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Procedures are developed for expressing two-dimensional Fourier transforms in terms of tabu-

lated one-dimensional transforms.

In the theoretical solution recently obtained for
stationary spatial-coherence functions over radiating
apertures, [1]' the evaluation of the two-dimensional
Fourier integral of the far-field intensity distribution
is required. Since the appearance of such integrals
is also quite common in other areas of mathematical
physies, it would be useful to render their evaluation
amenable to the application of extensively tabulated
results available in the literature. (For examples of
such sources see [2], [4], [5], and [6].) For functions
of one variable, comprehensive tables of Fourier trans-
forms exist [2], and although it is possible to reduce
the k& dimensional Fourier transform of radial func-
tions 2 [3] to Hankel transforms [3, p. 69] for which
extensive tables [5] are available, there are no tables
giving the Fourier transform for k£ >1 of arbitrary
functions (i.e., nonradial) even in the case of £=2.
In this paper, the two-dimensional Fourier transform
is reduced to a form which facilitates its evaluation
by the use of existing tables [4, 5] and also yields a
result which is an extension of that given in Bochner
and Chandrasekharan [3], for the case k=2, to func-
tions which are not necessarily radial. It will be
shown that if g(a, B) is the two-dimensional Fourier
transform of fix, y), i.e.,

gla, B)= f f S, yelerBdxdy (1)
then, if fis sufficiently well behaved, it is possible to
express gla, B) in the following form:

8la, B)=ian(a, B) jin {An; Va2 + B2} (2)

*IBM Systems Development Division, Endicott, N.Y.
! Figures in brackets indicate the literature references at the end of this paper.
2 fixy, x2, . . ., x) is a radial function if it can be written in the form

fxi, 2, .

where F(2) is defined for all 1= 0.

L xa)=F(Va2+x2+. . . +a2)
1 2 k
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where

/om {g; Z} = f: \/Z_tg([).]m(zt)dtl 3)

A, are certain functions associated with flx, y), and
an(a, B) are functions independent of . It may be
noted that /, {g; z} is the Hankel transform of order
m of gt).

. The derivation of (2) proceeds by rewriting (1) in the
orm

% 2
gla, p)= f f fir, 6) eitar cos 0+ 6rsino) 1y (g
r=0 =0 ‘

Assuming that f{r, §) can be represented by the fol
lowing Fourier series

fir, =S fulre-ino,

N==00

where

L[ .
f,,(r)=% fo f(r, 9) e"‘" d@, (5)

and that the interchange of summation and integra-
tion is valid, (4) can be written as

) 0 2w
g(a’ B) = E f fn(r)rdr f ei(—nf+ar cos 6+Br sin §) Jg
0 0
(6)
However, using the well-known integral representation

for Ju(z), the Bessel function of order n [6, p. 14, eq
(2)], it can be shown that

n=—ow

2m
f ei(—nb+ar cos 6+Br sin 0) Jg — 9 rein tan—! (a/B)
0

Ja(Va2+B2r). (7)



Thus, using (7), gla, B) can be written

sla, B)=2a i erintan (o) J‘oxfn(r)fn(\/m rrdr.

@)
Observing that
J-a(2)= (= 1)* Jalx)
and, f being real
S-am=f(r)

(8) can be written, (after some simplification)

s H=73 e [ (Gt~ 17 € I VaTF B i

9)
where
C.=/fu(ren tan~—! @lB),
and
_ {1 ,n=0
<n 2, n>0.
This establishes the result (2) where
an(e, B)=1 exa?+ )1 (10)
and
A=V [Co+(— nrCr]. (11)
For functions of the form
6 .
fr, 6)=F(r) {;Ons ZO}’ m an integer, (12)

the right-hand side of (9) reduces to the single term

Tem(i)™

gla, B)zm o
cos [m(m[2— tan‘l(a/B))]]

{VrF(@n);

m=0,1,2,. ..
sin [m(w/2—tan"Y(a/B))]
m=1,2,3,. ...

v |

(13)
By setting m=0 in (13), one obtains

gla, B)=2m(az+p)"14 4 {Vr F(r); Va2 + B} (14

which shows that, for fir, 6)=F(r), gla, B) is a radial
function. This special case of (13) yields the relation
between a radial function and its Fourier transform
which is given in [3, p. 69].

Finally, due to the relation [5, p. 3]

L{o1s y {f20'2) ;5 s}
:s~V—1g{tl/Zu—lmf[(zt)l/Z]; S—l}

between Hankel and Laplace transforms, the exten-
sive tables of Laplace and inverse Laplace transforms
[4] can be used to evaluate Hankel transforms. Hankel
transforms may also be obtained by methods given in
[4,5]. These observations make the results given here
quite comprehensive in their application.

The authors would like to acknowledge the assist-
ance of T. C. Ku of this laboratory during the develop-
ment of the material reported here.

Added Note Concerning Bochner’s Theorem
on Radial Functions

A paper has recently been published by C. Bollini
et al., (Journal of Mathematical Physics, Vol. 6, p.
165, 1965) in which Bochner’s result for £ =4 has been
generalized to include ‘“casual distributions,” that is
they show that if ¥ (31, y2, ¥3, y4) is a causal radial
distribution and I (q1, g2, g3, q4) is its 4-dimensional
Fourier transform, then I is a radial function. In
particular,

4772 [ »
Has, s @, 00 =1 (¢ =" f WRAJ(qRIR*AR

where:

R= [yf+y§+y§+y§]1/2
¢?=[¢+E+q¢+ 4.
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