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It is shown that a metric on a linear space, if convex in each variable, must also be invariant under

translation, and so must arise from a norm.
optimal location of a central facility.

Introduction

Given a finite number of points pi, . . ., px in the
plane, consider the problem of finding a point x that
minimizes the sum of Euclidean distances 2d(p;, x).
More general versions of this problem arise in spatial
economics, concerning optimal locations for a central
office, plant, or warehouse (compare [3]). Most of
these will be based on metrics d more general than the
Euclidean metric. Among them, the class of metrics
that are convex functions in each variable command
particular interest: in this case, local minima are
automatically global minima, facilitating minimization
decisively. We shall show in this paper that convex
metrics are invariant under translation, and therefore
arise from a norm. For the concepts of topologies,
metrics, and norms in linear spaces see, for instance,

[1]* and [2].

1. Metrics and norms.
the field R of real numbers.

convex if

Let L be a linear space over

A function f:L— R is
SO+ py) < Af(x)+ pfly)
holds for all x, ye L and all A, =0 with A\+pu=1.
A weak metric in L is a function d:L X L. — R satis-
fying the axioms:
(M1) d(x, y)=0 for all x, yel,
(M2) d(x, x)=0 for all xeL,
(M3) d(x, z) < d(x, v) + d(y, z) (triangle inequality).

d is not necessarily a full-fledged metric in that it need
not satisfy the axioms of definiteness

(M4) d(x, y)=0 implies x=y
and symmetry
(M5) d(x, y)=d(y, x).

! Supported by U.S. Post Office Department, Office of Research and Engineering. This
does not imply official endorsement of the views expressed.
? Figures in brackets indicate the literature references at the end of this paper.

The question occurs in connection with determining the

If d is a weak metric in L, then so is d*, which is
defined by d*(x, y):=d(y, x). Both metrics coincide
if d is symmetric.

The purpose of this paper is to examine weak metrics
that are convex functions. Such metrics are, for
instance, generated by “weak norms.” A weak norm
is a function n:L— R which satisfies the following
three axioms (for all x, ye L):

(N1) n(x)=0
(N2) n(ax)= an(x) for a = 0 (homogeneity)
(N3) n(x+1v) < n(x)+ n(y).

As a consequence of (N2) we have n(0)=0. If n ful-

fills also
(N4) n(x)=0 implies x=0,

then n is a proper norm.
A weak norm may be employed to define a metric
by putting

d(x, v): = n(x—y).

The axioms (M1), (M2), (M3) are readily verified. Note
that n need not satisfy (N2) in order to define a weak
metric. For instance n(x):=|x|"? defines a weak
metric on R without being homogeneous. We call a
weak metric which is generated by a weak (homo-
geneous) norm normal.

2. Homogeneous weak metrics. Every normal weak
metric is invariant under translation:

dx+u, y+u)=dx, y) for all x, v, u.

However, as the example d(x, y): = |x — |2 illustrates,
invariance under translation does not guarantee nor-
mality. We need additional hypotheses, and we there-
fore introduce the following concept of homogeneity.
A weak metric is called homogeneous in the first argu-
ment if for all x, ue L and a = 0 one has

dx+ au, x) = ad(x+ u, x).
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A weak metric d is normal if and only if it is both
invariant under translation and homogeneous in either
the first or the second argument. Indeed, if dis trans-
lation invariant, then it can be written as d(x,.y)
=n(x —1y), where n is defined by n(v):=d(, 0). If d
is homogeneous, then so is n, and the triangle inequality
implies (N3).

Now it turns out that homogeneity implies invariance
under translation. The following theorem was sug-
gested by A. J. Goldman.

THEOREM 1: If a weak metric d in a-linear space is
homogeneous in its first argument, then it is also
invariant under translation and therefore normal.

ProOOF: The theorem is a consequence of the follow-
ing relation 3

M dex, ) <7 dx, x+w)

+dx+u, y+ u)+% dy+u,y)

which holds for all x, y, z in L and all @ > 0. Indeed,
letting o =+ we obtain d(x, y) < d(x+u, y+u) for
all x, vy, uin L. Replacing x, y, u by x+u, ytu,—u
gives dx+u, y+u) < dx, y).

We proceed to prove relation (T). By homogeneity
and the triangle inequality (M3), we get

dx, y)= % dy+ax—y), y)

=

R~

1
dytalx—y), y+tu+_dytu,y).
Again by homogeneity and (M3), it follows that

C% dy+alx—y), y+u

1 L
—ad<y+u+a<x y au),y+u>
1 1
=d(x+u——u, y+u> < d<x+u———u, x+u>
« «

+d(x+u, y+u)=éd(x, x+u)+dx+u, y+u),

which remained to be shown.

In the presence of invariance under translation,
there is no difference between homogeneity in the
first and homogeneity in the second argument:
dx+ au, x)=ad(x+u, x) implies  d(x, x+ a(—uw))

3The proof of Theorem 1 via relation (T) has been suggested by the referee of the Ameri-
can Mathematical Monthly to which this paper had been submitted previously. The orig-
inal more geometric version of the proof can be found in an informal communication by
this author.

=ad(x, x+(—u)). Hence theorem 1 admits the

following

COROLLARY: If a weak metric d is homogeneous in its
first argument, then it is also homogeneous in its sec-
ond argument.

3. Convex weak metrics. If a weak metric d is convex
in its first argument then,

d\x+ wy, 2) < Nd(x, z)+ pnd(y, z)

for allx, y,zeL and all A, w = O withA+pu=1. Normal
metrics are convex in each argument. The converse
of this statement will be the main result of this section.
As a first step in this direction we prove the

THEOREM 2: A weak metric d which is convex in each
argument is also homogeneous in each argument.

PrROOF. The equation d(x+ au, x)=ad(x+ u, x) is
clearly correct when a=0 or «=1, and the case a>1
can be reduced to the case <1 by replacing a by
By

1
- and u by au. Thus we may assume 0<a<1.

convexity in the first argument,
dx+au, x)=dalx+u)+ (1 —a)x, x) < adx+u, x)
+(1—a)dx, x)=adx+ u, x).

To prove the inequality in the opposite direction, we
use the triangle inequality and convexity in the sec-
ond argument to write

dx+u, x)—dx+au, x) <dx+u, x+ au)
=dx+u, ax+u)+(1—a)x) < adx+u, x+u)

+(1—a)dx+u, x)=(1—a)dx+u, x),

from which it follows that ad(x+u, x) < d(x + au, x)
as desired. Homogeneity in the second argument is
proved analogously.

Theorem 2, together with Theorem 1, establishes
our main theorem:
THEOREM 3. A weak metric d which is convex in
both arguments is normal.

Let us turn to another question. If L is a linear
space, then so is L X L. This brings up the question
of how joint convexity of d, that is, convexity of d as
a function on L X L, relates to separate convexity in
each argument. Here we have

THEOREM 4: If a weak metric d is convex in each argu-
ment separately, then d is also a convex function on
LXL.

The surprising fact about this theorem is that it is
apparently not possible to conduct a proof by simple
combination of the inequalities that define convexity
in each argument separately. The proof presented
here relies on our main theorem 3 in that it uses the
fact that d can be expressed by a weak norm n.

176



Joint convexity requires
d(\x, y)+ mu, v) =dA\x + pu, \y+ po)
< Nd(x, y)+ pd(u, v)

to hold for all x, y, u, v and all \, w = 0 with A\ + u=1.
Now we have for a normal weak metric

d\x + pu, Ny + puv)=n\(x —y) + wu—ov)) < An(x —y)
+ un(u—v)= Ad(x, y)+ nd(w, v).

4. A counter example. Convexity in one argument
only is not sufficient to establish invariance under
translation. This is shown by the following example.

Let L be the line of real numbers, and define d:L — R

as follows

2(y—x) ifx<y

Alre=1Y) fosy<x
dx, y):=

Ase=17 ify<0=x

SA—4Y if y=x<0.

It is easily verified that d is a weak metric and convex
in the first argument. However, d is not invariant
under translation.

The author is indebted to A. J. Goldman for his
interest, criticisms and suggestions, and to the referee
of the American Mathematical Monthly for a simpli
fication to the proof of Therom 1.
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