JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics Vol. 69B, Nos. 1 and 2, January–June 1965

Character Subgroups of F-Groups'

Marvin I. Knopp² and Morris Newman

(November 12, 1964)

A necessary and sufficient condition is given that a subgroup of an F-group G be definable by the vanishing of an additive character on G.

1. An F-group is an abstract group given by a presentation of the form

$$A_1, B_1, \ldots, A_g, B_g, E_1, \ldots, E_s, P_1, \ldots, P_t;$$

 $E_1^{m_1} = \ldots = E_s^{m_s} = (\Pi \gamma_i)(\Pi E_j)(\Pi P_k) = 1,$

where $\gamma_i = A_i B_i A_i^{-1} B_i^{-1}$. Here m_i is a rational integer $\geq 2, s \geq 0, t \geq 0$, and s + t + g > 0. The consideration of *F*-groups arises naturally in the study of discontinuous groups, since it is known that except for certain trivial exceptions every Fuchsian group is an *F*-group when considered as an abstract group and that, conversely, every *F*-group has a faithful representation as a Fuchsian group.

If G is a group, an *additive character* on G is any homomorphism χ of G into the additive group of the complex numbers. That is, $\chi(XY) = \chi(X) + \chi(Y)$, for X and Y in G. By a *character subgroup* of G we mean any subgroup H of G such that H is the kernel of some nontrivial additive character on G. Otherwise stated, there exists a nontrivial character χ on G such that $H = \{X \in G \mid \chi(X) = 0\}.$

Henceforth G will denote an F-group, Δ the normal closure in G of E_1, \ldots, E_s , and G' the commutator subgroup of G.

The purpose of this note is to prove the following theorems.

THEOREM 1: A subgroup H of G is a character subgroup of G if and only if H is normal in G, $H \supset G'\Delta$, and G/H has no elements of finite order.

THEOREM 2: A subgroup H of G is contained in a character subgroup of G if and only if $H \cdot G'\Delta$ is of infinite index in G.

2. The essence of the proof of these theorems is contained in the two lemmas of this section.

LEMMA 1: $G/\Delta G'$ is a free abelian group on finitely many generators.

PROOF: A simple calculation shows that $G/\Delta G'$ is isomorphic to $(G/\Delta)/(G/\Delta)'$. (This holds for any normal subgroup Δ of G.) Suppose $t \ge 1$. Then eliminating the generator P_t from the presentation has the concomitant effect of removing the relation $(\Pi\gamma_i)E_1 \ldots E_sP_1 \ldots P_t=1$. Thus G/Δ is free of rank 2g+t-1and we can conclude that $(G/\Delta)/(G/\Delta)'$ is free abelian of rank 2g+t-1.

If t=0, then G/Δ is a fundamental group on 2ggenerators with the sole relation $\Pi \overline{\gamma}_i = 1$, where i = 1 $\overline{\gamma}_i = \gamma_i \Delta$. Hence G/Δ is isomorphic to G^*/N where G^* is a free group of rank 2g on the generators $A_i\Delta$, $B_i\Delta$, $1 \le i \le g$, and N is the normal closure in G^* of $\prod_{i=1}^{n} \overline{\gamma_i}.$ Thus, $(G/\Delta)/(G/\Delta)'$ is isomorphic to $(G^*/N)/(G^*/N)'$, which in turn is isomorphic to $G^*/NG^{*'}$. But N is contained in $G^{*'}$ and therefore $G^*/NG^{*'} = G^*/G^{*'}$, a free abelian group of rank 2g. LEMMA 2: Let G be a free abelian group of finite rank r and let H be a subgroup of G such that G/H has no elements of finite order. Then H is a character subgroup of G.

PROOF: Since *H* is a subgroup of *G*, *H* is a free abelian group of rank $s \leq r$. Suppose that

$$G = \{g_1, \ldots, g_r\}, H = \{h_1, \ldots, h_s\}$$

Then there is an $s \times r$ rational integral matrix A such that h = Ag, where

$$g = \begin{bmatrix} g_1 \\ \vdots \\ g_r \end{bmatrix}, \qquad h = \begin{bmatrix} h_1 \\ \vdots \\ h_s \end{bmatrix}.$$

Let U be any $s \times s$ unimodular rational integral matrix and V any $r \times r$ unimodular rational integral matrix. Then the elements of the vector Uh are generators of H, the elements of the vector Vg are generators of G, and

$$Uh = UAV^{-1} \cdot Vg \cdot$$

Choose U and V so that UAV^{-1} is in Smith Normal Form. Then we can write

$$Vg = \begin{bmatrix} g_1^* \\ \vdots \\ g_r^* \end{bmatrix}, \qquad Uh = \begin{bmatrix} h_1^* \\ \vdots \\ h_s^* \end{bmatrix},$$

with $h_i^* = m_i g_i^*$, for some positive integer $m_i (1 \le i \le s)$. Since $m_i g_i^* \epsilon H$ and G/H contains no elements of finite order, it follows that $g_i^* \epsilon H$ and hence that $m_i = 1(1 \le i \le s)$. That is, $h_i^* = g_i^*$, for $1 \le i \le s$.

¹Research supported in part by National Science Foundation grant GP-2235. ²Present address: University of Wisconsin, Madison, Wis.

The desired character χ may now be defined as follows. Choose $\chi(g_i^*) = 0$ for $1 \le i \le s$ and $\chi(g_{s+1}^*)$, . . ., $\chi(g_r^*)$ linearly independent over the rational numbers. It is clear that $\chi(X) = 0$ for $X \in H$. Furthermore, suppose that $X \in G$ and that $\chi(X) = 0$. Writing

$$X = c_1 g_1^* + \ldots + c_r g_r^*,$$

with rational integral c_i , we find that

$$\chi(X) = c_1 \chi(g_1^*) + \dots + c_r \chi(g_r^*)$$
$$= c_{s+1} \chi(g_{s+1}^*) + \dots + c_r \chi(g_r^*) = 0$$

Since $\chi(g_{s+1}^*), \ldots, \chi(g_r^*)$ are linearly independent over the rationals, $c_{s+1} = \ldots = c_r = 0$ and $X \in H$. Thus H is a character subgroup of G.

3. We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1. Suppose H is a normal subgroup of G such that $H \supset G' \Delta$ and G/H has no elements of finite order. Then $(G/G' \Delta)/(H/G' \Delta) \cong G/H$ has no elements of finite order. By Lemma 1, $G/G' \Delta$ is a free abelian group, and therefore, by Lemma 2, $H/G' \Delta$ is a character subgroup of $G/G' \Delta$. The character in question on $G/G' \Delta$ can be extended to a character on G in an obvious way, and it is clear that H is a character subgroup of G.

Conversely, suppose that H is the character subgroup of G corresponding to the nontrivial character χ . Clearly H is normal in G and $H \supset G'\Delta$. Suppose $X \epsilon G$ and $X^n \epsilon H$ for some positive integer n. Then $\chi(X^n) = n\chi(X) = 0$ so that $\chi(X) = 0$, and $X \epsilon H$. Thus G/H has no elements of finite order, and the proof of Theorem 1 is complete.

Proof of Theorem 2. Suppose H is a subgroup of G such that $HG'\Delta$ is of infinite index in G. Since $[G/G'\Delta: HG'\Delta/G'\Delta] = [G: HG'\Delta]$, we conclude that $HG'\Delta/G'\Delta$ is of infinite index in the free abelian group $G/G'\Delta$. Hence $HG'\Delta/G'\Delta$ is a free abelian group on strictly fewer generators than the number of generators of $G/G'\Delta$. A simple calculation involving linear equations shows that there is a nontrivial character on $G/G'\Delta$ which vanishes on $HG'\Delta/G'\Delta$. Extending to a character on G, we obtain a nontrivial character on G which vanishes on $HG'\Delta$ and a fortiori on H.

Conversely, if *H* is a subgroup of *G* such that a nontrivial character χ vanishes on *H*, then $HG'\Delta$ is of infinite index in *G*. For choose $X \in G$ such that $\chi(X) \neq 0$. Then $\chi(X^n) = n\chi(X) \neq 0$, (n = 1, 2, 3, ...), so that $X^n \notin HG'\Delta$. This completes the proof.

(Paper 69B1-137)