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A numbe r of authors have studi ed inequalities for polynomials of degree n of the form 

Itera ted use of s uch inequaliti es give inequ alities for highe r derivatives. This paper dete rmines the 
power p and cons tant A for the seco nd derivatives for ce rt ain weighted L2 norm s. The it e rated in­
equalities are not s harp. 

Various au thors have s tudi ed inequalities for poly- 1. Here we look at 
nomials of degree n of the type 

II! Pn(X) II~AnP IIPIl(x) II · 

When the norm is the maximum norm, A. Markoff has 
established the best possible constant A, power p, 
and the extremal polynomials. Repeated applica­
tion of his inequality gives similar inequalities for 
higher derivatives which, however , are not sharp. 
W. Markoff has obtained best possible results for th e 
higher derivatives. 

E. Schmidt [IF has obtained the power p and asymp­
totic estimates of A for the weighted L2 norms giving 
rise to Legendre, Laguerre, and Hermite polynomials. 
The Hermite case is easy to solve for all derivatives 
essentially because the derivative of a Hermite poly­
nomial is again a (multiple of a) Hermite polynomial. 
Best possible results are known in the Laguerre case 
for the first derivative but for no higher derivatives. 

We shall look at the second derivatives in the Le­
gendre and Laguerre cases. It turns out that as for 
the maximum norm the repeated use of the results for 
the first derivative are not sharp. The Laguerre case 
will be treated by a technique due to the author and 
the Legendre case by a development of Schmidt's 
technique. The first method is the simpler and is 
much more satisfactory as regards the extremal poly­
nomials. The second method is capable of the 
sharper estimate of the constant. 

We use the Laguerre polynomials [2, p. 51J 

j 1 ( ") Lj{x) = 2: (-I)k, ) x" 
k=O k. k 

j = o, 1, . " . (1.2) 

for which 

to express any polynomial P(x) of degree n as 

With this basis 

11 

P(x) = ~ ajLj{x). 
j=O 

11 11 

IIPI12=(P, P)= ~ aI, IIP"112= ~ b ~ aiaj ij (1.3) 
j=O i,j=O 

where 
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Two integrations by parts shows 

and from (1.2) we find 

o ~ i ~ j ~n. 

The solution of (1.1) is equivalent to finding M~ for 
which 

From (1.3) we see that the maximum of this quadratic 
form is the largest eigenvalue of the (symmetric) 
matrix B=(bij) i,j=2, ... , n. We recall the reo 
sults from the theory of positive matrices that the 
largest eigenvalue in modulus is real , positive, and 
simple. From (1.3) we see that B is positive definite. 

The idea of the technique to be used is as follows. 
B is divided by an appropriate power of n. The reo 
sulting system of matrices is regarded as arising from 
the numerical solution of a fixed integral equation. 
The dominant eigenvalue and its eigenfunction of the 
integral equation represent limiting values for the 
system of matrices . 

It is somewhat more convenient to change from the 
matrices B to kernels. The eigenvalue problem for 
the kernel K(ll)(x, y) on 0 ~ x, y ~ 1 defined by 

1 
i-I i 
--<x~-

K(It)(x y)=K(lIl n n i j = 1 
, I ,) j-l j' , 

-- <y~-
n n 

. . "' n 

is equivalent to that of the matrix 1. (Kij) with the def· 
n 

. .. () (i) f i-I i lmtJon cp x = cp - =CPi or -- <x ~-. 
n n n 

Define 

It is clear the kernels converge (pointwise) to 

x~y. 

The eigenvalue problem 'Acp = Kcp is equivalent to 

cp(O) = cp'(O) = 0 = cp"(I) = cp'Il(I). 

The solutions are [3, p. 525] for k4 ='A- J 

(cosh k+cos k)(sinh kx-sin kx) 

- (sinh k + sin k)(cosh kx - cos kx) 

and the k are the solutions of 

1 + cos k cosh k = O. 

Plummer [4] has dete rmined the smallest root ko to 
be 1.8751041. 

Let 'A, 'A(1~, M~ be the largest eigenvalues of K, K(nl, 
B respectively. A theorem of Weyl [5] gives the result 

1 1 
-K(n)(x, y)1 =---. 

2n 6n2 

Using the facts that K > K(n) > 0 implies the same in· 
equality in the eigenvalues and that 

we have the 

THEOREM. If P(x) is a polynomial of degree n, then 

where 

1 1 1 1 - M2=_-R and O < R~---· 
n4 n k~ 2n 6n2 

The polynomials giving equality are unique to within 
a multiplicative factor. 

The eigenfunction corresponding to -A. actually gives 
an asymptotic representation for the extremal poly· 
nomials. The bounds of Hammerlin [6] are very 
convenient for showing this though we shall not carry 
out these details. 

The matrices arising are to be interpreted as dis· 
crete Green's functions and their inverses as difference 
approximations to the boundary value problem found. 
It is easy to obtain the inverse matrices directly but 
the degree of approximation is easier to assess for the 
integral equations. For the Laguerre weights the dis· 
crete problem is a boundary difference equation with 
constant coefficients. The discrete problem in the 
first derivative case is readily solved and leads to the 

THEOREM. If P(x) is a polynomial of degree n ~ 2 
and L/x), j = 1, 2, ... , the Laguerre polynomials, 
then 
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with equality holding if and only ifP(x) is a multiple of 

11 j7T L Lj(x) sin --. 
j = 1 2n + 1 

This pretty result was given by Turan in [7] and was 
subseque ntly rediscovered by the author us in g the 
method sketched above. 

II. In thi s part we examine the Legendre case. We 
shall use the Legendre polynomials {Pix)} and their 

!2f+l 
normalized forms {cp;(x) = V~ Pix)}. As before , 

two integrations by parts and the res ult [8, p. 252] 

P(k)(I) = (n + k) (2k -I)! ! 
/I n - k 

gives for i :;,: j 

.= ~2i + 1 ~2j+ 1 (j - l )(j)(j + 1)(j + 2) 
bl) 2 2 48 

[3i(i + 1) - j(j + I ) + 6][1 + (- I )i+)]. 

Note that b i) :;': 0 with equ ality only when 0 ~ i , j ~ 1 
or i and j are of opposi te pa rit y. Thi s checkerboard 
pattern shows that taki ng th e basis in the orde r cpo, CP2, 
'P4, . .. , CP I, 'P:l, CPo . • . tra nsfo'rm s B into a similar 
block diagonal matrix . Alon g th e diagonal are two 
1 X 1 null matrices consistin g of bo, o and bl , I and two 
positive matri ces E and U corres ponding res pec tively 
to e ven a nd odd polynomials. Thi s re fl ec ls the fac ts 
th at the Lege ndre polyn omials of e ve n (odd) orde r are 
even (odd) and th at even (odd) polynomials go into 
even (odd) polynomials aft er diffe re ntiatin g twice . 

Th e c haracte ri s ti c polynomial splits into two fac· 
tors corresponding to E and U. The positive matrices 
are compared by ele me nts and from the theory of s uch 
matrices we co nclude th at for n odd , the larges t 
eigenvalue of B is the larges t eigenvalu e of U a nd for 
n even , it is the larges t e ige nvalue of E. Thus we are 
permitted the following qualitative conclusions. If 
n is even (odd), the extre mal polynomial is e ven (odd). 
It is unique up to con s tant multiples and when ex· 
pressed in terms of the CP) may be take n to have positive 
coeffi cients except for the coeffi cients of 'Po a nd CPI 
which are zero. 

Only the case of even n = 2m will be treated. Odd 
n lead to exactly the s ame res ults. As before , the 
matrix E = (b2i,2.i) , i , j = l , . . . , m , is a real, sym· 
metric, positive definite matrix. As such it is orthog· 
onally similar to a real diagonal matrix D = diag {All, 
1.2" 1, . . ., A;;- I}. Here Ai are the reci procals of the 
eigenvalues. Thi s notation is perhaps confusing here 
but will be more con venient later. The chan ge of 
basis carries {CP2i(X) } into {gi(X)} . The new basis is 
orthonormal and is composed of polynomials in even , 
nonzero , powers of x . We have 

II gigjdx= Oij , II i;'i;'dx = Ai lOij 
- I - I 

i , j = l , ... , m. 

We shall derive a differential equation for the gi. 
For each i define h;'(;x) = gi(X) , h;(O) = 0, and hi(l) = 0. 
Because hi(x ) is even , hi(l) = hi(- I ) = O. Each gi is a 
linear combination of polynomials orthogonal to 1 so 

JI gidx = O= h;(I) - h;(-I). 
- I 

This with the fac t th at h;(x) is odd shows h;(l) = h;(- I) 
= 0. 

Le t q(x) be an arbitrary eve n polyn omi al of degree 
n without constant term. 

m 
q(x ) = L Cigi(X) . 

i = 1 

The orthogonality of the i;' shows 

i = 1, ... , m . (2.1 ) 

Integrating by parts twice and re me mbering that h; 
and hi both va ni sh a t ± 1 shows 

JI giq dx = JI 11; ([ " dx 
- I - I 

a nd, using ri/ = h\4), the rela tion (2 .1) can be writ te n as 

The expression (h? - Ai l hi) is an eve n pol ynomi al of 
degree at mos t n + 2 and is orth ogonal to an y even 
polynomial q" of degree at mos t n - 2. Th e ex pression 
is natura lly orthogon al to all odd polyn omials of degree 
at most n+ 1. The orthogo nali ty conditions require 

The homogeneous equation can have no polynomi al 
solutions s in ce powers cannot cancel. 

We prove k i cP 0 by contradic tion . Suppose it were 
zero. hi(l) = 0 implies h\4)(I ) = di• The equation has 
the polynomial solution 

Remembering that 

P\;".gfl) :;,: 0 with equality only for 4l > n + 2 

and that Ail > 0, it is seen that hi(l ) = 0 requires 
h\4)(I) = O. This is impossible because the polynomial 
hi cannot be a solution of the homogeneous equation. 

Define Ui(X) by kiui = hi. Using hi(l ) = 0, PI/+2(1) 
= Pn(l) = 1, we can write (2.2) as 
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Let 
oc oc 

5 i(x) = L 11.\ P)ti)(x), Ti(X) = L Al P\;'!)2(X), 
1= 0 1= 0 

The solution of (2.2) is 

5i (1) 
Ui(X) = - Ai5i(x) + Ai Ti(l) Ti(X). 

The requirement ui(l) = ° is manifestly satisfied. The 
requirement u{(l) = ° gives 

5{(1)Ti(1) = 5i(1)T{(1) 

which is a polynomial equation for Ai. In terms of A 
the equation is 

~ Al L [Plml)(l) P\;'j)(1)-P\,4!)£1) P\,4i+1)(1)] =0. (2.3) 
1=0 i+j=i 

We now wish to obtain an asymptotic solution of 
thi s equation. Let c(i, j) denote the expression in 
brackets in (2.3). Divide (2.3) by n and let 'Y/ = An8 • 

The resulting equation can be written as f,,('Y/) =0, 
where 

(2.4) 

We shall use the Hurwitz theorem [9 , pp. 156- 8] which 
states that if a sequence of functions 1" regular in a 
domain D converges uniformly to a nonconstant limit 
function f in D, then the zeroes off;, in D tend to those 
of f 

Using the expression for P\~')(l) , it is straightforward 
to show 

c(i, j) (8i + 2)!! (8j)!! 
n81+2 

1: (16i -16j+ 4)+~ d(i , j) 
n n-

(2.5) 

where Id(i, j)1 < 281 +4 (~!W· 

Let us multiply (2.5) by n and substitute in (2.4). With 

_ x I I6i-I6j+4 
f('Y/)- ~ 'Y/ i~I(8i+2)!! (8j)!! 

and (8i+2)!!(8j)!!;?:(4l)!!fori+j=l 

we have 

The series appearing in this bound is entire hence is 
bounded on compact subsets of the plane. The factor 
n- 1 assures us that the /n converge uniformly to / on 
compact subsets of the plane. 

Some simple identities show 

00 (-1)1 
f('Y/) = 2 + ~ 'Y/1 41(41)! . 

Introduction of the new variable k by 160 = 'Y/ for 
positive 'Y/ casts / in the form 

f(k) = 1 + cos k cosh k. 

The smallest root of / has been designated ko. The 
Hurwitz theorem implies the 

THEOREM. If P(x) is a polynomial 0/ degree n, then 

fl [P"(xJFdx ~ lWn J ~l [P(x»)2dx 

where M2 1 
~ = I6k~ + 0(1). 

III. Comparison of the asymptotic constants in both 
cases shows that the true constant is smaller for the 
second derivative than that given by iterated use of 
that of the first derivative. For example in the Le­
gendre case the results are (3.7502082)-4 and 71'-4 
respectively. Comparison of the constants is 
interesting. 

D D' D3: n = 100, 125 

Laguerre (;)' (iJ (0.4472)6 (0.4477)6 

Legendre (;)' (2~J (0.2314)6 (0.2301)6 

One might speculate that the factor of two relation 
persists for higher derivatives. Some numerical 
computations are shown for the third derivative for 
n large enough to give an indication of the asymptotic 
results. The ratios are respectively 1.93 and 1.95 
which are consistent with the factor of two relation. 
More extensive calculations are planned to substan­
tiate this conjecture. A proof for general Dk would 
appear to be difficult. 
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