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In section 1, transversal matroids are associated with “systems of distinct representatives” (i.e.,

transversals) and, more generally, matching matroids are associated with matchings in graphs.

The

transversal matroids and a theorem of P. J. Higgins on disjoint transversals of a family of sets, along
with the well-known graphic matroids and some theorems on decomposition of graphs into forests,

motivate some theorems on partitions of general matroids into independent sets.

In section 2, the

relationship between transversal result and matroid result is illustrated for a special case of later

theorems.

In section 3, theorems on transversals are proved using network flows.

In sections 4 and

5, theorems on matroids are presented which imply various results on decomposition into transversals

or into forests.

In section 6, the matching matroids are shown to be simply the transversal matroids.

For the most part, sections 2, 3, 4=5, and 6 can be read separately.

1. Transversal Matroids

A matriod M= (E, F) is a finite set E of elements and
a family F of subsets of E, called independent sets,
such that (1) every subset of an independent set is
independent; and (2) for every set A C E, all maximal
independent subsets of 4 have the same cardinality,
called the rank r(A) of A.

Sometimes no explicit distinction is made between
a matroid and its set of elements, in the same way
that no explicit distinction is made between groups,
spaces, or graphs and their sets of members. For
example, one normally uses the same symbol to denote
a space and the set of points in a space. On the
other hand, it is often desirable to consider various
matroids that have the same set of elements.

The primary example of a matroid is obtained by
letting £ be the set of columns in a matrix over some
field and F the family of linearly independent subsets
of columns. In particular, £ may be the set of edges
in a graph and F' the family of edge-sets that comprise
“forests” in the graph. A matroid that is abstractly
isomorphic to one of the latter kind is called graphic.

Our motivation here will be another source of
matroids, which is an extensive theory in its own
right. It is well known in various contexts, including
systems of distinct representatives, (0, 1)-matrices,
network flows, matchings in graphs, marriages, and
so forth (see [3]).! Here we will refer to it very
broadly as transversal theory.

*This paper is the third in a series [1, 2]. It is, however, self-contained.
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Let OQ={qi; i=1, ., m} be a family of (not
necessarily distinct) subsets of a set E={¢;; j=1,
., n}. The set T={ej), . . ., e}, 0=<t<n,
is called a partial transversal (of size t) of Q if T con-
sists of distinct elements in £ and if there are distinct
integers i(l), . . ., i(¢) such that eju) € qix) for k=1,
., t. The set T is called a transversal or a system

of distinct representatives of Q if t=m.

THEOREM. Let Q be any finite family of (not neces-
sarily distinct) subsets of a finite set E. (a) If F is
the family of partial transversals of Q, then M, = (E, F)
is a matroid. (b) If F is the collection of subfamilies
of Q that have transversals, then M,=(Q, F) is a
matroid.

The statements (a) and (b) are equivalent and refer
to the same abstract class of matroids because the
roles of Q and E are actually symmetric. The situation
is easily visualized in the form of the ‘““incidence graph”
of (E, Q): a “bipartite” graph, G=G(E, Q), where the
nodes in one part are members of ) and the nodes in
the other part are the members of E. The edges of G,
which all go from one part to the other, are the inci-
dences between Q and E.

A transversal matroid is one that is abstractly isomor-
phic to an M, (or an M,). Matroid theory and trans-
versal theory enhance each other via transversal
matroids, as do matroid theory and graph theory via
graphic matroids.

Let £ be any fixed subset of nodes in any given graph
G. We assume throughout this paper that each edge
of a graph meets two distinct nodes. Let subset
T C E be a member of F when T meets (is contained
in the set of endpoints of) some matching in G. (A
matching in a graph is a set of its edges such that no
two members of the set meet the same node.) We
shall show that M¢ r=(E, F) is a matroid by verifying
axiom (2). In general, where G is not necessarily
bipartite and where E is any subset of nodes, we call
Mg, ¢ a matching matroid. For any A C E, let T} and
T, be maximal subsets of A which meet matchings,
say N; and N,, respectively. Consider the subgraph
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N C G formed by the edge-set
N1+N2:(;N1_N2) U (N2_N1)

and the endpoints of its members. The connected
components of N are simple open and closed paths
because each node of N meets either one or two edges

of N. Set

T\ +To=(T1—Ts) U (To—T)

consists precisely of the path-ends of N that are in A4;
(Ty —T5) are the nodes of A that meet N; but not N,
and (T.—T,) are the nodes of 4 that meet N> but not
Ni. Suppose T is larger than T,; then T,—T; is
larger than Ty —T.. In this case, some component of
N must be an open path, say P, which has one end v
in 75— T, and the other end not in 7y —7T>. Regarding
path P as its edge-set, Ny +P=(N,—P) U (P—N))
is a matching. This matching meets T; in 4 and in
addition it meets v in 4. Thus, we contradict the
hypothesis that T; is a maximal subset of 4 which
meets a matching. Therefore, T, and T. have the
same cardinality and it follows that M p=(E, F) is a
matroid.

General matching matroids are discussed in sec-
tion 6.

2. Introduction

P. J. Higgins [4] gives conditions for a family Q of
sets to have k& mutually disjoint partial transversals
of prescribed sizes ni, ne, . . ., nk. In section 4 we
present conditions for a matroid M to have & mutually
disjoint independent sets of prescribed sizes ng,
No, . . . , Np.
ample, this result is new.

The following two closely related matroid theorems
are presented in [1] and [2] as generalizations of the-
orems by Nash-Williams and Tutte on graphs. The-
orem 2, below, for the case of transversals, handles
a special case of the Higgins problem; it will be gen-
eralized to cover the Higgins problem. Theorem 1 is
new for the case of transversals; it will be generalized
analogously.

THEOREM 1. The elements E of a matroid M can
be partitioned into as few as k sets, each independent
in M, if and only if | A| <k -r(A) for all A C E.

THEOREM 2. The elements E of a mairoid M can
be partitioned into as many as k sets, each a spanning
set of M, if and only if |A|=k(r(E)—1(A) for all
A CE. _

As usual |A4| denotes cardinality of set A, and A
denotes the complement of 4 (with respect to E).
A spanning set of a matroid M is a subset of E which
contains a maximal independent set.

A base of a matroid M is a maximal independent
set, i.e., a minimal spanning set. Each base has
cardinality equal to H(E), the rank of the matroid.

For any family B of subsets of a set E, a covering
in B is a subfamily whose union is E, and a packing
in B is a subfamily whose members are disjoint.

Where the matroid is graphic, for ex-

Where B is the family of bases of matroid M, theorem 1
describes the minimum cardinality of a covering in
B, and theorem 2 describes the maximum cardinality
of a packing in B.

Applied to a transversal matroid M,, where the
members of a family Q are the matroid elements and
where the subfamilies that have transversals are the
independent sets of elements, Theorem 1 says that
a family Q of sets can be partitioned into as few as
k subfamilies, each having a transversal, if and only
if |A|l<k-p(A) for every subfamily A C Q. Here
p(A) denotes the maximum cardinality of a subfamily
of A which has a transversal, i.e., the maximum car-
dinality of a partial transversal of 4. The statement
is not interesting when k=1; for abstract matroids
there is nothing interesting to say in this case.

Where A is a family of subsets of a set E, where
N(E, A) is the (0, 1)-incidence matrix of members of
E (rows) versus members of 4 (columns), and where
G(E, A) is the bipartite incidence graph of (E, 4), the
value p(A) is called the term rank of A, N(E, A), and
G(E, A), respectively. One of the two fundamental
forms of the fundamental theorem of transversal theory
is due to P. Hall. It describes when a family 4 (or Q)
itself has a transversal. The other fundamental form
of the fundamental theorem is Konig's formula for
term rank: p(4), the maximum cardinality of a partial
transversal of 4 or of a matching in G(E, A) (i.e.,
a set of 1’s which might be called a matching in
N(E, A)) is equal to the minimum cardinality of a set
of nodes that meets all edges in G(E, A) (i.e., a set of

rows and columns that together contain all 1’s of
N(E, A)).

Let o(4), for A C Q, denote the cardinality of the
union of the members of 4. It is a consequence of
the Konig formula for term rank that the inequalities
|A|<Fk-p(A) for all A C Q are equivalent to the in-
equalities |A|<k-o(4) forall 4 C Q. Thus the latter
are also necessary and sufficient for Q to have a parti-
tion into k subfamilies, each with a transversal.
When k=1, this is P. Hall’s theorem on transversals.

To see this equivalence, suppose that |4 |> k- p(A4)
for some A4 C (. In the incidence graph G(E, A),
let E, UA,, E; CFE and A; C A, be a minimum car-
dinality set of nodes that meets all of the edges.
By the Koinig theorem, p(4)=|E;|+|A:|. Let
A>=A—A,. The set-union of members of A, that
is, the other ends of all the edges that meet 4., is E;,
s0 0(A42)=|E;|. Combining, we have

| 42| =|A|—|A41]| > k(| Ei |+ | Ai|)— | 4 |
=k |Ei|+(k—1) | 41| = k- o(ds).

On the other hand, clearly p(4) < o(A) for all 4 C Q.
Therefore, |A|<k-p(A) for all A C Q is equivalent
to |A| <k - o(A) for all A C Q. Thus, Q can be par-
titioned into as few as k subfamilies, each with a trans-
versal, if and only if the latter holds.

We do not recommend this matroid approach as the
way to derive the transversal result. Theorem 1 in
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general is not easy, and, even after it is established,
using it with the Konig theorem to get the transversal
result is no easier than deriving the transversal
result directly from P. Hall’'s theorem as follows.
Let each element e € E be replicated /£ times to obtain
e, . ..,er€eE'. To obtain Q', let g’ € Q' consist of
all the replications of the elements in ge Q. Then
|[A| <k -o(A) for all 4 CQ is equivalent to [A’]
=o(A') for all A' C Q'. By P. Hall’s theorem the
latter is equivalent to the existence of a transversal
for @'. That, in turn, is equivalent to there being a
partition of Q into as few as k subfamilies, each having
a transversal.

Section 3 presents a derivation of transversal
theorems using network flows. Section 4 presents
a different derivation of the corresponding matroid
theorems. Both derivations suggest computationally
good algorithms. Section 5 presents another ap-
ph(’dt]()ll of section 4, and section 6 relates general
matching matroids to transversal matroids.

3. Transversal Covers and Packings

In this section we focus attention on the transversal
matroid M,=(E, F), I being the family of partial trans-
versals of (). We shall use network flows to derive
results on covers and packings in . For background
material on network flows, we refer to [3]. In partic-
ular, the max-flow min-cut theorem and integrity
theorem will be applied.?

Consider the directed network shown in figure 1.
In figure 1 we have, in addition to a source-node u and
a sink-node v, three tiers of nodes: ey, es, . . ., ey
(elements of E); q1, g, , Gm (subsets of £ that com-
prise the family Q); and pl, 5, . . ., pk(partial trans-
versals). The directed edges of this network and their
flow capacities are listed below:

Edges Capacities
(u, ej) j=1, ,n, clu, e)=1,
(eis qi), (mlespnndm" to ej € qi, clej, qi) =02,
(gi, pr), i=1,...,m r=1, ., k, clgi, pr)=1,
(prs v), =g o ool c(pr, V)=,

An integral flow from source to sink in this network
produces k& mutually disjoint partial transversals of
respective sizes $; < ni, S» = n, ., Sk < ny in the
following manner. Take a chain decomposition of
the flow and put e; in p, if, for some i=1, 2, ., m,
the edges (ej, ¢i) and (qi, pr) occur in a chain of this
decomposition. Conversely, £ mutually disjoint partial
transversals of sizes s;<ni, sa<ns, . . ., Sk=ng
yield an integral flow from source to sink. Using the

3In a graph where the edges e; are directed and have positive integer capacities c;,
the maximum number of chains (directed paths, not nec distinet) from a node u
to a node v, such that each e;is contained in at most ¢; of these chains, equals the minimum
of the total capacity of the edges directed from U to U where (U, U) is any partition of all
the nodes into two parts such that u € U and ve U. The family of chains is called a chain
decomposition of a maximum flow from u to v. The set of edges directed from a U to U is
called a cut separating source u from sink v.

FIGURE 1.

integrity theorem and max-flow min-cut theorem for
network flows, it follows that the maximum number of
elements contained in a union of £ (mutually disjoint)
partial transversals of respective sizes s < ni, s» < no,

., Sk =ny is equal to the capacity of a minimum

cut separating source and sink in this network. We
proceed to calculate this.

Let A, B, C be arbitrary subsets of E={e1, €2, . . .,
ent, Q={q1, ¢, .5 gm}, and P={py, p2, . . .,

pr}, respectively, and denote their complements in
these sets by A, B, C. The capacity of an arbitrary
cut separating u and v is then represented by the sum

2 c(u ej)+ 2 e}, q, + 2 ql’ pl + Z C(p"’ U)'

(’jeﬂ €€ qj€B. p,£C

Js
qi€B pEC

We wish to minimize this over A CE, B C Q, C C P.
Using the table of edge capacities, this reduces to
computing the minimum of

4]+ 18] - |l + S ny

D€ C

over A C E, B C (, C C P such that the set of edges
leading from A4 to B is empty. Thus, for given 4 and
C, we may take B to consist solely of those nodes of
which are joined by edges to some node of 4. In the
language of set representatives, B consists of those sets
represented by elements of A. Moreover, for C of
fixed cardinality |C|= —s, we may take C to corre-
spond to the s smallest n’s. Thus, choosing the nota-
tion so that 0<n;<n»<. . .<ng, and letting o(A4)
denote the cardinality of the subfamily of Q represented
by elements of 4, we are led to minimizing

[A] + (k—s) o(4) + i n

over A CE and s=0, 1, ., k. For fixed 4, the
minimization over s can be carried out explicitly.
Indeed, let nf be the number of integers among the n,,
r=1, 2, . k, such that n,=j, j=1, 2,

Thus [n¥] and [n,] are conjugate partitions of the integer
2k_ ny. Itis not hard to see, especially in terms of a
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partition diagram, that

s U(A)
min [(k —s)o(4 2 ]
o=s<k r=1 =1

This proves that the maximum number of elements of
E contained in a union of k (mutually disjoint) partial
transversals of Q, having respective sizes s; < ni,
Ss<ns,. . .,Sk=ng, s equal to
m1n [|A| 4F E

j=1

(*)

Here o(A) denotes the number of sets in the family Q
that are represented by elements of A.

The following two theorems, which give necessary
and sufficient conditions for the existence of covers
and packings composed of partial transversals of pre-
scribed sizes, are consequences of this result. (Nash-
Williams originated a similar viewpoint for related
theorems on matroids.)

THEOREM la. Let Q be a finite family of subsets of
a finite set E.  The family Q has k partial transversals
of respective sizes ni, ns, . . ., ng whose union is E if
and only if (i) n; < p(E), i=1, 2, , k, and (i1) for
every A C E, the inequality

o(A)
|Al< ) n*
i=1

holds.

Here p(F) denotes the term rank of the bipartite
incidence graph (or matrix) of elements of E versus
sets of the family Q, that is, p(E) is the rank of the
matroid M,=(E, F). The proof of sufficiency of (i)
and (i) makes use of the fact that M, is a matroid in
extending the £ partial transversals of sizes s; to
partial transversals of sizes n;, i=1, 2, k.

THEOREM 2a. Let Q be a finite faley ofsubsets of
a finite set E. The family Q has k mutually disjoint
partial transversals of respective sizes ni, ns, . . .,
ny if and only if, for every A C E, the inequality

|A| =

o
> o
j=0(A)+1

holds.

Using the Konig theorem in an argument similar to
that in section 2 shows that the rank function p(4) of
matroid M, can be used in place of o(A4) in (*), hence
also in theorems la and 2a.

The situation of theorem 2a is the problem studied
by Higgins. His conditions are not the same as those
of theorem 2a, but are instead stated in terms of sub-
families B of Q rather than subsets 4 of E. They may
be derived from theorem 2a by use of the Konig theo-
rem (and vice versa), or can be obtained directly by
eliminating A and C, rather than B and C, in the mini-
mization argument leading to (¥).

4, Matroid Partition

THEOREM 1b. The set E of elements of a matroid
M can be covered by a family of independent subsets
I =1, , k) of prescribed sizes n; < r(E) if and
only if, for every A C E,

r(4)
4] < 2 nj*=z min (n;, r(A)).

Jj=1

THEOREM 2b. The set E of elements of a matroid
M contains mutually disjoint independent subsets

Iii=1,. . ., k) of prescribed sizes n; < x(E) if and only
if, for every A C E,
r(E) S
|4| = Z nj?"= 2, [ni—min (n;, H(A))].
j=r(A)+1 v

Here r(A) denotes rank relative to matroid M. The
equations in theorems 1b and 2b are obvious.

Using lemma 1, theorems 1b and 2b follow immedi-
ately from theorems lc and 2c¢ below.

LEMMA 1. For any matroid M= (E, F) and any non-
negative integer n, let F, denote the members of F
which have cardinality at most n. Then My,),= (E, F,))
is a matroid. Where r(A) is the rank function for M,
the rank function for M, is

rmy(A)=min (n, r(A4)).

We call M, the truncation of M at n.

The proof of lemma 1 is obvious.

Let r(A) be the rank functions for any family of
matroids M;=(E, F;), i=1, . . ., k, on the set E of
elements.

THEOREM lec.
of subsets I,i=1,
if for every A CE,

Set E can be partitioned into a family
, k), where I, € ¥y, if and only

4] < i)

THEOREM 2c. There is a family of mutually dis-
joint sets [;i=1, , k), where 1; is a maximal mem-

ber (base) in F;, i].‘ (;n;i only if for all A C E,
4] =3 1B~ ).

i i

Where each M; is a graph, theorem 2c is equivalent
to a theorem of Tutte [5].

Since it can be shown that a truncation of a graphic
or a transversal matroid is not necessarily graphic
or transversal, theorems 1b and 2b for these cases do
not follow from theorems lc and 2c for these cases as
in general. A similar remark applies to the way 2c
will be derived from lc. Thus we observe that the
general matroid concept is useful even where primary
interest is more special. The proof of 1c, on the other
hand, is arranged so that the only matroids it will
mention are those of the theorem. Hence, the proof
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applies directly to any special class of matroids (in-
cluding classes of one). Everything in references [1]
and [2] applies directly to the case of only graphs.
The proofs in [2] do not apply directly to the case of
only transversals because, as will be shown at another
time, a ‘“contraction” of a transversal matroid is not
necessarily transversal.

LEMMA 2. Let A be any subset of the elements of a
matroid M. Let 1 be any independent subset of A.
A maximal set S, such that 1 CS C A and r(S)=r(I)
=|I|, is the unique set consisting of 1 and elements
e € A such that e U 1 is dependent.

Set S is called the span of I in A.

Proor. Consider ee4d—I. By the definition of
rank, [ is a maximal independent subset of any S.
Thus, if e U I is independent, then e¢S. And thus,
on the other hand, if e U [ is dependent, then [ is a
maximal independent subset of e U S. Hence by
axiom 2 for matroids, r(e U S)=|I|, and so e€S.

LEMMA 3. The union of any independent set 1 and
any element e of a matroid M contains at most one
minimal dependent set.

A minimal dependent set is called a circuit of M.

PROOF. Suppose I U e contains two distinct cir-
cuits C; and C,. Assume [ is minimal for this possi-
bility. We have eeC, N C,. There is an element
e1€C;—C, and an element e.eC.—C,. Set ([ U e)
—(e1 U e») is independent since otherwise I —e; is a
smaller independent set than I for which (I —e;) U e
contains more than one circuit. Set [ and set (I U e)
—(e; U e;) are maximal independent subsets of set
I U e. This contradicts axiom 2.

PROOF OF lc. Suppose that {[;} (=1, , k) is
a partition of FE, where [ieF;. Then for arbitrary
ACE,

|[4| = 2 |4 ﬂI|—E rid N 1) <2 ri(A).

i

Conversely, suppose that for every 4 C E, the in-
equality holds. Let {L;} i=1, k) be a family
of disjoint sets such that /; is independent in M;. Any
number of these may be empty. Suppose there is an

ee E—UI.

We shall show how to rearrange elements among the
sets I; to make room for e in one of them while pre-
serving the mutual disjointness and the independence
of I; in M;. This will prove the theorem.

If e€S for any S C E, then for some i, |I; N S| <ri(S).
Otherwise,

IS|=|UTiNS) U e|
=1+3 [l N S| >3 r(S)

would contradict the hypothesis.

Let S¢=FE. Inductively, starting with j—1=0,
if e€S;_; then for some I;(j such that

[ Tigy N Sj - 1| < rigfS; - 1),

we define S; to be the span in S;_, with respect to
matroid Mj), of lij; N S; - 1. Since

rigfS;) < rig\Sj - 1),

S; is a proper subset of Sj_ . Therefore we must
eventually reach an S, such that e¢S, and eeS; for
0<j<h.

(Where the matroids M; are identical, the construc-
tion above is the same as the corresponding part of
the proof of theorem 1 in [1]. The rest of references
[1] and [2] goes through essentially unchanged for a
version, concerning possibly distinct matroids, which
includes theorems lc¢ and 2c. However, we continue
here with a substantially trimmed version.)

If e Ul is independent in M), the present
proof is finished. Otherwise e U [y contains a cir-
cuit C of Mipy. Set (e U Ligy) NSy — 1 is not dependent
in Miu), because then, by lemma 2 and by the defini-
tion of Sy, since e€S, -1, we would have eeS,. Thus
let m be the smallest integer, 0 < m < h, such that
(e U L) N Sy, is independent in M;). There is an
e'eC—S,. Bylemma3,e U [i;)—e'isindependent in
M!(h)

Repla(mu liny by e U liny—e’, we now need to
dispose of e’ instead of e. However, we can show that
sequence (li), Si), , (Liomy» Sw), with the roles of

e and e’ intercllanged is of the same construction as
(liry, S1), « « ., (Liwy» Sn), only shorter. Since the origi-

nal e U(ligy N Sj-1) is dependent in My, for all
J» 1 <j=m, by lemma 3 we have ¢'eC C S; _,. Con-
sider the terms (/ij), Sj), 1 =<j =< m. one after another

in order. Assume there is no change in S;_,. If
originally /i) = Ilin), then there is no change at all in
(Ligy, Sj). If originally Ii;=1Iin), then, even though

e and e’ are interchanged in /i, by lemma 2 and the
definition of Sj, since e U e' C C C S;_ 4, there is no
change in S;. Thus the theorem is proved.

ProOF¥ oOF 2¢. For any family of matroids, M;
=(E, Fi) (=1, , k), with rank functions r;(A4),
consider the additional matroid M,=(E, F,) where
the members of Fy are the subsets of £ that have car-

= E ri(E).

1

cation of the matroid in which all subsets of E are
independent. The existence of mutually disjoint
sets [i(1=1, , k), where I; is a maximal member
of Fi, is equivalent to the existence of a partition of
E into a family of sets, lyand [; (i=1, ., k), such that
lyeFy and lieF;. By theorem lc, the existence of that
partition is equivalent to the condition that

min (| E[ =3 rl). [4])+ Y ri4

i

dinality at most |E| Matroid M, is a trun-

[A| <

forall 4 C E.
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That condition in turn is equivalent to

Al < |E| =3 rdE)+Y, i)

for all A C E, which is equivalent to
4| = S r(E)— 3 ri(4)

for all A C E. Thus theorem 2c¢ is proved.
5. Another Application

Let J; @=1, , k) be mutually disjoint indepen-
dent sets in a matr()ld M=(E,F). LetE'=E—(UJ).

THEOREM 1d. Set E can be partitioned into a family
of independent sets lLiel (i=1, ., k) such that
Ji C 1 if and only if, for every A C E’,

Al < S [HA U J)— ().

i

THEOREM 2d. There is a family of mutually disjoint
bases I; i=1, . . ., k) of M such that J; C I; if and
only if, for every A C E’,

|Al = 3 [r(E)—r(E'—A) U Ji)].

For any matroid M=(E, F) and any E, C E, let
Fo consist of sets IeF such that I C E,. Then M - E,
=(Ey, Fo), obviously a matroid, is called a submatroid
of M (obtained from M by deleting the elements of

Ey=FE—F,). The rank of a,,subset of Ey is the same in
M : E() as in M.

For any matroid M= (E, F) and any £, C E, let J be
any maximal subset of Eg=FE —E, which is a member
of F. In other words, let J be any base of submatroid
M - Ey,. Let Fy consist of sets IeF such that I C E,
and such that J U leF. It follows easily from the
definition of matroid that M X Ey= (E,, Fo) is a unique
matroid, called the contraction of M to E, (obtained
from M by contracting the elements of E,;). Where
r and ry denote the rank functions for matriods M and
M X E,, respectively, we have for every A C E,,

ro(A)=rA U Eo)— HEy).

Theorem 1d follows immediately from theorem lec
by letting the M; of lc (for i=1, k) be the
matroid obtained from matroid M of 1d by contract-
ing the elements of J; and then deleting all the other
elements of E—E’.

To prove 2d from 2¢, we obtain each M; of 2¢ from
M of 2d in the same way as above. If, for some i,
rE" U J;) <r(E), then no base of M is contained in
E’ U J; and so there is no family of bases I; as described
in 2d. In this case the inequality in 2d does not hold
where A is the empty set. Otherwise, (E" U J;))=rE)
for each i. In this case, if J] is a base of M;, then
Ji U J! is a base of M. Thus, in this case, 2d follows

from 2c.

6. Addendum on Matchings

An element of a matroid M is called isolated if it is
contained in every base of M, i.e., if it is contained in

no circuits of M. Clearly, any number of isolated
elements can be “added” to any transversal matroid
M,, thereby obtaining another transversal matroid.
With respect to the graph representation G(E, Q) of
M., for every isolated element e’ added to M,, simply
add a node e’ to £ and join it to a new node ¢’ added
to Q.

Several elements of a matroid M are said to be in
sertes with each other either when they are all isolated,
or else when none of them is isolated and each base of
M contains all but possibly one of them.

A set of elements is in series in matroid M if and only
if the elements are contained in exactly the same
circuits of M.

Suppose some base I of M contains neither of ele-
ments e; and e; of M. Then I U e; contains a circuit
of M that contains e; but not e».

Suppose an element e; is contained in a circuit C
of M that does not contain nonisolated element e, of
M. Let I be a base of M which does not contain e.
The rank of (I U C)—e, is as large as the rank of I;
otherwise every maximal independent subset of / U C
would coentain e;, but then e; would be contained in
no circuit in / U C. Therefore (I U C)—e; contains a
base of M; this base contains neither e; nor eo. Thus
the theorem is proved.

“Replacing an element e; in a matroid M by a set

={e!, . . ., ef} of new elements in series” yields
a matroid M@ % The circuits of M@ % and the ele-
ments of M % are identical with those of M except that
ei is replaced by the members of EX. Each base B of
M which contains e; corresponds to a base (B—e;) UEk
of M@ " Each base B of M which does not contain e;
corresponds to k£ bases of M%) of the form B U E
—el, j=1, ..., k. We omit proof that MK is a
matroid, Wthh is not difficult using the description of
the bases

For any transversal matroid M,, containing element
e;, the matroid M%) is also transversal.

Let M, be represented by a bipartite graph G
=G(E, Q) as described in section 1; a base of M,
consists of the endpoints in £ of a maximum cardi-
nality matching in G. By thinking of bases, it is easy
to see that we obtain from G a similar representation
G R for matroid M@% as follows. Replace node
ekl of G by the set EX of new nodes. Join each
el € E% to the same nodes in Q to which e; was joined.
Also add to Q a set Q" of k— 1 new nodes, each joined
to precisely the members of EX.  We then have GU-%).
A base of matroid M{@>® consists of the endpoints in
(Gl*{—“e,) U E¥ of a maximum cardinality matching in

1

Clearly, if 4 C E for matching matroids Mg, 4 and
Mg, g, then M, , is the submatroid of Mg, r whose set
of elements is 4. Clearly, any submatroid of a trans-
versal matroid is transversal.
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Every matching matroid is a transversal matroid.
(Thus, the two classes of matroids are abstractly the
same.)

In view of the preceding observations on sub-
matroids, it suffices to show that where G is any graph
and where V is all of its nodes, M, v is a transversal
matroid. Clearly, B is a base in matroid M, v if and
only if B is the set of endpoints of some maximum
(cardinality) matching L in G.

Section 6 of [7]implies the following theorem (which
essentially strengthens some other known theorems,
a characterization by Tutte of graphs in which no
matching meets all the nodes, and a formula by Berge
for what we regard here as the rank of Mg, v).

(*) From any graph G, by deleting the set J of nodes
which meet every maximum (cardinality) matching
and deleting all the edges which meet ], the remainder
consists of connected components, O, containing re-
spectively 25+ 1 nodes where v; is an integer. (If G
is bipartite, each 0; is a single node.) Let Q consist
of the nodes u in J which in G are joined to at least
one node in U 0,. Every maximum matching in G
contains r; edges in 0j, for each i, and contains an
edge joining u to a node in U 0,, for each ueQ.

What is actually proved in |7] is theorem (*) where
“Every” is replaced by “Some” in the last sentence.
However, because each 0; has an odd number of nodes,
because every edge leaving an 0; goes to a ue(), and
because each edge has two ends, it is easy to see that
any matching which is not as described in the theorem
meets fewer nodes in U 0;. Hence, it has smaller
cardinality than the matching, described in the theo-
rem, which is proved in[7] to exist.

(Unless some matching in & meets every node, there
are more 0;’s than there are u’s. The theorem of
Tutte says that a graph contains no matching that
meets all of the nodes if and only if there exists a sub-
set Q of the nodes such that deleting Q and its inci-
dent edges from G leaves more than |Q| components
which have odd numbers of nodes.)

For any graph G, whose node: set 1s 7, the set J C V.
defined in (*) is the set of isolated elements in matroid
M, v. Denoting the set of nodes in 0; by E;, theorem
(*) says that each maximum matching meets all but
possibly one node in Ej; thus, set E;is in series in
matroid Mq, y. By “contracting” the subgraphs 0; to
single nodes ¢, comprising a set £, and then by delet-
ing /—Q and all edges which do not meet an e;, we
obtain from G a bipartite graph G(£, Q).

Let M, be the transversal matroid, with set £ of
elements, associated with G(E, Q). It follows easily
from theorem (*) that matroid M, y is obtained from
matroid M, by replacing each e; by the set E; in series
and by adding set J of isolated elements.

The structure of transversal matroids and some
other related matroids will be further described in a
later paper.
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(Paper 69B3—-145)

Note added in proof: Theorem 1, the subject of [1],
generalized here, was proved for the case where the
matroid is a set of vectors in a vector space by Alfred
Horn [A characterization of unions of linearly inde-
pendent sets, J. London Math. Soc. 30 (1955), 494—
496] and by R. Rado [A combinatorial theorem on
vector spaces, J. London Math. Soc. 37, (1962), 351—

353].

In the Abstracts of Short Communications,

International Congress of Mathematicians, Stockholm
1962, p. 47, Rado remarks that “This theorem is of
interest since in contrast to other propositions on
vector spaces its proof has not yet been extended to
abstract independence relations I (H. Whitney, Amer.
J. Math. 1935, R. Rado, Canadian J. Math. 1949). It
remains to decide if (i) the theorem is true for all I,
or (i) its validity constitutes a new necessary condi-
tion for representability of I in a vector space.”

Theorem 1 confirms (i).
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