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A number of authors have studied inequalities for polynomials of degree n of the form

1
H'— Pu(x) | < An? ||Po).
dx

Iterated use of such inequalities give inequalities for higher derivatives. This paper determines the
power p and constant A for the second derivatives for certain weighted L» norms. The iterated in-
equalities are not sharp.

Various authors have studied inequalities for poly- 1. Here we look at
nomials of degree n of the type

EJ;P,,m <An? ||Pu(x) |- f(, [P'(Pevdx < M3 " [P)Pe-rdx. (1.1)
0
When the norm is the maximum norm, A. Markoff has We use the Laguerre polynomials [2, p. 51]

established the best possible constant 4, power p,
and the extremal polynomials. Repeated applica- i .
tion of hlS. mfaquahty‘glves similar inequalities for Li(x) =E 1)A_< )x"’ A
higher derivatives which, however, are not sharp. = D)
W. Markoff has obtained best possible results for the
higher derivatives. .
%. Schmidt [1]% has obtained the power p and asymp- for which
totic estimates of A for the weighted L, norms giving
rise to Legendre, Laguerre, and Hermite polynomials.
The Hermite case is easy to solve for all derivatives
essentially because the derivative of a Hermite poly-
nomial is again a (multiple of a) Hermite polynomial. .
Best possible results are known in the Laguerre case !0 €XPress any polynomial P(x) of degree n as
for the first derivative but for no higher derivatives.
We shall look at the second derivatives in the Le- n
gendre and Laguerre cases. It turns out that as for P(x)=2 a;Lj(x).
the maximum norm the repeated use of the results for g=L
the first derivative are not sharp. The Laguerre case ) )
will be treated by a technique due to the author and With this basis
the Legendre case by a development of Schmidt’s
technique. The first method is the simpler and is
much more satisfactory as regards the extremal poly- IP||2=(P, P)= 2 al, |P||2= Z aiaibi (1.3)
nomials. The second method is capable of the i, J=0
sharper estimate of the constant.

(1.2)

Ly, L) = f " Lin)Lix)e-*dx =5y
0

where
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Two integrations by parts shows

ij = L{O)L$(0)— Li(0) L} (0)— LI(0L{(0), i <j

and from (1.2) we find

(i—1)
6

bij= (By=d=1)

The solution of (1.1) is equivalent to finding M3 for
which

=max ||P"||? for |P||*=1.

From (1.3) we see that the maximum of this quadratic
form is the largest eigenvalue of the (symmetric)
matrix B=(b;) i,j=2, . . ., n. We recall the re-
sults from the theory of positive matrices that the
largest eigenvalue in modulus is real, positive, and
simple. From (1.3) we see that B is positive definite.

The idea of the technique to be used is as follows.
B is divided by an appropriate power of n. The re-
sulting system of matrices is regarded as arising from
the numerlcal solution of a hxed integral equation.
The dominant eigenvalue and its eigenfunction of the
integral equation represent limiting values for the
system of matrices.

It is somewhat more convenient to change from the
matrices B to kernels. The eigenvalue problem for
the kernel K®(x, y) on 0 < x, y <1 defined by

K,'j) with the def-

1
is equivalent to that of the matrix ;(

i i=1l i
=|=0if L 57 E =
‘p(n) pitor n * n

inition ¢(x) =

Define

so-on- ) C-DBO-)-1)

It is clear the kernels converge (pointwise) to

2
x—(Sy—x) x=y.

K, y)= 6

The eigenvalue problem }\g0=[€<p is equivalent to
A (x) = p(x)

p0)=¢'(0)=0=¢"(1)=¢"(1).

The solutions are [3, p. 525] for k* ="
(cosh k+cos k)(sinh kx —sin kx)
— (sinh %+ sin k)(cosh kx — cos kx)
and the £ are the solutions of
1+ cos k cosh k=0.

Plummer [4] has determined the smallest root £y to

be 1.8751041.

Let A, N\® M2 be the largest eigenvalues of K, K™,
B respectively. A theorem of Weyl [5] gives the result

|A—A®| < || K — K®|| <max |K(x, y)

1
— K(n) = ——
Gx, 5)| 2n 6n*
Using the facts that K > K® > ( implies the same in-
equality in the eigenvalues and that

1
)\(n):EM;”

we have the

THEOREM. If P(x) is a polynomial of degree n, then

fx [P"(x)Pe *dx < Mﬁfx [P(x) e *dx
0 0

where

Lo 1
e :—~ <
" M2 R and 0<R < — 2n ot

The polynomials giving equality are unique to within
a multiplicative factor.

The eigenfunction corresponding to A actually gives
an asymptotic representation for the extremal poly-
nomials. The bounds of Hammerlin [6] are very
convenient for showing this though we shall not carry
out these details.

The matrices arising are to be interpreted as dis-
crete Green’s functions and their inverses as difference
approximations to the boundary value problem found.
It is easy to obtain the inverse matrices directly but
the degree of approximation is easier to assess for the
integral equations. For the Laguerre weights the dis-
crete problem is a boundary difference equation with
constant coefficients. The discrete problem in the
first derivative case is readily solved and leads to the

THEOREM. _If P(x) is a polynomial of degree n=2

and Lyx), j=1, 2, ., the Laguerre polynomials,
then

f( f[ X)Pe *dx = 1511122(2—”“) f [P(x) Pe~*dx
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with equality holding if and only if P(x) is a multiple of =~ We shall derive a differential equation for the g

ELJ sm2 +1

=1

-

This pretty result was given by Turan in [7] and was
subsequently rediscovered by the author using the
method sketched above.

II. In this part we examine the Legendre case. We
shall use the Legendre polynomials {Pj(x)} and their

\/ﬂ (x)}.  As before,
two integrations by parts and the result [8, p. 252]

(k)(1) = ”+k> k

P(1) (n—/f (2

gives for 1 = j

normalized forms {pjx)=

yy

A

i1 [y
U 2 2

=D+ Hi+2)
48

[3i(i+ 1) —jG+ 1)+ 6][1 + (— 1)i+].

Note that b; = 0 with equality only when 0=, j=<1
or ¢ and j are of opposite parity. This chec l\erlmdrd
pattern shows that taking the basis in the order ¢, s,
@iy« o Q1. @3, @5 . . . transforms B into a similar
block diagonal matrix. Along the diagonal are two
1 X 1 null matrices consisting of by, o and by, and two
positive matrices £ and U corresponding respectively
to even and odd polynomials. This reflects the facts
that the Legendre polynomials of even (odd) order are
even (odd) and that even (odd) polynomials go into
even (odd) polynomials after differentiating twice.

The characteristic polynomial splits into two fac-
tors corresponding to £ and U. The positive matrices
are compared by elements and from the theory of such
matrices we conclude that for n odd, the largest
eigenvalue of B is the largest eigenvalue of U and for
n even, it is the largest eigenvalue of E. Thus we are
permitted the following qualitative conclusions. If
nis even (odd), the extremal polynomial is even (odd).
[t is unique up to constant multiples and when ex-
pressed in terms of the ¢j may be taken to have positive
coefficients except for the coefficients of ¢, and ¢,
which are zero.

Only the case of even n=2m will be treated. Odd
n lead to exactly the same results. As before, the
matrix E= (b2, »j), i,j=1, . . ., m, is a real, sym-
metric, positive definite matrix. As such it is orthog-
onally similar to a real diagonal matrix D= diag {\;!,

A', . . ., N'L Here \; are the reciprocals of the
eigenvalues. This notation is perhaps confusing here

but will be more convenient later. The change of
basis carries {@s(x)} into {gix)}. The new basis is
orthonormal and is composed of polynomials in even,
nonzero, powers of x. We have

1 1
f gigjdx = byj. f gigidx=N\i'd;;
—il il

iL,j=1, .. ., m.

For each i define A(x)= gi(x), h(0)=0, and Ai(1)=0.
Because hi(x) is even, hi(1)=hi{—1)=0. Each g; is a
linear combination of polynomials orthogonal to 1 so

f gidx=0=h{(1)—h{(—1).
~1

This with the fact that 2/(x) is odd shows A!(1)=
=0.

Let g(x) be an arbitrary even polynomial of degree
n without constant term.

hi(—1)

q(x) :i

i=1

Cigilx).
The orthogonality of the g/ shows

1
f (&/q"— A\i'gig)dx =0 =1, ..., m.
1

(2.1)

Integrating by parts twice and remembering that A/
and A; both vanish at =1 shows

1 1
f giq dx= f hiq" dx
-1 —1

and, using g/ = A", the relation (2.1) can be written as

1
f (A =N hy)g" dx=0.
=il

The expression (A — ;' hj) is an even polynomial of
degree at most n+2 and is orthogonal to any even
polynomial ¢” of degree at most n —2. The expression
is naturally orthogonal to all odd polynomials of degree
at most n+1. The orthogonality conditions require
h$4)_)\‘_—l hi=d; Pny2t+ ki Py. (2.2)
The homogeneous equation can have no polynomial
solutions since powers cannot cancel.
We prove k; # 0 by contradiction. Suppose it were
zero. hi(1)=0 implies A{Y(1)=d;. The equation has
the polynomial solution

hi=—h{) AT > AT Pt

=0

Remembering that
P =

and that A\;' >0, it is seen that hi(1)=0 requires
A®(1)=0. This is impossible because the polynomial
h; cannot be a solution of the homogeneous equation.

Define wi(x) by khui=hi. Using hi(l)=0, P,is(1)
=P,(1)=1, we can write (2.2) as

0 with equality only for 4/ > n—+2

uD—\"1ly=Py+ [u91)— 1] Pus2.
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Let
Six) =3 N P,

Tiw) =3 M P)
=0 =0
The solution of (2.2) is
Si(1)
Ti(1)

The requirement ui(1)= 0 is manifestly satisfied. The
requirement u;(1)=0 gives

NiSi(x) + Ai 7= Ti(x).

ui(x)=—

SiHT(H)=S(1T;(1)

which is a polynomial equation for A;. In terms of A

the equation is

NS [PGEEI(L) PR — PREYL) PRivU(1)]=0.

itj=1

(2.3)

=0

We now wish to obtain an asymptotic solution of
this equation. Let c(i, j) denote the expression in
brackets in (2.3). D1V1de (2.3) by n and let m=An8.
The resulting equation can be written as fu(n)=0,
where

_clig)

fll n)_En En8l+l

i+j=1

2.4)

We shall use the Hurwitz theorem [9, pp. 156—8] which
states that if a sequence of functions f, regular in a
domain D converges uniformly to a nonconstant limit
function fin D, then the zeroes of f, in D tend to those
of f.

Using the expression for P{)(1), it is straightforward
to show

(i, j) (8 +2)!! (8)!!

’74811»2

= o 16]'+4)+i2 di,j) (2.5)
n n

where |d(i, j)| < 284 (322).

Let us multiply (2.5) by n and substitute in (2.4). With
e 160 —16j+4
2 "2 BTN @)

=0 i+j= l

and Bi+2)!! @)= @D!! for i+j=1
we have
1 = [281+4
Vn(’fl) _ﬂn)| < ;L Z 41)” 4ll+1)

The series appearing in this bound is entire hence is
bounded on compact subsets of the plane. The factor
n~! assures us that the f, converge uniformly to f on
compact subsets of the plane.

Some simple identities show

_ & =
ﬂ")_”; Ty@n”

Introduction of the new variable £ by 16k*=mn for
positive m casts f in the form

flk)=1++ cos k cosh k.

The smallest root of f has been designated k. The

Hurwitz theorem implies the

THEOREM. If P(x) is a polynomial of degree n, then

i1
f [P/(x)]%dx < M2 f ' [Pe)]2dx
B B
where
M2 1
F’P 16k! +o(1).

III. Comparison of the asymptotic constants in both
cases shows that the true constant is smaller for the
second derivative than that given by iterated use of
that of the first derivative. For example in the Le-
gendre case the results are (3.7502082)~¢ and 74

respectively. Comparison of the constants is

interesting.
D 2 D3: n=100, 125
2\ 1

Laguerre <’) <—> (0.4472)% | (0.4477)8
T ko
1\ 15

Legendre <—> (—) (0.2314)% | (0.2301)8
T 2k,

One might speculate that the factor of two relation
persists for higher derivatives. Some numerical
computations are shown for the third derivative for
n large enough to give an indication of the asymptotic
results. The ratios are respectively 1.93 and 1.95
which are consistent with the factor of two relation.
More extensive calculations are planned to substan-
tiate this conjecture. A proof for general D* would
appear to be difficult.
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