, x)=d(a(x+ u) +(1-a)x, x).s;ad(x+ u , x) 

+ (1- a)d(x, x) = ad(x + u, x). 

To prove the inequality in the opposite direction , we 
use the triangle inequality and convexity in the sec
ond argument to write 

d(x+ u, x)-d(x + au, x).s; d(x+ u , x+ au) 
= d(x + u, a(x + u) + (1- a)x) .s; ad(x + u , x + u) 

+ (1-a)d(x+ u , x)= (1-a)d(x+ u , x), 

from which it follows that ad(x + u, x) .s; d(x + au, x) 
as desired. Homogeneity in the second argument is 
proved analogously. 

Theore m 2, together with Theorem 1, establis hes 
our main theorem: 
THEOREM 3. A weak metric d which is convex in 
both arguments is normal. 

Let us turn to another question. If L is a linear 
space, then so is Lx L. This brings up the question 
of how joint convexity of d, that is, convexity of d as 
a function on L x L , relates to separate convexity in 
each argument. H ere we have 

THEOREM 4: If a weak metric d is convex in each argu
ment separately, then d is also a convex function on 
Lx L. 
The surprising fact about this theorem is that it is 
apparently not possible to conduct a proof by simple 
combination of the inequalities that define convexity 
in each argument separately. The proof presented 
here relies on our main theorem 3 in that it uses the 
fact that d can be expressed by a weak norm n. 

176 



I -

I 

Joint convexity requires 

d(A(X, y) + /L(u, v)) = d{Ax + /Lu , AY+ /Lv) 

~ Ad(x, y) + /Ld(u, v) 

to hold for all x, y , U, v and all A, /L ;:;: 0 with A + /L = l. 
Now we have for a normal weak metric 

d(Ax + /LU , AY + /Lv) = n{A(x - Y) + /L(u - v)) ~ An{x - y) 

+/Ln(u-v)=Ad(x, Y)+ /Ld(u, v). 

4. A counter example. Convexity in one argument 
only is not sufficient to establish invariance under 
translation. This is shown by the following example. 

Let L be the line of real numbers, and define d:L -7 R 
as follows 

d(x, y ): = 

2(y-x) 

2(x-y) 

2x-y 

x - Y 

if x < Y 

if 0 ~ y ~ x 

if y < 0 ~ x 

if Y ~ x < O. 

It is easily verified that d is a weak metric and convex 
in the first argumen t. However, d is not invariant 
under translation. 

The author is indebted to A. J. Goldman for his 
interest, criticisms and sugges tions, and to the referee 
of the American Mathematical Monthly for a simpli
fication to the proof of Therom 1. 
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