JOURNAL OF RESEARCH of the National Bureau of Standards--B. Mathematics and Mathematical Physics Vol. 69B, No.3, July-September 1965

Some Theorems on the Permanent *

R. A. Brualdi and M. Newman

(June 9, 1965)

The purpose of this paper is to prove some miscellaneous theorems on the permanent. We define $f(k)$ to be the smallest order of a 0, 1 matrix with permanent equal to k and obtain an asymptotic formula for $log f(k)$. A few theorems concerning the permanent of a circulant matrix are also proved.

1. Introduction

Let $A = [a_{ij}]$ be an $n \times n$ complex matrix. The permanent of \overline{A} is the scalar valued function of \overline{A} defined by

$$
per (A) = \sum a_{1i_1} a_{2i_2} \ldots a_{ni_n}
$$

where the summation extends over all permutations where the summation extends over all permutations i_1, i_2, \ldots, i_n of 1, 2, \ldots, n . Much of the current interest in the permanent is derived from a conjecture of van der Waerden, and directly or indirectly this conjecture accounts for a great deal of the research that has been done; see e.g., $[1, 3, 4]$,¹ Our purpose here is to prove some miscellaneous theorems on the permanent. In section 2 we define a function on the positive integers by means of the permanent and obtain an asymptotic formula. In section 3 we deal with matrices which are nonnegative circulants. We derive there a congruence and upper bound for the permanent and also a theorem which would be a consequence of the van der Waerden conjecture.

2. An Asymptotic Formula

For k a positive integer define $f(k)$ to be the smallest order of a $0, 1$ matrix with permanent equal to k . It of course must be verified that this definition is mean-

159

ingful, and the following example shows this to be so. Define A_k to be the $k \times k$ 0, 1 matrix

Then it is easily seen that per $(A_k) = k$. The example also shows that $f(k)$ satisfies

$$
f(k) \leq k, \qquad k=1, 2, \ldots
$$

By taking direct sums we find that the function f also satisfies

$$
f(mn) \leqq f(m) + f(n)
$$

where *m* and *n* are positive integers. This function *f(k)* is a very complicated one and how much can be said about it is not clear. However the following theorem shows that $\log f(k)$ is of the same order of magnitude as $\log \log k$.

^{*}This work was done while the first aut hor was a National Academy of Sciences-National Research Council Postdoctoral Resident Research Associate at the National Bureau of Standards, 1964-1965.

¹ Figures in brackets indicate the literature references at the end of this paper.

THEOREM 2.1. $\log f(k) \sim \log \log k$ **PROOF.** Let $A(\epsilon_0, \epsilon_1, \ldots, \epsilon_n)$ be the following $(n+2)$ \times (*n* + 2) matrix:

$$
\begin{bmatrix}\n0 & \epsilon_0 & \epsilon_1 & \epsilon_2 & \dots & \epsilon_n \\
1 & 1 & 0 & 0 & \dots & 0 \\
1 & 1 & 1 & 0 & \dots & 0 \\
1 & 1 & 1 & 1 & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & \dots & 1\n\end{bmatrix}
$$
\n(2.1)

Here we take $\epsilon_i = 0$ or 1, $i=0, 1, \ldots, n$. We calculate the permanental minor, p_i , of ϵ_i ; that is, the permanent of the $(n+1) \times (n+1)$ matrix obtained from (2.1) by striking out the row and column to which ϵ_i belongs. We have $p_0 = 1$, $p_1 = 2$, and in general that

$$
p_i=2p_{i-1},
$$
 $i=1, 2, ..., n.$

Hence by induction it follows that

$$
p_i=2^i
$$
, $i=0, 1, ..., n$.

Then by the Laplace expansion for the permanent we obtain

per $(A(\epsilon_0, \epsilon_1, \ldots, \epsilon_n)) = \epsilon_0 + 2\epsilon_1 + \ldots + 2^n \epsilon_n$ (2.2)

Now let k be any positive integer and write k in binary form,

$$
k = \epsilon_0 + 2\epsilon_1 + \ldots + 2^n \epsilon_n
$$

where $\epsilon_i=0$ or 1 for $i=0, 1, \ldots, n-1$ and $\epsilon_n=1$. Then by the above calculation $A(\epsilon_0, \epsilon_1, \ldots, \epsilon_n)$ is an $(n+2) \times (n+2)$ 0, 1 matrix with permanent equal to *k*, so that $f(k) \leq n+2$. Since $k \geq 2^n$, this implies that

$$
f(k) \le \frac{\log k}{\log 2} + 2.
$$

Thus there is a constant $a > 0$ such that

$$
\frac{\log f(k)}{\log \log k} < 1 + \frac{a}{\log \log k}.\tag{2.3}
$$

Now let r be the uniquely determined integer such that

$$
(r-1)! < k \leqq r!.
$$

Then it is clear that $f(k) \ge r$. An easy application of Stirling's formula shows that for a suitable constant $b > 0$,

$$
r > b \frac{\log k}{\log \log k}
$$

and thus

$$
f(k) > b \frac{\log k}{\log \log k}.
$$

Hence there is a constant $c > 0$ such that

$$
\frac{\log f(k)}{\log \log k} > 1 - c \frac{\log \log \log k}{\log \log k}.
$$
 (2.4)

The two inequalities (2.3) and (2.4) imply the theorem upon passage to the limit.

Now let $\mathfrak{A}(n)$ denote the class of all $n \times n$ 0, 1 matrices. The permanent restricted to $\mathfrak{A}(n)$ is a function mapping $\mathfrak{A}(n)$ into the set of integers $0, 1, \ldots, n!$. The following corollary gives some information about its range.

COROLLARY 2.2. Let k be an integer with $0 \leq k \leq 2^{n-1}$. *Then there exists a matrix A in* $\mathfrak{A}(n)$ *with permanent equal to* k.

PROOF. Let $k < 2^{n-1}$. Then the binary expansion of k is

$$
k = \epsilon_0 + 2\epsilon_1 + \ldots + 2^{n-2}\epsilon_{n-2}
$$

with $\epsilon_i=0$ or 1 for $i=0, 1, \ldots, n-2$. But then $A(\epsilon_0, \epsilon_1, \ldots, \epsilon_{n-2})$ is a matrix in $\mathfrak{A}(n)$ with permanent equal to *k*. The $n \times n$ matrix in $\mathfrak{A}(n)$ which is obtained from $A(1, 1, \ldots, 1)$ by replacing the 0 in the $(1, 1)$ position by a 1 has permanent equal to 2^{n-1} . This establishes the corollary.

3. **Nonnegative Circulants**

Let C be an $n \times n$ nonnegative circulant matrix so that

$$
C=[c_{ij}]=c_0P^0+c_1P^1+\ldots+c_{n-1}P^{n-1}, P^0=I,
$$

where

$$
P = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{bmatrix}, (3.1)
$$

the $n \times n$ full cycle permutation matrix, and $c_i \ge 0$,

 $i=0, 1, \ldots, n-1$. Then the permanent of C is

$$
\text{per}(C) = \sum_{\sigma} c_{1\sigma(1)}c_{2\sigma(2)} \ldots \ldots c_{n\sigma(n)},
$$

where the summation extends over all permutations σ of 1, 2, ..., *n*. Suppose that for $k=0, 1, \ldots$, $n-1$ there are precisely x_k integers *i* from 1, 2, ... n such that

$$
\sigma(i) - i \equiv k \qquad \text{(mod } n\text{)}.
$$
 (3.2)

Then from the definition of a circulant it follows that

$$
c_{1\sigma(1)}c_{2\sigma(2)} \ldots \ldots c_{n\sigma(n)} = c_0^x c_1^x c_1^x \ldots c_{n-1}^x c_{n-1}
$$

The x_k are nonnegative integers satisfying

$$
x_0 + x_1 + \ldots + x_{n-1} = n. \tag{3.3}
$$

By summing (3.2) over all $i=1, 2, \ldots, n$ they also satisfy

$$
0 \cdot x_0 + 1 \cdot x_1 + \ldots + (n-1)x_{n-1} \equiv 0 \pmod{n}. (3.4)
$$

Hence we may write

per
$$
(C) = \sum \mu(x_0, x_1, \ldots, x_{n-1}) c_0^x \circ c_1^x \ldots c_{n-1} x_{n-1}
$$

where the summation extends over all nonnegative integers $x_0, x_1, \ldots, x_{n-1}$ satisfying (3.3) and (3.4). Here $\mu(x_0, x_1, \ldots, x_{n-1})$ is a nonnegative integer.

THEOREM 3.1. If C is an $n \times n$ nonnegative circulant. then

$$
per (C) \leq \frac{tr (C^n)}{n},
$$
\n(3.6)

where $tr(X)$ denotes the trace of X.

PROOF. We have that

$$
C^{n} = \sum \frac{n!}{x_0! x_1! \cdot \cdot \cdot \cdot x_{n-1}!} c_0^{x_0} c_1^{x_1} \cdot \cdot \cdot \cdot c_{n-1}^{x_{n-1}} P^{0 \cdot x_0} P^{1 \cdot x_1}
$$

$$
\cdot \cdot \cdot \cdot P^{(n-1)x_{n-1}},
$$

where the summation extends over all nonnegative integers $x_0, x_1, \ldots, x_{n-1}$ satisfying $x_0 + x_1 + \ldots$ $+x_{n-1}=n$. Consider

$$
P^{0 \cdot x_0} P^{1 \cdot x_1} \cdot \cdot \cdot P^{(n-1)x_{n-1}} = P^a.
$$

Now $tr(P^a) = 0$ unless $P^a = I$ in which case $tr(P^a) = n$. But $P^a = I$ if and only if

$$
a = 0 \cdot x_0 + 1 \cdot x_1 + \dots + (n-1)x_{n-1} \equiv 0 \pmod{n}.
$$

Hence we may write

$$
\frac{tr(C^{n})}{n} = \sum \frac{n!}{x_0! x_1! \dots x_{n-1}!} c_0^{x_0} c_1^{x_1} \dots c_{n-1}^{x_{n-1}}
$$

where the summation extends over all nonnegative integers $x_0, x_1, \ldots, x_{n-1}$ satisfying (3.3) and (3.4).

$$
\mu(x_0, x_1, \ldots, x_{n-1}) \leq {n \choose x_0} {n-x_0 \choose x_1}
$$

$$
\ldots {n-x_0 - x_{n-1} \choose x_n} = \frac{n!}{x_0!x_1! \ldots x_{n-1}!}.
$$

Since the c_i are nonnegative numbers, inequality (3.6) now follows.

We now assume that the circulant is of prime order.

THEOREM 3.2. Let p be a prime and $C = c_0 P^0 + c_1 P^1$ $+ \ldots + c_{p-1}P^{p-1}, \quad a \quad p \times p \quad circular \quad with \quad c_0, \quad c_1, \ldots$ c_{n-1} nonnegative integers. Then

per (C)
$$
\equiv c_0 + c_1 + ... + c_{p-1} \pmod{p}
$$
.

PROOF. Let t be the permutation of 1, 2, ..., p corresponding to the permutation matrix P given in (3.1); that is, $t(i) \equiv i+1 \pmod{p}$. Let σ be a permutation distinct from $t^0=1, t, \ldots, t^{p-1}$. Suppose σ corresponds to the term $c_0^r c_1^r$... $c_{p-1}^r r_{p-1}$ in per (C) , so that there are precisely x_r is with $\sigma(i) - i \equiv r$ (mod p). Consider the permutation $t^k \sigma t^{-k}$ for $k=0$. $1, \ldots, p-1$. We have that

$$
t^k \sigma t^{-k}(i) - i \equiv t^k \sigma(i - k) - i \qquad (\text{mod } p)
$$

$$
\equiv \sigma(i-k) + k - i \qquad (\text{mod } p)
$$

$$
\equiv \sigma(i-k) - (i-k) \qquad \text{(mod } p).
$$

Here $(i-k)$ is to be interpreted as its residue mod p in the complete residue system 1, 2, ..., p . But then as *i* varies over the integers 1, 2, ..., p, $(i-k)$
varies over 1, 2, ..., p. Hence σ and $t^k \sigma t^{-k}$ give rise to equal summands $c_0^x c_1^x$ c_{p-1}^x -i in per (C). Suppose $t^k \sigma t^{-k} = \sigma$ for some $k=1, 2, \ldots, p-1$. Then inductively it follows that $t^{jk}\sigma t^{-jk} = \sigma$ for $j=1, 2$, \ldots Thus

$$
t^{jk}\sigma(1) = \sigma t^{jk}(1),
$$

and therefore

$$
\sigma(1) + jk \equiv \sigma(1 + jk) \qquad (mod \ p)
$$

 αr

$$
\sigma(1) - 1 \equiv \sigma(1 + jk) - (1 + jk) \pmod{p}, \quad j = 1, 2, \ldots
$$

Here again $1 + ik$ is to be interpreted as the residue in the appropriate residue system mod p . But as *j* varies over 1, 2, ..., p so does the residue of $1+jk$. For

$$
1+jk \equiv 1+j'k \pmod{p}, \qquad 1 \le j < j' \le p,
$$

implies $p|(j'-j)k$, the latter being impossible for p a prime. Therefore $\sigma(i) - i \equiv \sigma(1) - 1 \equiv a \pmod{p}$, for $i=1, 2, \ldots, p$, and this implies $\sigma = t^a$ which is a contradiction. Hence the permutations σ , $t\sigma t^{-1}$, \ldots , $t^{p-1}\sigma t^{-(p-1)}$ are all distinct. Therefore the coefficient of $c_0^x c_1^x$. . . $c_{p-1}x_{p-1}$ in per (C) is congruent to zero modulo P . Since this is true for all terms arising from a permutation $\sigma \neq t^0$, t^1 , . . ., t^{p-1} , we can conclude that

per
$$
(C) \equiv c_0^p + c_1^p + \dots + c_{p-1}^p \pmod{p}
$$

 $\equiv c_0 + c_1 + \dots + c_{p-1} \pmod{p}$,

the second congruence following from Fermat's theorem.

Let $\mathfrak{A}(n; k)$ denote the class of all $n \times n$ 0, 1 matrices with precisely *k* 1's in each row and column. It has been conjectured by Marshall Hall that

$$
\lim_{n \to \infty} \min_{A \in \mathfrak{A}(n; k)} \text{per}(A) = \infty, \qquad k \ge 3. \tag{3.7}
$$

This conjecture would be a consequence of the valid· ity of the van der Waerden conjecture which asserts for $A \in \mathfrak{A}(n; k)$ that

$$
\text{per } (A) \geq k^n \frac{n!}{n^n}.
$$

Hall's conjecture appears to be about as difficult as that of van der Waerden. The following theorem shows that (3.7) is valid if instead of considering the class $\mathfrak{A}(n; k)$ we consider the subclass $\mathfrak{C}(n; k)$ of all $n \times n$ 0, 1 circulant matrices with $k \geq 31$'s in each row and column.

THEOREM 3.3. *For* $k \ge 3$,

$$
\lim_{n \to \infty} \min_{C \in \mathcal{C}(n; k)} \text{per}(C) = \infty. \tag{3.8}
$$

PROOF. Clearly we need only prove (3.8) for the case $k=3$. Thus let $C\in\mathcal{C}(n; 3)$. Without loss of generality we may assume that

$$
C = I + P^{i} + P^{j}, \ 1 \le i < j \le n - 1,\tag{3.9}
$$

where P is defined as in (3.1). We define a permuta-

tion
$$
\sigma
$$
 of 1, 2, ..., *n* in the following way:
\n
$$
\sigma(r) = r \qquad , \qquad r = 1, \ldots, j - i
$$
\n
$$
\sigma(j - i + r) = j + r \qquad , \qquad r = 1, \ldots, n - j
$$
\n
$$
\sigma(n - i + r) = j - i + r, \qquad r = 1, \ldots, i.
$$

It is easy to verify that σ is indeed a permutation of $1, 2, \ldots, n.$

Now

 $\sigma(r) - r \equiv 0 \pmod{n}$, $r = 1, \ldots, j-i$ $\sigma(j-i-r)-(j-i-r) \equiv i \pmod{n}, \quad r=1, \ldots, n-j$ $\sigma(n-i+r)-(n-i+r) \equiv j \pmod{n}, \quad r=1, \ldots, i.$

Hence the term in per (C) corresponding to the permutation σ is equal to

> $c_0^{j-i}c_i^{n-j}c_i^i$ (3.10)

which, when C is given by (3.9) , is equal to 1.

Let *t* be the permutation defined by $t(i) \equiv i+1$ $(mod n)$. As in the proof of the preceding theorem (the primeness was not used in this part) it follows that the permutations σ , $t\sigma t^{-1}$, ..., $t^{(\hat{n}-1)}\sigma t^{-(n-1)}$ all give rise to equal summands (3.10) in per (C) . But

$$
t^k \sigma t^{-k} \neq \sigma, \qquad k=1, 2, \ldots, n-1
$$

since the fixed elements of the permutation σ are 1, since the fixed elements of the permutation σ are 1, 2, ..., $j - i$ while those of $t^k \sigma t^{-k}$ are $1 + k, 2 + k, \ldots$. $j-i+k$ (mod *n*). Hence the permutations σ , $\tau \sigma t^{-1}$, \ldots , $t^{(n-1)} \sigma t^{-(n-1)}$ are all distinct, each contributing 1 to per (C) . These along with the three permutations $t^0 = \overline{1}$, t^i , t^j show that

$$
per (C) \geq n+3. \tag{3.11}
$$

Since (3.11) is true for each $C\epsilon\mathfrak{C}(n, 3)$, the conclusion (3.8) of the theorem is proved.

In case *n* equals a prime *p*, inequality (3.11) can be proved by use of theorem 3.2. For by this theorem per $(C) \equiv 3 \pmod{p}$, while by [2] per $(C) \ge 6$. Hence per $(C) \geq p+3$.

Theorem 3.3 can be generalized to a larger class of matrices in the following way. Let $\mathcal{D}(n; k)$ denote the class of all $n \times n$ matrices A which are expressible in the form

$$
A = Q^{i_1} + Q^{i_2} + \ldots + Q^{i_k},
$$

$$
0 \leq i_1 < \ldots < i_k \leq n-1,
$$

for some permutation matrix Q of order *n.* We then have

THEOREM 3.4. *For* $k \ge 3$,

$$
\lim_{n \to \infty} \min_{A \in \mathcal{D}(n; k)} \text{per } (A) = \infty. \tag{3.12}
$$

PROOF. Again we need only prove (3.12) for the case $k=3$. Thus let A be in $\mathfrak{D}(n; 3)$. Without loss of generality we may assume that

$$
A = I + Q^{i} + Q^{j}, \qquad 1 \leq i < j \leq n - 1.
$$

There exists a permutation matrix *R* such that

$$
RQR'=P_{n_1}+P_{n_2}+\ldots+P_{n_r}
$$

where $P_{n_{o}}$ is the full cycle permutation matrix of order $n_s \geq 1$. Since the permanent of A is not changed if we permute its rows and columns, we may assume that

$$
Q=P_{n_1}+P_{n_2}+\ldots+P_{n_r}.
$$

Then

per
$$
(I + Q^i + Q^j) = \prod_{s=1}^r
$$
per $(I + P^i_{n_s} + P^j_{n_s}).$ (3.13)

If $n_s = 1$, then per $(I + P_{n_s}^i + P_{n_s}^j) = 3$. If $n_s > 1$, then either $P_{n_s}^i$ and $P_{n_s}^j$ are disjoint permutation matrices or are identical. If they are identical, then

$$
per (I + P_{n_S}^i + P_{n_S}^i) \ge 2^{n_S} + 1 \ge n_S + 3.
$$

Otherwise we may apply (3.11) to obtain

per
$$
(I + P_{n_s}^i + P_{n_s}^j) \geq n_s + 3
$$
.

By applying these results to (3.13) we are able to conclude that

$$
per (I + Qi + Qj) \ge n_1 + \ldots + n_r + 3
$$

$$
= n+3.
$$

From this the theorem follows.

4. References

- [l] R. A. Brualdi and M. Newman, Inequalities for permanents and permanental minors, Proc. Camb. Phil. Soc. 61, (1965).
- [2] M. Hall, Jr., Distinct representatives of subsets. Bull. Amer. Math. Soc. 54 , $922-926$ (1948).
- [3] M. Marcus and M. Newman, Inequalities for the permanent
function. Ann. Math. **75,** 47–62 (1962).
[4] H. J. Ryser, Combinatorial Mathematics. Carus Math. Mono-
- graph, No. 14 (Wiley & Sons, New York, N.Y., 1962).

(Paper 69B3-147)