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In sec tion 1, transversal Inatroids are assoc iated with "syste ms of di s tinct represe ntatives" (i. e., 
tra nsversals) and,. more generally , matc hing matroids are associated with matc hings in graphs . Th e 
transversal matrolds and a theore m of P. J. Higgins on disjoint transversals of a famil y of se ts , along 
wIth th e well-known graphIc matrold s a nd some theorems on decomposition of graphs into fore sts 
motI~ate som e theore ms on partitions of general matroid s into inde pe ndent sets. In sec tion 2, th ~ 
relatIOns hiP . between transversal result and matroid result is illustrated for a s pecial case of later 
theorems. In sectIOn 3, theorems on trans versals are proved using network flows . In sec tions 4 and 
5, theorems on matrolds are presented which imply various res ults on decomposition into transversals 
0,1' IIltO forests . In sec tion 6, the matc hing matro ids are show n to be simply the transversal matroid s. 
1' 01' the mos t part , sec tI ons 2, 3, 4- 5, and 6 can be read separately. 

1. Transversal Ma troids 

A matriod M = (E, F) is a finite se t E of elements and 
a family F of subsets of E , called independent se ts, 
such that (1) every subse t of an independent set is 
independent ; and (2) for e very set AcE all maximal 
independent subsets of A have the sam~ cardinality, 
called the rank r(A ) of A. 

Sometimes no explicit distinction is made between 
a matroid and its set of elements, in the same way 
that no explicit di stinction is made between groups, 
spaces , or graphs and their se ts of members . For 
example, one normally uses the same symbol to de note 
a space and the set of points in a space. On the 
other hand , it is often desirable to consider various 
matroids that have the same set of elements. 

-:r:he primary example of a matroid is obtained by 
lettIng E be the set of columns in a matrix over some 
field and F the family of linearly inde pendent subsets 
?f columns. In parti cular, E may be the se t of edges 
m a graph and F the family of edge-sets that co mprise 
:'forests". in the graph. A matroid that is abstractly 
IsomorphIC to one of the latter kind is called graphic . 

Our motivation here will be another source of 
matroids, which is an extensive theor y in its own 
right. It is well known in various contexts, including 
systems of distinct representatives, (0, I)-matrices, 
network flows, matchings in graphs, marriages, and 
so forth (see [3]).1 Here we will refer to it very 
broadly as transversal theory. 
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Le t Q = {qi; i = 1, .. . , m} be a family of (not 
necessarily di stinct) subsets of a se t E = {ej; j = 1, 
... , n}. The se t T = {ej(I), ... , ej(t )}, ° ~ t ~ n 
is called a partial transversal (of size t) of Q if T co n: 
sis ts of distinct elements in E and if there are di s tinct 
integers i(I), ... , i(t) suc h that ej(k) E qi(l, ) for k = 1, 
.. '. ' t. The se t T is called a transversal or a system 
of d~stULct representatives of Q if t = m. 

THEOREM. Let Q be any finite famil y of (no t neces
sarily distinct) subsets of a finite set E. (a) If F is 
~he fam ily ?f partial transversals of Q, then Ma = (E , F) 
~s a matro~d. (b) If F is the collection of subfamilies 
of Q .that have transversals , then Mb = (Q, F) is a 
matrmd. 

The s tatements (a) and (b) are equivale nt and refer 
to the same abstract class of matroids because the 
roles of Q and E are actually symmetri c. Th e situation 
is easily vi sualized in the form of the " incide nce graph" 
of (E, 9 ): a " bipartite" graph , G = G(E , Q), where the 
nodes m one part are membe rs of Q and the nodes in 
the other part are the members of E. The edaes of G 
whi ch all go from one part to the other , are ~he inci: 
dences b etween Q and E. 
~ transversal matroid is one that is abstractly isomor

phiC to an Ma (or an Mb ). Matroid theory and trans
versal theory enhance each other via transversal 
matro~ds, as ~o matroid theory and graph theory via 
graphiC matrOids. 

Let E be any fixed subset of nodes in any given graph 
G. We assume throughout this paper that each edge 
of a graph meets two distinct nodes . Let subset 
! C E be a member of F when T meets (is contained 
m the set of endpoints of) some matching in G. (A 
matching in a graph is a set of its edges s uch that no 
two members of the set meet the same node.) We 
sh~ll show that MG , E= (E, F) is a matroid by verifying 
a~lOm. (2). In general, where G is not necessarily 
bipartite and where E is any subset of nodes we call 
MG, E a matching matroid. For any AcE le't TJ and 
Tz be maximal subse ts of A which meet 'matchings, 
say NJ and N2 , respectively. Consider the subgraph 
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NeG formed by the edge-set 

and the endpoints of its members. The connected 
components of N are simple open and closed paths 
because each node of N meets either one or two edges 
of N. Set 

consists precisely of the path-ends of N that are in A; 
(TI - T2) are the nodes of A that meet NI but not N2, 
and (T2 - Td are the nodes of A that meet N2 but not 
N I. Suppose T2 is larger than T J ; then T2 - TI is 
larger than TI - T2. In this case, some component of 
N must be an open path, say P, which has one end v 
in T2 - TI and the other end not in TI - T2 • Regarding 
path P as its edge-set, NI + P= (NI - P) U (P- Nd 
is a matching. This matching meets TI in A and in 
addition it meets v in A. Thus, we contradict the 
hypothesis that TI is a maximal subset of A which 
meets a matching. Therefore, TI and T2 have the 
same cardinality and it follows that MG,E=(E, F) is a 
matroid. 

General matching matroids are discussed in sec
tion 6. 

2. Introduction 

P. J. Higgins [4] gives conditions for a family Q of 
sets to have k mutually disjoint partial transversals 
of prescribed sizes nl, n2, ... , nk. In section 4 we 
present conditions for a matroid M to have k mutually 
disjoint independent sets of prescribed sizes nl, 
n2, ... , nk. Where the matroid is graphic, for ex

ample, this result is new. 
The following two closely related matroid theorems 

are presented in [1] and [2] as generalizations of the
orems by Nash-Williams and Tutte on graphs. The
orem 2, below, for the case of transversals, handles 
a special case of the Higgins problem; it will be gen
eralized to cover the Higgins problem. Theorem 1 is 
new for the case of transversals; it will be generalized 
analogously. 

THEOREM 1. The elements E of a matroid M can 
be partitioned into as few as k sets, each independent 
in M, if and only if I A I,;;; k . r(A) for aLL AcE. 

THEOREM 2. The elements E of a matroid M can 
be partitioned into as many as k sets, each f!:.spanning 
set of M, if and only if I A I ~ k(r(E) - rCA)) for aLL 
Ac E. 

As usual IA I denotes cardinality of set A, and A 
denotes the complement of A (with respect to E). 
A spanning set of a matroid M is a subset of E which 
contains a maximal independent set. 

A base of a matroid M is a maximal independent 
set, i.e., a minimal spanning set. Each base has 
cardinality equal to r(E), the rank of the matroid. 

For any family B of subsets of a set E, a covering 
in B is a subfamily whose union is E, and a packing 
in B is a subfamily whose members are disjoint. 

Where B is the family of bases of matroid M, theorem 1 
describes the minimum cardinality of a covering in 
B, and theorem 2 describes the maximum cardinality 
of a packing in B. 

Applied to a transversal matroid M b , where the 
members of a family Q are the matroid elements and 
where the subfamilies that have transversals are the 
independent sets of elements, Theorem 1 says that 
a family Q of sets can be partitioned into as few as 
k subfamilies, each having a transversal, if and only 
if I A I,;;; k . peA) for every subfamily A C Q. Here 
peA) denotes the maximum cardinality of a subfamily 
of A which has a transversal, i.e., the maximum car
dinality of a partial transversal of A_ The statement 
is not interesting when k= 1; for abstract matroids 
there is nothing interesting to say in this case. 

Where A is a family of subsets of a set E, where 
N(E, A) is the (0, I)-incidence matrix of members of 
E (rows) versus members of A (columns), and where 
G(E, A) is the bipartite incidence graph of (E, A), the 
value peA) is called the term rank of A, N(E, A), and 
G(E, A), respectively. One of the two fundamental 
forms of the fundamental theorem of transversal theory 
is due to P. Hall. It describes when a family A (or Q) 
itself has a transversal. The other fundamental form 
'of the fundamental theorem is Konig's formula for 
term rank: peA), the maximum cardinality of a partial 
transversal of A or of a matching in G(E, A) (i.e., 
a set of I's which might be called a matching in 
N(E, A)) is equal to the minimum cardinality of a set 
of nodes that meets all edges in G(E, A) (i.e., a set of 
rows and columns that together contain all I's of 
N(E, A)). 

Let (T(A), for A C Q, denote the cardinality of the 
union of the members of A. It is a consequence of 
the Konig formula for term rank that the inequalities 
IA I,;;; k·p(A) for all A C Q are equivalent to the in
equalities I A I ,;;; k· (T(A) for all A C Q. Thus the latter 
are also necessary and sufficient for Q to have a parti
tion into k subfamilies, each with a transversal. 
When k= 1, this is P. Hall's theorem on transversals. 

To see this equivalence, suppose that I A I> k· peA) 
for some A C Q. In the incidence graph G(E, A), 
let EI U AI, EI C E and Al C A, be a minimum car
dinality set of nodes that meets all of the edges. 
By the Konig theorem, p(A) = IEII+IAII. Let 
A2 = A - A I. The set-union of members of A2 , that 
is, the other ends of all the edges that meet A2 , is E I , 

so (T(A 2 ) = I Ell. Combining, we have 

IA21 = IA I-IAII > k(IEII + IAID-IAII 

=k ·IEII +(k-I) ·IAII ~ k . (T(A2). 

On the other hand, clearly peA) ,;;; (T(A) for all A C Q. 
Therefore, I A I ,;;; k . peA) for all A c Q is equivalent 
to IAI ,;;; k . O"(A) for aLL A C Q. Thus, Q can be par
titioned into as few as k subfamilies, each with a trans
versal, if and only if the latter holds. 

We do not recommend this matroid approach as the 
way to derive the transversal result. Theorem 1 in 
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general is not easy, a nd , e ve n afte r it is es tabli shed , 
using it with th e Konig theore m to ge t the transversal 
result is no easier than derivin g the tra nsve rsal 
result directly from P. Hall's theore m as follows. 
Let each element e E E be r epli cated k times to obtain 
e l, .. . , e" EE'. To obtain Q' , le t q' E Q' co ns.ist of 
all the re pli cations of the eleme nts in q E Q. Th e n 
IA I ~ k . a(A ) for all A C Q is equivale nt to IA I I 
~ a (A ') for all A' C Q' . By P . Hall' s theore m the 
latter is equivalent to the exis tence of a transversal 
for Q'. That , in turn , is equivalent to there being a 
partition of Q into as few as k subfamilies, eac h having 
a transver sal. 

Section 3 presents a derivation of trans versal 
theore ms us ing network Aows . Sec tion 4 prese nts 
a differe nt deri vation of the correspondin g matroid 
theore ms. Both derivation s sugges t computationally 
good al gorithm s. Section 5 presents a nothe r ap
plication of sec tion 4, a nd sec tion 6 relates ge ne ral 
matc hing matroids to tra nsve rsal matroi.ds . 

3. Transversal Covers and Packings 

In thi s secti on we focus atte ntio n on the trans versal 
matroid M,,=(E, p), F bein g the fa mil y of parti al trans
ve rsals of Q. We shall use ne twork £lows to deri ve 
res ults o n cove rs a nd packings in F . For bac kground 
mate ri al on ne twork £l ows, we refer to [3]. In partic
ular, the max-£low min-c ut theo re m and integrity 
theore m will be a ppli ed. 3 

Co nsider the direc ted ne twork s how n in fi gure 1. 
In fi gure 1 we have, in addition to a so urce-node u and 
a sink -node v, three tiers of nodes : e l , ez, . . . , ell 
(ele me nts of E ); ql , qz, . .. , qll' (s ub se ts of E tha t co m
prise the family Q); a nd PI , p z , . .. , Pic (partial tran s
versals). The direc ted edges of thi s ne twork a nd their 
flow capac iti es are li s ted belo w: 

(u , e;l 
(ej, q ;), 
(q;, Prj, 
(P r , v), 

Edges 

j = 1, ... ,/1., 
co rres pondin g to ej f q;, 
i = l , . . , m ; r = ] , ... ,k, 
r = 1, ... ,k, 

Capacities 

c(u, ej)= I , 
c(ej, q;) = 00, 

c( q;, Prj = 1, 
C(p r, v)= n , .. 

An integral fl ow from source to sink in thi s ne twork 
produces k mutually disjoint partial transversals of 
respective sizes s, ,s; nl, S2 ~ n 2, . . . , Sk ,s; nk in the 
following manner. Take a c hain decomposition of 
the flow and put ej in PI' if, for some i= 1, 2, . . . , m, 
the e dges (ej, qi) and (qi , PI") occur in a c hain of this 
decomposition. Conversely, k mutually di sjoint partial 
transvers als of sizes SI ,s; nl , S2 ~ n 2, ... , Sk ,s; nk 
yield an integral £low from so urce to sink . Using the 

:1 In a graph where the edges e; ar(" directed ano havl' po,itive int eger capacities Ci. 

t he ma:\i m urn nu mber of c hains (d ire<:led palh~. not nt·(·t·ssaril) <li :o l;l1cl) from H node II 

to a Ilndt, I ', suc h lha l e<lc h c, is cuntained in at most C; tlf t hese t h ui ns. equals til{' minim u m 
of the total eapacity of li lt:., edges d irected frum l ' lu [ whe re IV. ih is an) parl it iun of all 
the nodes into two pa ri S s uch t ha t /I € C a nd I' E U. T he family of chai ns is ('aIled a cha in 
decomposi ti on uf a max imu lll fl ow fro m it to [1. Ti lt:.' set of edges d ire(; tcd fwm a (1 to D is 
called a c ut se pa ra tin g source II fro m si nk II. 

FI GU I1 E 1. 

integrity theore m and max-flow min-cut theo re m for 
network flows , it follows that the maximum number of 
ele me nts contained in a union of k (mutually di sjoint) 
partial tran sversals of res pec tive s izes S I ,s; nl, S2 ~ n 2, 
... , s" ,s; n., is equal to th e capacity of a minimum 
cut separa ti ng so urce a nd sink in thi s ne twork . We 
proceed to calc ulate thi s . 

Let A , B , C be arbitrary s ubse ts of E = {el , et ,. ., 
ell} , Q= {ql , q2, . .. , qm }, and P = {PI, P2, ... , 
Ph'}' respecti v~lY,_anj de note their co mple me nts in 
these sets by A, B, C. The capacity of an arbitrary 
cut separatin g u and v is th en represe nted by the sum 

L c(u , ej) + L c(ej , qi)+ L C(qi' Pr)+ L C(Pr, v) . 
e/4 ef~ qiE~ P,'C 

qiEIJ P,'C 

We wish to mllllmize thi s over ACE, B c Q, C c P. 
Using the table of edge capaciti es, thi s reduces to 
co mputing th e minimum of 

IAI + IBI . lei + L n,. 
p" EC 

over Ac E, B c ~ C c P such that th e se t of edges 
leadin g from A to B is e mpt y. Thus, for give n A and 
C, we may take B to consis t solely of those nodes of Q 
which are joined by edges to some node of A. In the 
language of set representatives , B consis ts of those se ts 
represe nted by e~ments of A. Moreover, for C of 
fixed cardinality ICJ = k - s , we may take C to corre
spond to the S smalles t n's. Thus, choosing th e nota
tion so that 0 < n, ,s; n2 ~ . . . ,s; nk , and le tting a (A) 
denote the cardinality of the subfamily of Q represented 
by elements of A, we are led to minimizing 

s 

1:41 +(k-s) a(A) + L n,. 
1'= 1 

over AcE and s=O, 1, ... ,k. For fixed A, the 
minimization over S can be carried out explic itl y. 
Indeed, let n~ be the number of integers among the n", 
r = l , 2, ... , k, such that n,. ~ j, j = l , 2, .. .. 
Thus [nJ] and [n.,,] are conjugate partitions of the integer 
1.;=, n,.. It is not hard to see, especially in terms of a 
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partition diagram, that 

[ 
S ] u(A) 

:!~k (k - s)O"(A) + ,~ nr = j~ nr 

This proves that the maximum number of elements of 
E contained in a union of k (mutually disjoint) partial 
transversals of Q, having respective sizes Sl ';:; nl, 
S2';:; n2, . , Sk ,;:; nk, is equal to 

(*) mill 
A CE 

_ CT(A) 

[IA I + L nt]. 
j=l 

Here O"(A) denotes the number of sets in the family Q 
that are represented by elements of A. 

The following two theorems, which give necessary 
and sufficient conditions for the existence of covers 
and packings composed of partial transversals of pre
scribed sizes, are consequences of this result. (Nash
Williams originated a similar viewpoint for related 
theorems on matroids.) 

THEOREM la. Let Q be a finite family of subsets of 
a finite set E. The family Q has k partial transversals 
of respective sizes nl, n2, ... , nk whose union is E if 
and only if (i) nj ,;:; p(E), i = 1, 2, . . . , k, and (ii) for 
every ACE, the inequality 

CT(A) 

IAI,;:; L n7 
j = l 

holds. 
Here p(E) denotes the term rank of the bipartite 

incidence graph (or matrix) of elements of E versus 
sets of the family Q, that is, p(E) is the rank of the 
matroid Ma = (E, F). The proof of sufficiency of (i) 
and (ii) makes use of the fact that M a is a matroid in 
extending the k partial transversals of sizes Si to 
partial transversals of sizes ni, i = 1, 2, ... , k. 

THEOREM 2a. Let Q be a finite family of subsets of 
a finite set E. The family Q has k mutually disjoint 
partial transversals of respective sizes nl, n2, ... , 
nk if and only if, for every ACE, the inequality 

" IAI;3 L 
j=CT(X)+ 1 

holds. 

n* 
j 

Using the Konig theorem in an argument similar to 
that in section 2 shows that the rank function p(A) of 
matroid Ma can be used in place of O"(A) in (*), hence 
also in theorems la and 2a. 

The situation of theorem 2a is the problem studied 
by Higgins. His conditions are not the same as those 
of theorem 2a, but are instead stated in terms of sub
families B of Q rather than subsets A of E. They may 
be derived from theorem 2a by use of the Konig theo
rem (and vice versa), or can be obtained directly by 
eliminating A and C, rather than Band C, in the mini
mization argument leading to (*). 

4. Matroid Partition 

THEOREM lb. The set E of elements of a matroid 
M can be covered by a family of independent subsets 
I j (i = 1, . . . , k) of prescribed sizes nj';:; r(E) if and 
only if, for every ACE, 

r(A) 

IAI,;:; L n/=~ min (ni, r(A)). 
j=1 I 

THEOREM 2b. The set E of elements of a matroid 
M contains mutually disjoint independent subsets 
rj(i = 1,. . . , k) of prescribed sizes nj ,;:; r(E) if and only 
if, for every AcE, 

r(E) 

IA I ;3 L nj*= k[ni- min (ni, r(A))]. 
j=r(A)+1 I 

Here r(A) denotes rank relative to matroid M . The 
equations in theorems Ib and 2b are obvious. 

Using lemma 1, theorems Ib and 2b follow immedi
ately from theorems lc and 2c below. 

LEMMA 1. For any matroidM= (E, F) and any non
negative integer n, let F(n) denote the members of F 
which have cardinality at most n. Then M(n) = (E, F(n») 

is a matroid. Where r(A) is the rank function for M, 
the rank function for M(n) is 

r(n)(A) = min (n, r(A)). 

We call M (Il) the truncation of M at n. 
The proof of lemma 1 is obvious. 
Let ri(A) be the rank functions for any family of 

matroids Mi=(E, Fi), i= 1, . . . , k, on the set E of 
elements. 

THEOREM lc. Set E can be partitioned into afamily 
of subsets Ui = 1, . .. , k), where I j E Fj, if and only 
if for every AcE, 

THEOREM 2c. There is a family of mutually dis
joint sets Ij(i = 1, ... , k), where Ii is a maximal mem
ber (base) in Fi , if and only if for all AcE, 

IA I ;3 L ri(E) - L ri(A). 
i i 

Where each Mi is a graph, theorem 2c is equivalent 
to a theorem of Tutte [5]. 

Since it can be shown that a truncation of a graphic 
or a transversal matroid is not necessarily graphic 
or transversal, theorems Ib and 2b for these cases do 
not follow from theorems Ic and 2c for these cases as 
in general. A similar remark applies to the way 2c 
will be derived from Ic. Thus we observe that the 
general matroid concept is useful even where primary 
interest is more special. The proof of Ic, on the other 
hand, is arranged so that the only matroids it will 
mention are those of the theorem. Hence, the proof 
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applies directly to any special class of matroids (in
cluding classes of one). Everything in references [1] 
and [2] applies directly to the case of only graphs . 
The proofs in [2] do not apply directly to the case of 
only transversals because, as will be shown a t another 
time, a "contraction" of a transversal matroid is not 
necessarily transversal. 

LEMMA 2. Let A be any subset of the elements of a 
matroid M. Let I be any independent subset of A. 
A maximal set S, such that I eSc A and r(S) = r(I) 
= I I I, is the unique set consisting of I and elements 
e E A such that e U I is dependent. 

Set 5 is called the span of I in A . 
PROOF. Consider eEA - I. By the definition of 

rank , I is a maximal independent subset of any 5 . 
Thus, if e U I is independent, then e~. And thus, 
on the other hand, if e U I is depe ndent , then I is a 
maximal independent subset of e U 5 . Hence by 
axiom 2 for matroids, r(e U 5)= III , and so eE5 . 

LEMMA 3. The union of any independent set I and 
any element e of a ma troid M contains at most one 
minimal dependent set-

A minimal dependent se t is called a circuit of M. 
PROOF. Suppose I U e contains two di stinct cir

cuits Cl and C2 • Assume I is minimal for thi s possi
bility. We have eEC, n C2 • There is an ele ment 
eIEC, - C2 and an element e2 EC2 -C, . Set (I U e) 
- (el U e2) is independent since otherwise 1- el is a 
smaller independent set than I for which (1 - ell U e 
contains more than one circuit. Set I and set ([ U e) 
- (e l U e2) are maximal independe nt subse ts of se t 
I U e. This contradicts axiom 2. 

PROOF OF l c. Suppose that {Ii} (i = 1, . . . , k) is 
a partition of E, where IiEFi. Then for arbitrary 
ACE, 

IAI = L IA n Iii = L ri(A n Ii):S;L ri(A ). 
i i 

Co~versely, suppose that fo r every ACE, the in
equ~l~t~ holds. Let {Id (i = 1, . . . , k) be a family 
of dIsJomt sets such that I i is independent in M i. Any 
number of these may be empty. Suppose there is an 

e EE- Uli . 
; 

We shall show how to r earrange ele ments among the 
sets Ii to make room for e in one of them while pre
serving the mutual disjointness and the independence 
of Ii in Mi. This will prove the theorem. 

If eE5 for any 5 C E, then for so me i, IIi n 5 I < r; (5 ). 
Otherwise , 

151 ~ I U (Ii n 5) U el 
! 

= 1 + L IIi n 5 I > L r;(5 ) 

would contradict the hypothesis. 

Let 50 =E. Inductively, starting with i - I =0, 
if eE5j - 1 then for some I;(j) such that 

we de fin e 5j to be the spa n in 5) - " with respect to 
matroid M iU), of [IU) n 5) - ,. Since 

5 j is a proper subse t of 5j _ , . The refore we must 
e ventually reach an 5 1i suc h that ef5 1i and eE5 j for 
O:S; i < h. 

(Where the matroids M i are identical , the cons truc
tion above is the same as the corres pond ing part of 
the proof of theore m 1 in [1]. The res t of refe re nces 
[1] and [2] goes through essenti all y un cha no-ed [or a 
version, concerning possibly di s tinct matroids whi c h 
includes theore ms l c and 2c. Howe ver , we c~ntinu e 
here with a substanti ally trimmed version.) , 

If .e U li( li ) is independent in Mi(li), th e present 
proof is fini shed. Other wise e U l i(h) co ntain s a c ir· 
~ uit C of Mi( II ). Set (e U Ii( II » n 511 - , is not depende nt 
Jll Mi(II)' beca use the n, by le mm a 2 and by the de fini 
ti on of 511 , s ince eE511 - " we would have e6511 • Thu s 
le t In be th e s malles t integer , 0 < 171 < h, s uch that 
(e U Ii(II » n 511/ is inde pe nde nt in Mi(II ). Th ere is an 
e' EC - 511/. By lemma 3, e U I i(ll) - e' is inde pende nt in 
M i( II ). 

Re placing I i(II) by e U I i( II ) - e' , we now need to 
di spose o[ e' ins tead of e. However , we can s how that 
sequ ence (/ i( , ), 5 ,), . . . , (1i(lII), 511~' with the roles of 
e and e' interchanged, is of th e sa me cons tru ction as 
( I i( I ), 5 ,), ... , (I i( II ), 511 ), only s horter. Sin ce the ori gi
nal e U (Ii(II) n 5j _ , ) is depende nt in M iQI) for all 
i ,. 1 :S; i :S; 171 , by lemma 3 we have e' EC C 5j~ ,. Con
sider th e terms (I i(j) , 5j ), 1 :s; i :s; In one after another 
in . ~rder. Ass ume th ere is no change in 5j - " , If 
on gll1ally l i(j) =l= [ WI), then there is no change at aI) in 
(1iU) , 5j ) . If originall y I iU ) = I i(II ), the n, e ve n though 
e and e' are interc hanged in [i(j), by le mm a 2 and the 
definiti on of 5j , since e U e' C C C 5 j - " th ere is no 
change in 5j . Thus the th eo re m is proved . 

PROOF ~F 2c. F or any fa mily o[ matroids, Mi 
= (E ,. F; ) ( ~ = l, .... . , k ), with ra nk fun c tions ri(A), 
consIder the addItIOnal matroid Mo = (E, Fo) where 
the members of Fo are the subsets of E that have car-

dinality at most IE 1-~ ri(E). Matro id Mo is a trun-
I 

cation of the matroid in whic h all s ubse ts of E are 
independent. The existence of mutuall y di sjoint 
se ts I; (i = 1, ... , k ), where I; is a maximal member 
of F i , is equivalent to the exi s tence of a partition of 
E into a family of sets , 1 0 and I i (i = 1, . .. , k), such that 
IoEFo and IiEFi. By theorem l c , the existe nce of that 
partition is equivalent to the condition that 

IA I :s; min (IEI-L ri(E), IA D+ L ri(A) 
i i 

for all A cE. 

151 



That condition in turn is equivalent to 

IA 1 ~ IEI- L ri(E) + L r;(A) 
-i i 

for all ACE, which is equivalent to 

IA 1 ~ L r;(E) - L ri(A) 
i i 

for all AcE. Thus theorem 2c is proved. 

5. Another Application 

Let Ji (i = 1, . . . , k) be mutually disjoint indepen
dent sets in a matroid M = (E, F). Let E' = E - (U JiJ. 

THEOREM Id. Set E can be partitioned into afamily 
of independent sets liEF (i = 1, ... , k) such that 
J i C Ii if and only if, for every ACE', 

THEOREM 2d. There is a family of mutuaLLy disjoint 
bases Ii (i = 1, ... , k) of M such that J i C Ii if and 
only if, for every A C E/, 

F or any matroid M = (E, F) and any Eo C E, let 
Fo consist of sets lEF such that I C Eo. Then M· Eo 
= (Eo, F 0), obviously a matroid, is called a submatroid 
~ M (obtained from M by deleting the elements of 
Eo = E - Eo). The rank of ~"subset of Eo is the same in 
M· Eo as in M. 

For any matroid M= (j), F) and any Eo C E, let J be 
any maximal subset of Eo=E-Eo which is a member 
of F-'. In other words, let J be any base of submatroid 
M . Eo. Let Fo consist of sets lEF such that I C Eo 
and such that J U lEF. It follows easily from the 
definition of matroid that M X Eo = (Eo, Fo) is a unique 
matroid, called the contraction of M to Eo (obtained 
from M by contracting the elements of Eo). Where 
rand 1'0 denote the rank functions for matriods M and 
M X Eo, respectively, we have for every A CEo, 

ro(A) = r(A U Eo) - r(Eo). 

Theorem Id follows immediately from theorem lc 
by letting the Mi of lc (for i = 1, . . . , k) be the 
matroid obtained from matroid M of Id by cuntract
ing the elements of Ji and then deleting all the other 
elements of E - E'. 

To prove 2d from 2c, we obtain each Mi of 2c from 
M of 2d in the same way as above. If, for some i, 
r(E' U Ji) < r(E) , then no base of M is contained in 
E' U Ji and so there is no family of bases Ii as described 
in 2d. In this case the inequality in 2d does not hold 
where A is the empty set. Otherwise, r(E' U };) = r(E) 
for each i. In this case, if J; is a base of M i , then 
Ji U J; is a base of M. Thus, in this case, 2d follows 
from 2c. 

6. Addendum on Matchings 

An element of a matroid M is called isolated if it is 
contained in every base of M, i.e., if it is contained in 
no circuits of M. Clearly, any number of isolated 
elements can be "added" to any transversal matroid 
M a, thereby obtaining another transversal matroid. 
With respect to the graph representation C(E, Q) of 
M a, for every isolated element e/ added to M a, simply 
add a node e/ to E and join it to a new node q/ added 
to Q. 

Several elements of a matroid M are said to be in 
series with each other either when they are all isolated, 
or else when none of them is isolated and each base of 
M contains all but possibly one of them. 

A set of elements is in series in matroid M if and only 
if the elements are contained in exactly the same 
circuits of M. 

Suppose some base I of M contains neither of ele
ments el and e2 of M. Then I U el contains a circuit 
of M that contains el but not e2. 

Suppose an element el is contained in a circuit C 
of M that does not contain nonisolated element e2 of 
M. Let J be a base of M which does not contain e2. 
The rank of (l U C) - el is as large as the rank of I; 
otherwise every maximal independent subset of I U C 
wo uld contain el, but then el would be contained in 
no circuit in I U C. Therefore (l U C) - el contains a 
base of M; this base contains neither el nor e2. Thus 
the theorem is proved. 

"Replacing an element ei in a matroid M by a set 
E7' = {eJ , . . . , en of new elements in series" yields 
a matroid M(i, k). The circuits of M(i , k) and the ele
ments of M(i , k) are identical with those of M except that 
ei is replaced by the members of E1. Each base B of 
M which contains ei corresponds to a base (B - ei) UE~ 
of M(!, A' ). Each base B of M which does not contain ei 
corresponds to k bases of 1I1u, k) of the form B U p: 
-e!, j=l, .. "k. We omit proof that MU,k) is ~ 
matroid, which is not difficult using the description of 
the bases. 

For any transversal matroid Ma , containing element 
ej, the matroid M~' k) is also transversal. 

Let Mil be represented by a bipartite graph C 
= C(E, Q) as described in section 1; a base of M" 
consists of the endpoints in E of a maximum cardi
nality matching in C, By thinking of bases, it is easy 
to see that we obtain from C a similar representation 
CU, k) for matroid M>i' k) as follows. Replace node 
eiEE of C by the set Ek of new nodes, Join each 

, I 

ej EE1 to the same nodes in Q to which ei was joined. 
Also add to Q a set Q/ of k-l new nodes, each joined 
to precisely the members of Ek. We then have C(i ,k). 

A base of matroid M~i , k) consi6ts of the endpoints in 
(E - ei) U E1 of a maximum cardinality matching in 
C(i,k). 

Clearly, if AcE for matching matroids Me , A and 
Me , E, then MG , A is the submatroid of MG , E whose set 
of elements is A. Clearly, any submatroid of a trans
versal matroid is transversal. 
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Every matching matroid is a transversal matroid. 
(Thus, the two classes of matroids are abstractly the 
same.) 

In view of the preceding observations on sub· 
matroids, it suffices to show that where G is any graph 
and where V is . all of its nodes, Me; , v is a transversal 
matroid. Clearly, B is a base in matroid M G , v if and 
only if B is the set of endpoints of some maximum 
(cardinality) matching L in G. 

Section 6 of [7] implies the following theorem (which 
essentially strengthens some other known theoreqls, 
a characterization by Tutte of graphs in which no 
matching meets all the nodes, and a formula by Berge 
for what we regard here as the rank of Me . v). 

(*) From any graph G, by deleting the set J of nodes 
which meet every maximum (cardinality) matching 
and deleting all the edges which meet J, the remainder 
consists of connected componeTJts, Q, containing reo 
spectively 2r; + 1 nodes where rj is an integer. (1f G 
is bipartite, each OJ is a single ·node.) Let Q consist 
of the nodes u in J which in G are joined to at least 
one node in U OJ. Every maximum matching in G 
contains rj edges in Oi, for each i, and contains an 
edge joining u to a node in U OJ,/or each UEQ. 

What is actually proved in l7] is theore m ("'J where 
"Every" is replaced by "Some" in the last sentence. 
However, because each 0; has an odd number of nodes, 
because every edge leaving an 0; goes to a UEQ, and 
because each edge has two ends, it is easy to see that 
any matching whi ch is not as described in the theorem 
meets fewer nodes in U 0;. Hence , it has smaller 
cardinality than the matching, described in the theo· 
rem, which is proved in [7] to exist. 

(Unless some matching in G meets every node , there 
are more O;'s than there are u's. The theorem of 
Tutte says that a graph contains no matching that 
meets all of the nodes if and only if there exists a sub· 
set Q of the nodes such that deleting Q and its inci· 
dent edges from G leaves more than I Q I components 
which have odd numbers of nodes.) 

For any graph G, whose node. set!~ 'V, tJie s'etJ C V 
defined in (*) is the set of isolated elements in matroid 
M G, V . Denoting the set of nodes in 0; by Ei , theorem 
(*) says that each maximum matching meets all but 
possibly one node in E;; thus, set Ei is in series in 
matroid Me , I ' . By "contracting" the subgraphs 0; to 
single nodes e;, comprisin g a set E, and then by delet· 
ing J - Q and all edges which do not meet an e;, we 
obtain from G a bipartite graph G(E, Q). 

Let Ma be the transversal matroid, with set E of 
elements, associated with G(E, Q). It follows easily 
from theorem (*) that matroid Me; , ,. is obtained from 
matroid Ma by replacing each e; by the set E; in series 
and by adding set J of isolated elements. 

The structure of transversal matroids and some 
other related matroids will be further described in a 
later paper. 
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Note added in proof: Theorem 1, the subject of [11, 
generalized here, was proved for the case where the 
matroid is a set of vectors in a vector space by Alfred 
Horn [A characterization of unions of linearly inde
pendent sets, J. London Math. Soc. 30 (1955), 494-
496] and by R. Rado [A combinatorial theorem on 
vector spaces, J. London Math. Soc. 37, (1962), 351-
353]. In the Abstracts of Short Communications, 
International Congress of Mathematicians, Stockholm 
1962, p. 47, Rado remarks that " This theorem is of 
interest slnce in contrast to other propositions on 
vector spaces its proof has not yet been extended to 
abstract independence relations I (H. Whitney, Amer. 
J. Math. 1935, R. Rado, Canadian J. Math. 1949). It 
remains to decide if 0) the theorem is true for all I, 
or (ii) its validity constitutes a new necessary condi
tion for representability of I in a vector space." 
Theorem 1 confirms (i). 
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