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A Development of the Theory of Errors With
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Mayo Dyer Hersey 2

Prefatory Note
by
Churchill Eisenhart

This article, a 1914 revision of a 1913 talk, deals with the scientific management of scientific work.
Specifically, it deals with statistical theory applied to experimentation; and eloquently illustrates
the main aim of the application of statistical theory today: to determine the allocation of skills, effort,
time, and money that will achieve desired overall precision and accuracy in experimentation at lowest
possible cost under existing limitations of equipment, materials, and personnel. Until now this article
has remained unpublished, at first because of the disruptions of World War I, and later because the
author felt that most of his colleagues were familiar with its content from his various oral presentations.
It is published here at this time, not only for its historical interest, but also in the hope that its timeless
instructions on the efficient planning and execution of measurement programs may be useful to experi-
menters in many parts of the world.

An abstract of the original paper is given in the BAAS Report, Birmingham, 1913:399-400: but
does not contain the essential formulae, nor, of course, the details of their illustrative application
to particular problems. The formulae of the present paper, and the illustrative examples of their
application, were discussed by Mr. Hersey in a lecture on “The Theory of Errors of Physical Measure-
ments” at Harvard University on December 6, 1915; and again, more fully, in a series of conferences
that he conducted at the National Bureau of Standards in July 1920, as part of the work of the Aero-
nautic Instruments Section, of which he was Chief. The formulae of the present paper were also
included in a list of fourteen theorems relative to the errors of physical measurements presented by
Mr. Hersey in an Informal Communication at the 779th meeting of the Philosophical Society of Wash-
ington (D.C.), held at the Cosmos Club on November 25, 1916. The summary of this Informal Com-
munication (Journal of the Washington Academy of Sciences 7:23 (1917)) contains the remark, “The
manuscript notes, such as they are, are available to any individual interested.” This remark led me,
early in May 1965, to address a letter of inquiry to Mr. Hersey, with whom I had been corresponding
on the history of the formula given as equation (10) in the present paper. The author responded by
forwarding a photocopy of his 1914 typescript and of the long abstract that he had sent to the British
Association in advance of the 1913 meeting. .

The present paper strictly follows the 1914 revision, except for the first two paragraphs, which were
the opening paragraphs of the 1913 long abstract. The Abstract that precedes the text of the paper
consists of a rearrangement (and slight abridgment) of the abstract published in the 1913 BAAS Report,
to conform to the organization of the present paper, plus an opening sentence taken from the body of
the 1913 long abstract. I have added the section numbers and section headings, in keeping with the
present style of this Journal; and also a few additional footnotes, which are identified by my initials.

Abstract

Methods of economizing time can be considered with reference to the design and disposition
of apparatus; or with reference to the experimental observations; or with reference to the computation
of the result.

In connection with the problem of designing (or adjusting) apparatus so as to secure the most
favorable result in a limited time, a criterion for “best magnitudes,” previously proposed, is here
further considered, and illustrated by an application to the interferometer.

Investigation of economy of time in taking the observations themselves leads to two distinct prob-
lems: first, that of the division of time amongst the components of an indirect measurement; second,
that of the best grouping of observations in determining any one. quantity.

! Revision, dated June 22, 1914, of a paper presented at a meeting of Section A (Mathematics and Physics) of the British Association for the Advancement of
Science, in Birmingham, England, September 1913, and not published heretofore. )

2 Physicist, National Bureau of Standards, 1910-1922, 1926-1931; now Visiting Professor of Engineering (Research), Brown University, Providence, Rhode
Island, 02912.
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The solution of the first problem comes out in terms of three data—namely, the relative precision
of, and the relative time consumed in, a single observation on the respective components; together
with the derivatives expressing the sensitiveness of the result with respect to the several components.
Of these data the first two are postulated, while the third is implicitly contained in the equation which
defines the measurement in question. The solution is independent of the existence of constant errors.

The second problem consists in establishing the most profitable compromise between the extremes
of (1) repeating a large number of readings under the same conditions (or on the same sample), in order
to diminish the effect of observational errors; or (2) resting content with a lower precision on each
determination, in order to cut down systematic errors by making numerous independent determinations
(or by trying many different samples). The most economical number of observations to make in any
one group before stopping to change conditions (or to set up a new sample) in preparation for a new
group is directly expressible in terms of two postulated data: first, the ratio of the average observational
error to the average systematic error anticipated; and, second, the ratio of the time required in preparing

for a new group to the time used in a single observation.

available.

This result is independent of the total time

The first problem is illustrated by the division of time in a gravity deiermination by Kater’s pen-
dulum; the second, by the determination of the heat of combustion of coal from a series of samples.

A combination of the two problems may also arise.

The solution is equally straightforward.

Finally, in regard to computation, the availability of an automatic device for linear least-squares
adjustment makes it now desirable to have some means of throwing an assumed relation into linear

form without disturbing the relative weights of the observations.

A general formula for doing this is

here proposed, and applied to the determination of thermal expansion coefficients.
Throughout, the object of the paper is to establish certain general principles governing the accuracy
attainable in physical measurements, independently of the particular apparatus or process in question.

1. Introduction

Industrial laboratories, which have always been sub-
ject to the dictates of economy of time, have recently
been giving greater attention to questions of accuracy.
On the other hand, research laboratories such as the
Bureau of Standards which have always been subject
to the dictates of accuracy, are nowadays forced to
give continually greater attention to questions of
economy of time. These two facts unite in lending
interest to any systematic investigation of methods
for attaining a given accuracy in the least time.

Particular expedients for saving time will continue
to be discovered by individual investigators in mechani-
cal, thermal, electrical, and optical measurements,
chemical analysis, agricultural experiments and other
problems separately considered. A different avenue
of approach is contemplated in the present paper how-
ever, the object of which is to set forth once and for
all some of the general principles governing the
accuracy attainable in physical measurements, in-
dependently of the particular apparatus or process
in question.

The rules gathered together in this paper are in-
tended to serve as a guide in standardizing the routine
of technical physical measurements. They were
developed in the belief that it is not illogical to apply
“scientific management’ to scientific work, and that
in analyzing questions of accuracy which arise in phys-
ical measurements, certain refinements borrowed
from the astronomer or geodesist may profitably be
combined with something of the spirit of the efficiency
engineer.

We shall primarily be concerned with problems in
maxima and minima, arising from the necessity for
a compromise between precision and time-economy.

For the most part, our reasoning consists simply
in unfolding the consequences of introducing this new
variable time into the commonly accepted formulas
of the theory of errors. The resulting equations deal,
of course, with idealized or limiting cases. They are

not intended to supplant the use of personal judgment,
but on the contrary to afford it better tools with which
to work. And physicists need hardly be reminded that
insofar as such mathematical criteria are regarded as
tools, they are to be regarded as keen-edged tools and
used with discretion.

The practical usefulness of accuracy analysis hinges
on clearly distinguishing between accuracy, precision,
and reliability. The sense in which these terms are
here used may be fixed in mind by the formula

A=R=P (1)
in which A4 denotes the accuracy (i.e., departure from
the truth) of a measurement whose reliability (i.e.,
constant, systematic, or concealed error) is R, and
whose precision (i.e., accidental error, observational
error, or deviation) is P. Of course, R and P are
essentially different, for while P is governed by the
laws of chance, R depends on the laws of physics.

Qur attention will now be directed to questions of
precision alone. It is possible by means of eq (1) to
explicitly take account of concealed errors, but that
will not be done in this paper.

In addition to this limitation, three assumptions
which underlie the following reasoning may be stated
at the start.

First, we assume that the precision measure of the
mean of a series of observations is to be inversely pro-
portional to the square root of the number of observa-
tions. Thus if p be the precision of each of n observa-
tions, the precision of their mean becomes

P=p/Vn - (2)

Strictly the root-mean-square-deviation, but, practi-
cally, the average deviation, may be taken as the pre-
cision measure in any case.
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Second, we assume that the resuliing error in any
| quantity due to the simultaneous existence of indiffer-
ently + or — errors Ey, E» . . . will be

| E=VETE+. ... 3)
Third, we assume that if on an average each obser-
vation requires the time ¢, the total time consumed in

' a series of n observations will be

60 =nt. (4)

Let us now consider some of the questions which

| arise in the work of the designer, the observer, and the
computer respectively.

2. Apparatus Design to Minimize Measure-
ment Time Required for Results of Pre-
scribed Precision

The problem of designing apparatus so as to secure
the most favorable result in a limited time involves the
choice of “‘best magnitudes” for the components x. . .
in terms of which, and by means of some relation

y=f(x...) (5)

the quantity y under investigation is defined. If in
general the function for which we seek a minimum is
WwAy: if the experimental error Ax varies throughout
the available range of x in proportion to some function
¢; and if F be written for f while primes denote first
derivatives by x; then the best magnitudes are found
to be in accordance with a certain criterion which, in
the case of a single component, x, reduces to the
equation
! ! !
£+£+F—:0. (6)
o F
This criterion for best magnitudes was presented in
a more general form in an earlier paper,® but has not
previously been examined with reference to economy
of time. If we inquire how many times longer it would
take to secure a prescribed precision in y, if x were not
adjusted to its best magnitude xo, we find that, calling
0 the total time required, and using the subscript 0
for values corresponding to the best magnitude, it can
be shown that the answer to the foregoing question is
given by the equation

S_(gery. @

& ll‘o(PuF 0

3J. Wash. Acad. Sci. I, 187 (1911).

Demonstration. The error Ay in y due to an error
Ax in x is by eq (5) Ay=(df/dx)Ax, or Ay=FAx by
definition of F. Also by definition of ¢ we may write
Ax=¢P, in which P denotes the error in x when x
has some standard value, and ¢ is a function of x.

But from eqs (2) and (4), PZp/\/r_1=p\/t/9, so that
Ay=FAx=F<pP=%'p\/Z Now if it is not the

absolute error Ay, but in general YAy that we wish to
minimize by our choice of best magnitude for x, then
it is this same quantity Ay which in the present
problem must be kept constant. But

¢'Ay=tll'57‘%'p\/?

so that

F
lllo' A)’ozl/lo e

. p Vi,
90

p and t being independent of x. Therefore, to main-
tain the same precision under adverse conditions, 6
must be taken enough larger than 6, to keep Ay down
to the size of YoAyo. Equating the expressions for
these last two quantities, and dropping the common

factor p \/?gives

lll_F_g: YoFopo 7
Vo Vo

from which

0/6,= (¢’<PF/¢0900F0)2, Q.E.D

As an illustration of eq (7), we may further consider
the Fabry-Perot interferometer problem. In treating
this problem in the previously mentioned paper,*
the best magnitude for the order of interference was
found to be 22,000. In other words, in that particular
case, the front surface of the silvered plate, and
the back surface of the transparent plate should be
3 of 22,000 wavelengths or about 5 mm apart. Let
us now inquire what would be the effect on the time
needed to attain the same degree of precision if the
plates were set either 1 mm or 25 mm apart. Ex-
pressing ¥ and Yo, ¢ and-@o, F' and Fy as functions of
the order of interference x, and then replacing x first by
the round number 4,000, corresponding to the distancé
1 mm, and second by the value 100,000, corresponding
to the distance 25 mm, it is found that in the first case

4]J. Wash. Acad. Sci. I, 187 (1911).
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: 6 :
it would take approximately i 8, and in the second
0

case % = about 5 times as long to secure a fixed degree
0

of precision as it would if x had been given the best
magnitude 22,000.°

Solution. In this problem, it was required to deter-
mine an unknown wavelength A in terms of the refer-
ence wavelength A\, and the corresponding order of
interference N, by observing the order of interference
N. For this purpose, the equation of the interferom-
eter may be written A= A\,/N,/N, and we may consider
AN, without error. By order of interference is meant
the integral and fractional number of wavelengths of
the radiation in question in the optical path of the
interfering rays. That is, N=2D/\ where D is the
inside distance between the plates. It might at first
sight be supposed that N should be chosen very large
in order that a given error in NV should have the smallest
possible fractional influence on the result. But from
the viewpoint of time economy, this result would be
wrong. Itignores the increasing diffuseness of fringes
with large path-difference. Now the ¢ term in the
criterion was designed to cover just such cases as this.
Suppose that for several adjustments of the plates, the
average deviation of fringe settings were found to
increase with order of interference in the following
manner:

L

. 10-9N2
100(1+2 10-9N2).

avg. dev. of N=

We then take for the function ¢, 1+2-10-9/V2,
Changing over to our generalized notation by the
substitutions

A

<
Il

z

=

it is seen that, in measuring a fixed wavelength \, a
minimum fractional error is desired in y, so that y=1/y.
But y=1/x. Consequently, the functions needed in
eq (7) are y=x, ¢=1+2-10"222, and F=—(1/x?).
In the previous paper, it was shown that by differenti-
ating these expressions, and substituting in the cri-
terion, here eq (6), and solving for x, the best magnitude
turned out to be xo=22,000. Consequently, to solve
the problem now before us, we need only substitute
this value, together with the above expressions for
W, ¢, and F, into eq (7). This gives

0_ [22,000_ 14+2-10-9x2 ]2.
6 | «x 1+2-10-9 (22,000

Now x=N=2D/X so that for wavelengths of 3 micron,
x=4,000 when D=1 mm and x= 100,000 when D =25

5 A number of small changes have been made in this paragraph and in the following ““Solu-
tion” at Mr. Hersey’s suggestion, in the interest of clarity. In this connection he has
commented:

“Strictly, x should be 22000/5=4400 in the first case and 22000 x 5= 110000 in the
second, leading to 6/6, results of 7.3 and 5.0. I had used round numbers to go along with
the roughly stated distance of about 5 mm.” (C.E.)

In the first case then

0 _ [22,000 _1+2-107* (4,000 ]2 33
0o 4,000 1+2-10-°(22,000) ’

mm.

while in the second case 6/6,=35.5.

3. Division of Measurement Time Among
Component Quantities, and Grouping of
Measurements of a Single Quantity, to
Secure Results of Maximum Precision

The investigation of economy of time in taking the
observations themselves leads to two distinct problems:
first, that of the division of time among the components
of an indirect measurement; second, that of the best
grouping of observations in determining any one
quantity.

The character of these two problems may be illus-
trated by considering a particular example of each.
To illustrate the first, let it be required to determine
the most economical division of time between length
and period measurements in a gravity determination
by Kater’s pendulum. Having given the form which
eq (1) takes in this case —namely g=m2L/T?—, the
question to be answered is: —What proportion of the
total available time should be devoted to repeated
measurements of the knife-edge distance L, and what
proportion to continued observations of the period T?

As an instance of the second problem, let it be
required to determine the most economical grouping
of observations in a measurement of the heat of com-
bustion of coal from a series of samples. Is it better
to take many observations on a few samples or a few
observations on many samples? 6

3.1. Division of Time Among Components of an
Indirect Measurement

The solution of the first problem comes out in terms
of three data: namely, the precision p; and the time ¢;
of a single observation of any component x;, together
with the derivative F;, representing df(x . . .)/dxi or
the sensitiveness of the result with respect to the com-

6 Before reading further, the reader may wish to jot down his personal answers to the
following quiz that Mr. Hersey gave to his conference participants on July 9, 1920, for
comparison with the corresponding results yielded by the formula to be given shortly:

If you had at your disposal a certain amount of time and no more in which to determine
the best representative value for some physical property of a substance by observations
on a series of samples, and if you knew it would require 100 times as long to set up each
new sample as it would to take each additional observation on a given sample, how many
observations would you take on each sample before changing to a new sample, assuming

1° That you had reason to expect the average deviation of the different samples (due to
lack of homogeneity of the substance) to be of the same order of magnitude as the average
deviation of the observations on any one sample (due to accidental errors in the measuring
apparatus)?

2° That you had reason to expect the deviations of the observations to be 10 times as
great as the deviations of the samples?

Should the foregoing data appear to you either physically or numerically insufficient,
kindly add whatever specifications you think suitable in order to make the problem a practi-
cal one, and then solve that.

Please give the two results numerically, . .
other than a conscientious guess, say what.

. and, if your answer is based on any ground
(C.E)
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ponent in question. In general, the highest precision
will be attained in a fixed time, or conversely a given
precision will be secured in the least time, when the
time assigned to any component x; is given by the
formula

0 = piF V1 )

or in other words when the division of time is made
in the proportion

01:6,:. . .0,-=p1F|\/t_|:szg\/t—g:. . .piF,-\/t_i 9)
Demonstration. The error in the result of an in-

direct measurement y due to an error p; in any one
component x; is equal to the rate of change of the
result with respect to this component, times the error
in the component, or, in the notation of eq (5),
@f(x . . )/oxi) - Pi. The square of the error in the
result due to the simultaneous errors p; in the several
components x; is therefore by eq (3) 2(F;P;)? in which

Fi has been written for df(x . . .)/ox;. By eqs (2)
and (4), Pi=piVti/6;. Therefore,
pp_ Pt =CY
(FiP) 0, 9,

in which C; denotes p;Fi\/Zi. The square of the result-
ant error in y is consequently 3(C%/60;) while the total
time available is %0;.. We have therefore to discover
what relation among the several §’s will make a mini-
mum of %(C?#6;) while 26; remains constant. Imagin-
ing a family of equilateral hyperbolas constructed
with 6; as abscissas and C?#/6; as ordinates, the prob-
lem reduces to that of finding the locus of all points,
one on each curve, satisfying the condition that the sum
of their ordinates shall be a minimum, while the sum
of their abscissas remains fixed. The locus proves
to be a straight line through the origin defined by the
relation (6;/C))=constant. Hence, finally, 6; < C;
o piFi\/l—,‘, QED

Our rule for the division of time does not require the
assumption that concealed errors do not exist, and if
the concealed errors which do exist are constant, then
eq (9) leads not only to the condition for highest pre-
cision, but also to the condition for highest accuracy.
This statement will be physically evident to most
persons, though it could readily be proved by the use
of eq (1).

Now to apply eq (9) to the pendulum example, we
may postulate that a length measurement taking an
hour’s time can be repeated with an average fractional
deviation AL/L, which is one-half as large as the devi-
ation AT/T in a period determination say of four hours’
duration. If we further assume the pendulum in ques-
tion is a second’s pendulum, these data are sufficient
to show that one-ninth of the observer’s time should
be spent in the knife-edge measurements and the
remaining eight-ninths in swinging the pendulum.

Solution. Let y stand for g/m2%; x;, for L; and x»
for T. The characteristic equation of type (5) defining
the measurement in question then becomes ¥ —ija
The elements of the problem which have been given
numerically are: the period, x»=1 sec; the length,
x1=yx2=980(1)?/*=approx. 100 cm; the relative
time of a single determination ¢/t = 1/4; and the rela-
tive fractional precision measures (pi/x))/(ps/x2) =1/2,
so that pi/p»=x2/22;=50 cm/sec. From the char-
acteristic equation

Fi=(3(x1)/ox)[x2=1/x2=1 sec 2

and

_‘2(5\71)_—2371_ 5 .
Fz—? x—g_ = = numerically 200 coc?

cm

For two components eq (9) becomes

ty
In this problem pi/p»=50 cm/sec, Fi/F.,=(1/200)

sec/em, Viti/ta=1/2. Hence 6,/6, =50 X 1/200 < 1/2
=1/8, from which 6,/(6i+6:)=1/9 and 6./(6,+ 6.)
=8/9.

0 _pi Fu
0 P2 Fz

3.2. Best Grouping of Observations in Determining
Any One Quantity

Turning to the problem of best-grouping, it is seen
that the solution consists in establishing the most
profitable compromise between the extremes of, first,
repeating a large number of readings under the same
conditions (or on the same sample) in order to diminish
the effect of observational errors; or, second, endeavor-
ing to cut down systematic errors by numerous inde-
pendent determinations (or by trying many different
samples). The conception of sampling is introduced
to fix the ideas, but our reasoning is applicable to any
change in physical conditions analogous to the alter-
nation of samples. Now the most economical number
of observations to make in any one group before stop-
ping to change conditions (or to set up a new sample)
in preparation for a new group, is directly expressible
in terms of two postulated data. These are, first, the
ratio, o, of the average observational error to the
average systematic error anticipated; and, second,
the ratio, 7, of the time required in preparing for a
new group to the time used in a single observation.
The most economical number of observations in a
group 1is in fact

n0=cr\/1_'

to which of course may be added any allowance that
we wish to make as a check against mistakes. It is
important to note that the solution is independent of

(10)
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the total time available. Extra time is better spent
in setting up new groups.’

Demonstration: Imagine first that an indefinitely
great number of observations were made on each
sample. The mean result on each sample would then

differ from the mean of a great number of samples by"

exactly the reliability of the sample, r;. Dropping sub-

scripts to denote mean values, r/\/fv would then be
the precision of the mean of N samples. But in the
actual case of only n observations on a sample, the
result on each sample differs from the final mean by
ri== P; in which P, is the precision of the result on one
sample. By (2) and (3) the mean value of this deviation
can be written Vr2+(p?/n) in which p is the precision
of a single observation. In an actual case, instead of
r/VN we then write V 2+ (p2/n)/ VN for the precision
of the final result. It is this quantity which is to be
made a minimum by properly choosing n and N, both
of which cannot be simultaneously increased owing to
the fact that the total available time 0= N(T+ nt)
remains fixed. This latter equation is simply the
appropriate interpretation of eq (4) with 7 for the time
used in preparing a new sample. Eliminating N from
the expression for final precision by reference to the
0 equation, the former reduces to

2 2
'—t(1+"—> (T+n)
0 n

in which o has been written for p/r and 7 for T/t.
While the factor r2t/# may be unknown it is assumed
to be constant so the condition sought for is simply

iR [<1+U—2> (v+ n)]ZO,
on n

together with a + second derivative.
which satisfies this condition is found to be no=oVr.

Q.E.D.

In order to apply eq (10) to the heat of combustion
problem, let us postulate that the average deviation of
the results on any one sample (whether due to obser-
vational errors or to imperfect mixing before subdivid-

The value of n

"The above formula for “‘the most economical number of observations in a group™ was
employed, and attributed to Mr. Hersey, as follows, in the section on “*Desirable Number
of Shots Per Filling™ of appendix I (on the ““Joint Comparative Tests of Spark Gaps for
Testing Transformer Oils,” carried out in the spring of 1917) to the Report of ASTM Com-
mittee D=9 on Electrical Insulating Materials, ASTM Proceedings 21: 404(1921): —

The question of how many shots to take from a single filling is, therefore, to be deter-
mined entirely by the relative length of time required to make a shot and to refill the testing
vessel, and by the possibility of contaminating a single filling of oil while pouring it from the
container to the testing cup. It may be shown that if t=time required to make one shot
and T=time required to make a fresh filling, and if p = probable error of a single shot from
the mean of all shots on one filling, and P=-probabl® error of mean of one filling from mean
of all fillings, then the time of the observer is most economically spent if the number of shots

2\ *

o T
per filling is n= (7 PZ)A

*This relation was deduced by M. D. Hersey in some as yet unpublished work on the
theory of errors.
Dr. Francis B. Sillshee (NBS, 1911-1959: now Consultant, NBS), who prepared ap-
pendix 1 on behalf of the Committee, tells me that this formula was actually used in the
[
correct and (nowadays) more familiar form n :I,% \rl; which the editor apparently squared
to avoid radicals: and the left-hand side was unfortunately printed unsquared, as “*n”". :
(CE)

ing the sample for check determinations) is of the same
order of magnitude as the average deviation of the
different samples, while the time required to secure
and prepare a new sample is approximately the same
as that for repeating a determination on any one
sample. In this event, a single test of each sample
is sufficient. The precision of the final result can be
indefinitely improved by now collecting a greater
number of samples, while by increasing the number of
tests on each sample, the ultimate precision would
actually be made worse. If, however, the preparation
of a sample were to consume tenfold as much time as
the repetition of a test, then it would be well to make
three or four tests on each sample.

Solution. 1In the first case the precision and the
reliability of an observation, though numerically
unknown, are assumed equal, so that c=1. Similarly
7=1. Substituting in eq (10) gives at once no=1

V1=1. In the second case again =1, but 7 is
assumed=10. Hence (10) gives ny=1V10=3+.

A combination of the two problems will arise when
the components of an indirect measurement are not
determined by a continuous series of observations.
But in this case too an equally straightforward solution
can be deduced.

4. Economizing Computing Time in Deter-
mining Censtants of Empirical Equations

Lastly, and from the viewpoint of the computer, a
question to be considered here is that of most con-
veniently determining the constants of empirical
equations. An obvious means of economizing time
is in the further use of graphical methods and particu-
larly in the rectification of the plot by some change
of variable which will throw the assumed relation into
linear form. Almost any relation can be transformed
into a straight line from which two unknown constants
may be found by inspection, while three or more can
be determined by successive approximations. Why,
then, are graphical methods so commonly neglected?
Possibly on account of an unjustifiable faith in least
squares. Possibly, also, on account of the straight
line method frequently proving illusory in practice
by giving undue influence to the observations at one
end of the range. This embarassing fact is familiar
to those who have used logarithmic coordinate paper.
Having been obliged on this ground to abandon the
straight line, the computer may very naturally turn to
the least squares adjustment in preference to the
drawing in of a curve, because the latter involves a
greater element of personal judgment than a straight
line.

A method has been found which, it is hoped, will
remedy this objection. The proposed method has
not been put to the test of practical use, and, there-
fore, no certain claims can be made for it, but in prin-
ciple, at least, it restores to the straight-line transfor-
mation all the advantages commonly attributed to it.
This consists in reweighting all the points plotted in
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the X, Y diagram in proportion to the factor

the assumed relation
y=fla, b, %) (12)
having been transformed into the straight line
Y=A+BX (13)

by the substitutions

X = some function of x and y
Y = some function of y and x

thus leading to the evaluation of a and b in terms of
the intercept A and slope B. The reweighting of an
observation in this ratio r consists merely in treating
it as if that observation had been repeated r times dur-
ing the experiment.

Demonstration. Equation (11) assumes that the
curve (12) and the line (13) satisfy the conventional
least squares condition. Denote by W the weight in
the X, Y diagram of an observation of deviation AY,
whose weight and deviation in the original X, Y dia-
gram were w and Ay. Physically, we are interested
only in minimizing the sum of the (weighted) squares
of the original deviations Ay; but we can accomplish
this by minimizing the sum of the weighted squares
of the fictitious deviations AY if the new weights W
are so chosen as to satisfy the condition 2w(Ay)?
=3W(AY)? or W/w=(Ay)*/AY. But if the deviations
be so small that the slope dy/dx is sensibly the same
at y and y+ Ay, the deviations can be treated as infini-
tesimals, writing

w

E- [y

Now by eq (13) dY=BdX, so that if r be written for
B2-W/w, we get for the reweight factor, expressible as

. _ dx[dx]Z,
a function of x, r [dX/dx Q.E.D.

As an application of the reweight factor, consider
the determination of the thermal expansion coef-
ficients a and b in the equation

L=L¢(1+ at+ bt?)

in which the directly observed quantities are the length
increment L —L, and the temperature t. We assume
that accidental errors in t are negligible compared
with those in L—L,. This assumption is implicitly
contained in the conventional method of least squares
adjustment, and it underlies eq (11). Reverting now
to our standard notation by setting

L_L()

e and t =z,

0

we have in the x, y plane a nonlinear equation
y=ax+ bx?

of the type (12), which can be transformed into the

linear equation (13) in the X, Y plane by the substi-
tutions

Y

I
R

X

Il
=

while the four constants satisfy the relations 4=a,
and B=b5. In other words, by plotting out values of
y/x as ordinates against x as abscissas, we now get
a straight line, the Y-intercept and slope of which are
respectively identical with a and b.

Unfortunately, however, if the deviations in the origi-
nal x, y diagram were of the same order of magnitude
all along the curve, then in the rectified X, Y diagram,
(provided the specimen is one for which both a and b
are +), the deviations will be very much larger at low

temperatures. This gives the low-temperature obser-
vations a disproportionate influence on the final

result. The reweight factor is intended to compensate
for this effect. If the specimen has twice the ex-
pansivity at high temperature that it has at low, then
it can be shown that we should reweight the high
temperature observations relatively to the low-tem-
perature observations in the ratio 4 to 1.

Solution. Since X =x, dX/dx=1, and, therefore, by
(11) the reweights are proportional to (dy/dx)?, the
square of the slope of the original x, y curve (12).
The slope of this curve is the thermal expansivity.
If the expansivity is twice as great at the high tempera-
ture end of the range as it is at the low, the reweights
increase fourfold in the same interval. They may con-
veniently be applied by dividing the whole range into
four zones in which the observations are respectively
assigned one, two, three, and four times their original
weights.

Having rectified and reweighted his data, the com-
puter is now at liberty to evaluate the constants a
and b by any of the following methods:

First, by the numerical but linear least-squares
computation;

Second, by the use of an automatic device for linear
least squares adjustment, a rubberband model of
this being exhibited on the lecture table [at the 718th
meeting of the Philosophical Society of Washington

held at the Cosmos Club on }anuary 18, 1913];8

®And described briefly in the Proceedings of the meeting (J. Wash. Acad. Sci. III,
296, (1913)), as follows:

Mr. M. D. Hersey presented a paper on A mechanical model of the least square adjustment.
The apparatus exhibited consisted of a sheet of coordinate paper mounted on a board for
the plotting of points, a light aluminum rod, and a supply of rubber elastics and push pins.
The values under discussion were plotted by the push pins, allowance being made for the
unstretched lengths of the elastics by which the bar was suspended. The model was used
to show the mechanical adjustment of the tests of a mercury barometer: the results were
compared with those by the usual solution of normal equations. The speaker discussed
methods for weighting different observations, the determination of the probable error by
the model, and the application of the principle for solution of case involving several
unknowns. (CEY)
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Third, by the simple drawing of a straight line, which
in technical physical measurements is usually suf-
ficient.

5. Summary

In conclusion, the principal working rules which
have been formulated above may be briefly catalogued
as follows:

I. From the viewpoint of the designer:

(a) The amount of time which can theoretically be
saved by selecting the “best magnitudes’ for the op-
tional elements of an apparatus, instead of designing
it or assembling it haphazard, is given by eq (7).

I1. From the viewpoint of the observer:

(b) The best division of time among the components
of an indirect measurement is that given by eq (9).

(c) The most economical grouping of observations
in order so far as possible to eliminate systematic
errors is given by eq (10).

III. From the viewpoint of the computer:

(d) The constants of practically any empirical equa-
tion can be found (two at a time) by the simple inspec-
tion of a straight line if the observations be reweighted
according to eq (11).

The commonly accepted formulas of the theory of
errors which underlie these rules have already been
stated. Different assumptions would lead to different
rules. The rules can properly be applied only to
facts which fit the assumptions approximately. But
the use of the theory of errors in establishing tech-
nique is a different order of affair from its use in evalu-
ating results, and one in which a rougher degree of
approximation is sufficient.

Particular expedients for saving time will continually
be discovered by investigators in mechanical, thermal,
optical, and electrical measurements individually
and specifically considered. This paper is not in-
tended as a substitute for such investigations, but
rather as a foundation or a starting point for them, in
establishing, to begin with, certain relations which are
independent of the particular nature of the experiment.

(Paper 69B3—-144)
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