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The relation L=/f"'(B), where L and f are Lebesgue measurable and B is a Borel set, is studied.
Any one of L, B, f can be specified and the relation is solvable: one can also specify two of the three

possible pairs.

The relation characterizes (in a sense made precise in the text) the classes of Lebesgue

measurable functions and sets; that it does so for the class of Borel sets as well is left as a conjecture,
whose truth would imply that the functions which preserve Lebesgue measurability as second compo-
sition factors [i.e., g in g(h(x))] are precisely the Borel measurable functions.

The questions treated in this note, though mainly
elementary, occur so naturally in connection with the
basic concepts of measure and integration theory as
to warrant unified presentation. For concreteness
we deal exclusively with subsets of the real line R,
and with real-valued functions defined on R. The
symbols (BS), (ZS), and (LS) denote the respective
classes of Borel sets, sets of zero measure, and
Lebesgue-measurable sets; we recall that Le(LS) if and
only if L has a representation of the form

L=B—2)U(Z—B) Be(BS), Ze(ZS). 1)

The symbols (BF) and (LF) denote the respective

classes of Borel-measurable functions and Lebesgue-

measurable functions; we recall that fe(LF) if and
only if

L=f""B)e(LS) for all Be(BS). 2)

Our first theme is the solvability of relation (2) when
various subsets of its ““variables™ (L, B, f) are speci-
fied. For example, given Be(BS) we can trivially find
Le(LS) and fe(LF) to satisfy (2) by choosing L =B and
f=(identity); given fe(LF) we can trivially find Be(BS)
and Le(LS) to satisfy (2) by choosing any Be(BS) and
setting L=/f"4B). A third case (in which L is speci-
fied) is treated in the following theorem.

THEOREM 1: For any Le(LS), there is a Be(BS)
differing from L by at most a set of measure zero, and
an fe(LLF) differing from the identity on at most a set
of measure zero, such that 1.={~'(B).

Proor: If L=¢ or L=R, take B=L and f= (iden-
tity). If Le(ZS) but L # ¢, there exists BCL with
Be(BS) and B # ¢: let f be the identity on (R—L)UB
and! let f(L—B)={x} for some xeB. If R—LeZS)
and R—L # ¢, there exists B'"CR—L with B'e(BS)
and B’ # ¢; let f be the identity on LUB’, and? let
fIR—L—B'")={x} for some xeB' (here B=R—B’).

"Omit this clause if B=L.
2 Omit this clause if B"=R—L.

Finally, suppose none of the above situations holds.
Consider a representation (1) of L, and let f be the
identity on R—Z. Since it is not true that B=d¢,
we can define fon Z—B so that f(Z—B)CB. Since
it 1s not true that R —B=d¢, we can define fon ZNB
so that f(IZNB)CR—B. This completes the proof.

It is natural next to consider the solvability of (2)
when two of (L, B, f) are specified. Given Be(BS)
and fe(LF), (2) serves to define an Le(LS) which satis-
fies (2). The case in which B and L form the specified
pair is treated in the following theorem.

THEOREM 2: For any Be(BS) and Le(L.S), with sole
exceptions (B=¢, L. # ¢) and (B=R, L=¢), there is
an fe(lLF) such that 1.={-'(B).

PRrROOF: First suppose B=¢: then if L= ¢ any fe(LF)
will do, while if L # ¢ no f will do. Next suppose
B=R; if L # ¢ we can choose fe(LF) so that fIR)CL,
while if L=¢ no fwilldo. Finally,if B# ¢ and B # R,
then we can define fon L so that f(L)CB, and on R — L
so that f(R—L)CR—B.

The remaining case is that in which Le(LS) and
Je(LF) are specified. One cannot always find Be(BS)
to satisfy (2) (suppose e.g., that Le(LS)— (BS) and f=
(identity)), so that the question must be modified.
One might ask for which fe(LF) it is true that to each
Le(LS) there corresponds a Be(BS) obeying (2); the
answer is “no /77 even without the measurablility re-
quirement on f, since the cardinality 2¢ of (LS) exceeds
the cardinality ¢ of (BS). A second modified version
is also uninteresting, as the next theorem shows:

THEOREM 3: L=¢ and L=R are the only Le(LS)
such that for each fe(LF), there exists Be(BS) satis-
fving relation (2).

PROOF: L=¢ and L =R are solutions, since one can
take B=L independent of f. For any other Le(LS),
choose f to be the characteristic function of some
L'e(LS) different from both L and R — L; then f~'(B) # L
for all BCR, since f~YB) will be one of the four sets
¢, R, L', R—L' according to the membership or non-
membership of 0 and 1 in B.

Our second theme concerns the role of relation (2)
in characterizing the three classes involved ((LF),
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(LS), (BS)), in the sense of the equations

(LF)={f:(f:R— R), f\(B)e(LS) for all Be(BS)},
(LS)={L:LCR,L=f"YB) for some Be(BS) and fe(LF)},
(BS)={B:BCR, f~Y(B)e(LS) for all fe(LF)}.

The first of these equations holds trivially; i.e., the
relation (2) used to define (LF) certainly characterizes
(LF). Theorem 1 shows that the right side of the
second equation contains (LS); since the inclusion
in the opposite direction is trivial, (LS) is also char-
acterized by (2). The right side of the third equation
clearly contains (BS), so that what remains to be proved
is equivalent to the following statement, which the
writer has been unable to settle:

CONJECTURE: If'S is not a Borel set then for at least
one fe(LF), {-XS) fails to be Lebesgue measurable.

Our final theme is the preservation of measurability
under function composition. Composition will be

denoted by an asterisk, i.e., (f*g)(x) =f(g(x)). We set
(LCF)=A{f:(f:R = R), f*ge(LF) for all ge(LF)}

where “LCF” is a mnemonic for “left composition
factor.” Taking g as the identity shows that (LCF)
C(LF); it is an unpleasant fact that the inclusion is
strict. Some texts include a proof that (LCF) contains
the continuous functions, while others give the sharper
result that the class of Borel measurable functions
(BF)C(LCF). We shall show why this may be the
best possible result:

THEOREM 4: (BF)=(LCF) tf the Conjecture is true.

ProOOF: First assume fe(BF); then for any ge(LF)
and Be(BS) we have f~'(B)e(BS) and therefore

{x:f(g(x)eB} =g (f~'(B))e(LS)

so that (f*g)~Y(B)e(LS) for all Be(BS). Thus f*ge(LF)
for all ge(LF), proving fe(LCF). Next assume fe(LF)

—(BF). Then f~Y(B)e(LS)— (BS) for some Be(BS). By
the Conjecture, there exists ge(LF) for which
g Y(f"UB)=(f*g)"YB) is not in (LS); thus f*g is not
in (LF), and hence f is not in (LCF), completing the
proof.

Similarly, we define

(RCF) ={g:(g:R — R), fxge(LF) for all fe(LF)}.

Taking f as the identity shows that (RCF)C(LF), and
it is known 3 that (RCF) does not even contain all con-
tinuous strictly monotone functions. For an alternate
characterization of (RCF), we set

(SLF)={g:(g:R— R), g (L)e(LS) for all Le(LS)}

where “SLF” is a mnemonic for “strongly Lebesgue
measurable function.”

THEOREM 5: (SLF) =(RCF)

PRrOOF: First assume ge(SLF); then for any fe(LF)
and Be(BS) we have f~'(B)e(LS) and therefore

(f*g)'(B)—g (/' (B)e(LS).

Therefore frge(LF) for each fe(LF); i.e., ge(RCF).
Next assume ge(LF)—(SLF); then there exists Le(LS)
for which g='(L) is not in (LS), and by Theorem 1
L=f"B) for some fe(LF) and Be(BS). Thus (fxg)~(B)
is not in (LS), and so ge(LF)—(RCF), completing the
proof.

It would be interesting to explore the class (SLF)
more thoroughly.

3See p. 83 of Halmos’ ““Measure Theory,” van Nostrand, 1950.

(Paper 69B1-140)
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