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It is necessary at the outset of this lecture to
apologize to this assemblage of mature theoreticians
for talking about an essentially engineering subject.
My excuse for doing so is that whereas my subject
represents one of the most important current applica-
tions of the theory of linear graphs, it is all too clear
from the literature that a number of misconceptions
about it are being passed along from person to person.
A word of warning is in order also. The subject I am
to discuss is like a multifaced gem in that it has many
facets, each of which can add to an appreciation of
the beauty of the whole object. Indeed whole books
have been written on a restricted aspect of the total
subject; the application of linear graphs to electric
networks for example. This being the case, it is
foolish to think that I can give a definitive exposition
of the subject in less than an hour. At most, it will be
possible only to touch upon those ideas and concepts
which either are rather basic or are often overlooked
by some people who use the techniques.

It is well at the outset to bear in mind that the theory
of linear graphs is used, in the application under discus-
sion, as an aid, and as a unifying concept in the analysis
of what can be called hereafter, an engineering system.
In particular, the techniques are applicable to those
engineering systems which can be described, with
adequate precision, by a finite number of physical
variables. This limitation assures us that we shall be
dealing only with finite linear graphs as will become
more evident later. These remarks suggest, or rather
demand, that we look carefully at engineering analyses
and extract from them those concepts and operations
that are pertinent to the problem at hand. By this
it is meant that our problem is to justify, in some logical
fashion, just how the properties of linear graphs, which
after all are only lines on a sheet of paper, can be used
in a meaningful way in the analysis of a finite engi-
neering system. Surely no one in this audience be-
lieves that a linear graph drawn on the blackboard in
this room and, say, a motor-generator down the hall are
the same object. And surely more than one person
here is wondering why such a trite remark has been
made. There are two reasons. In the first place
some trite remarks emphasize fundamental concepts.
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Such a case is at hand for it is absolutely basic to
understand that a linear graph and an engineering
system under analysis are distinct objects. Second,
the remark is made to counteract certain misconcep-
tions that appear in the open literature. For example,
one well known book contains a sentence which begins,
“we define an electric network to be a linear graph,
etc.” For goodness sake, an electric network cannot
be defined to be anything but an electric network. In
fact, it couldn’t care less how anyone defines it. That
is another trite statement full of deep meaning for an
electric network, or any engineering system for that
matter, will go on performing its own function in its
own peculiar way no matter what a theoretician down
the hall has to say about it. Hence a theoretician, if
he is a good one, will not try to warp the character-
istics of a system to fit his own whims and notions;
rather he can only hope that his whims and notions
may have some reasonable correspondence to what
goes on in the real system.

Using the example of the motor-generator set down
the hall, it is obvious that anything a theoretician does
at his desk has no reaction whatsoever with the system
under analysis. In other words, the performance of
the motor-generator is completely unaffected by any-
thing an analyst does with a pencil and a pad of paper.
These remarks point up the fact that an analysis of an
engineering system is strictly a mental exercise in-
dulged in by a theoretician. Failure to recognize
this fact can lead to unrealistic concepts; it has done
so not too infrequently in the past.

It should be apparent at this point that if a linear
graph is to be useful at all in the analysis of an engi-
neering system it is highly likely that it can do so only
by virtue of an isomorphism between some, but not all,
of its properties and some of the mental objects which
are created in the course of analyzing a system. The
remainder of the remarks to be made today show in
outline how such an isomorphism can be established.

Let us begin by looking at the pertinent mental
exercises indulged in by an analyst. The order in
which these mental operations will be discussed is not
necessarily the order in which they are done in a
specific application.

First, some assumptions must be made about the
nature of space and time. It is often assumed for



example that space is Euclidean and that time is
isochronous. It would be good if it could be asserted
that analysts are aware of their making such assump-
tions each time they do so; but unfortunately this is
not the case. Nevertheless, these assumptions are
inherent in most engineering analyses.

Next the analyst looks at those energy mechanisms
which exist in his system under analysis. He then
must place each mechanism into one of three cate-
gories; (1) the mechanism is judged to be unimportant
and hence is excluded from the analysis, (2) the mecha-
nism is too significient to be ignored, yet there is no
need to analyze it in detail, in which case it is covered
up by some artful dodge, and (3) the mechanism is
significant and it is desirable to analyze it in detail.
Again using the motor-generator set as an example,
the magnetostrictive effect, which always exists to
some degree in the laminations of the magnet, probably
is insignificant and can be excluded from the analysis
of the system without introducing an appreciable
error. The details of what happens to the heat gen-
erated by the current flowing through the windings on
the rotor may not be of significance. The total amount
of energy involved in this mechanism probably is too
large to be ignored so it must be included in the anal-
ysis, but not in detail, by assigning a resistance to the
winding. A similar coverup job is usually done with
respect to the magnetic fields established in the set
by a magnet of some sort. Finally it is usually the
case that there is great interest in the electrical energy
supplied to and extracted from the system and in its
mechanical behavior. These two energy mechanisms
are then analyzed in detail; but note that this is so
only because of a primary interest in the details of these
mechanisms.

Having identified those mechanisms which are to be
analyzed in detail, the analyst is then faced with the
problem of selecting variables which are appropriate
for describing these mechanisms. It is to be empha-
sized at this point that the information that the analyst
desires is contained in these variables; hence their
selection is not a matter to be treated lightly.

It is observed first that for any one mechanism two
kinds of variables are required. Again citing the
motor-generator set, the electrical portion of the system
is usually described in terms of voltage drops and elec-
tric currents although such a selection is not manda-
tory. A voltage drop is typical of a class of variable
which Firestone called across variables. Mathema-
ticians usually call them contravariant variables.
Their important characteristic is that they are defined
in terms of two terminals in the system where by a
terminal is meant a point or a surface needed to define
the variable. Conceptually any across variable can
be measured by an appropriate instrument attached
to two terminals. Currents, on the other hand, are
typical of a second type of variable; one which acts as
if something is propagated through the system. The
phrase ‘“as if”” is intended to imply, to paraphrase a
comment of Faraday, “‘the variable may not represent
the actual propagation of something through the sys-
tem; but if it did, the system would act just like it

does.” Firestone called these through variables
while mathematicians call them covariant variables.
Any one variable of this type can be measured, at least
conceptually, by breaking the system at a terminal and
then inserting an appropriate meter.

Having made a selection of variables for one sort of
energy mechanism, an analyst no longer has complete
freedom in selecting variables for another mechanism.
Note that in the illustration cited above, the product of
the two variables selected to describe the electrical
portion of the system, namely voltage drops and cur-
rents, has the physical dimensions of power. This
fact leads to the requirement that appropriate variables-
for the purely mechanical portions of the system must
yield the same sort of a product. Thus torques and
angular velocities might be used as appropriate
variables.

Having selected appropriate variables, the analyst
then conceptually decomposes the system into a set
of simple elements. By a simple element is meant a
conceptual object, with identified terminals, whose
performance is describable by a known set of rela-
tions involving the variables already selected. These
relations are called Constitutive Equations.

Quite a lot of things can be said about elements but
only a few items can be discussed here. First of all
an analyst locates the terminals of the device. In
this process certain points or surfaces, which seem not
to be a part of the element, are needed to define some
of the across variables. A very simple example arises
with the rigid mass in rectilinear motion with its con-

o . dv . L
stitutive equation f=m —-- This equation is true only

dt
if the across variable, v, is defined between some point
on, or in, the rigid body, the center of mass for example,
and an inertial reference. The inertial reference at
first glance seems not to be a part of the element but
this point of view is not correct. Situations analogous
to the foregoing are common. Terminals which seem
not to be in the element are called External References.

Next an analyst will seek to find a set of independent
across variables for the element. He will try to select
them so as to be the most advantageous in terms of
those bits of information which he is seeking. With-
out going into the details, bounds can be set on the
number of such variables in terms of the number of
terminals on the element. If V is the number of in-
dependent across variables associated with the element
and T is the number of terminals, then T2<V <
(T—1).

Having established a set of across variables defined
as a set of terminals, a graphical symbol for the element
is created by the following procedure. (1) A set of
open or solid circles equal in number to the terminals
on the element are put on a sheet of paper and each
circle is identified with one specific terminal. (2) One
line segment is drawn for each independent across vari-
able, the line terminating on the pair of circles which
correspond to the terminals of the device between
which the variable is defined. (3) Certain portions of
each line segment are replaced by standardized adorn-
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ments which serve to show the nature of the element
which stands in correspondence to the graphical
symbol. Koenig has called the process of adding the
adornments, coding the symbol. This is an apt desig-
nation. It should be borne in mind that the coding
of a graphical symbol implies the constitutive equation
for the element. Thus if the coding is a sawtoothed
line, it is generally known that the element is a resistor
with a constitutive equation e=iR or i=Ge. The
ability to write a constitutive equation in several ways
is quite the rule rather than the exception.

We come now to two properties of through variables,
neither of which can be proven from first principles.
They represent the experience of the scientific world
to date and in no case where engineering systems can
be analyzed has an exception been found. First there
are as many through variables associated with an ele-
ment as there are across variables. Thus a single
line in a graphical symbol stands in 1-to-1 correspond-
ence with one across and one through variable.
Second, the through variables act as if they are trans-
mitted unchanged from one terminal to another along
the same conceptual path suggested by the line seg-
ment. If the through variables leaving an element are
considered positive and those entering negative, the
foregoing continuity principle leads to the result
that the algebraic sum of the through variables leaving
an element is zero. This condition is aptly called the
Incidence Law. Generally, it is stated in the simpler
form; “the algebraic sum of all through variables
leaving a junction point is zero.” The foregoing state-
ments show that a through variable is an oriented
quantity; it can be transmitted in either of two direc-
tions.

Across variables obey a different law. Such a
variable is basically, and by definition, the difference
of two scalar quantities, each scalar quantity being
associated with a specific terminal. The terminal
associated with the scalar quantity which is subtracted
is called the Reference Terminal for that variable.
Thus every across variable is an oriented quantity in
the sense that its definition must specify which of two
terminals is the reference. If the algebraic sum of
across variables associated with a mesh is computed in
terms of the scalar quantities at terminals it is easy to
show that the result is always zero. Thus across varia-
bles satisfy the Mesh Law; namely that the algebraic
sum of across variables around a mesh is zero. It is
well to note that whereas the Mesh Law can be proven
from first principles, the Incidence Law is only a
statement of experience.

At this point an analyst has in hand a set of elements
each with identified terminals, an independent set
of across variables, a coded graphical symbol for the
element, and a set of constitutive equations. If he
has done his work systematically, each element ter-
minal corresponds to one, and only one, terminal in the
original connected system. It is to be noted that
whereas each element terminal corresponds to only
one system terminal, which hereafter shall be called a
Junction Point, each junction point can, and usually
does, correspond to more than one element terminal.
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In other words, a junction point is a coincidence of
several element terminals. Using these facts the
analyst can generate easily a schematic diagram for the
connected system by placing circles, say, on a sheet of
paper; each circle corresponding to one specific
junction point in the system. Graphical symbols for
the elements are now connected between the junction
points so that each element terminal is made coincident
with the junction point to which it corresponds.
This process amounts to showing graphically how the
across variables satisfy the mesh laws. A more en-
gineering like statement is that the process specifies
the connectivity existing among the elements.

The foregoing process may lead to a schematic dia-
gram with a congested, or messy, appearance. En-
gineers have techniques for improving the appearance
of these diagrams; but of these only one is of concern
to us today. This technique rests upon the fact that if
it is known that the across variable defined between
two supposedly different junction points is always zero,
then in fact the two junction points are one and the
same. Such a situation is shown in a schematic
diagram by an uncoded line segment connected be-
tween the two supposedly different junction points.
If desired the analyst could show that the two separate
junction points are in fact the same by shrinking the
uncoded line segment to zero. The process can be
reversed. If a junction point has many line segments
incident upon it, thus leading to a congested diagram,
this single junction point can be represented in the
schematic diagram as several junction points joined
by uncoded line segments. Of course, this separation
must be done so that all mesh relations are still satis-
fied and no new meshes are introduced into the
diagram.

At this point the following can be asserted, “To
every finite engineering system made up of elements
whose constitutive equations are known, there exists
a schematic diagram which specifies the connectivity
of the systems and the constitutive equations for each
element.” The truth of this statement is obvious
since a process for creating such a diagram has been
defined. The principle is worded to show that if a
system cannot be conceptually decomposed into ele-
ments whose terminals and constitutive equations
are known then such systems can not be diagramed
or analyzed at the moment. This situation exists for
example with systems in which thermal energy is
converted to some other form, and vice versa.

It is important to note that the mesh and the inci-
dence laws, which are often termed the Feld Equations,
are linear in the algebraic sense. Constitutive equa-
tions on the other hand need not be linear and the
exciting situations for the future are the nonlinear ones.
This difference cannot be emphasized too much for it
is a rare person indeed who keeps these two items sepa-
rated in his mind and in his analyses. Note that the
field equations concern themselves only with the con-
nectivity of the system; they have nothing whatsoever
to do with the constitutive relations.

If one can wax philosophical for a moment, it may be
pointed out that there are only two ingredients in-



volved in establishing descriptive equations for a sys-
tem; these are the connectivity of the system and the
constitutive equations of the elements. These two
types of information correspond to the two engineering
operations of selecting some devices from a bin, shelf,
or ordering them from a supplier and then riveting,
soldering, gluing, or otherwise joining them together.
That is all there is to creating an engineering system.
Thus it is seen that the generation of correct descrip-
tive equations for a system can involve at most the con-
nectivity of the system and the constitutive equations.
Our task is to show how connectivity can be specified
and how it can be made to react on the constitutive
equations to yield equations for the system as a whole.

An analysis of an engineering system involves two
distinct and separate phases; the formulation and the
solution phase. All of the physical and engineering
principles needed to deal with the system are used in
the formulation phase. A bit of mathematics is used
in this phase also. The more difficult mathematics is
involved in the second phase, that is in solving the
equations already formulated. This phase is also the
most time consuming. It is a fact that generally
speaking, we have mathematical tools for solving
linear equations, but not for nonlinear equations.
But if system equations are linear, so also are the con-
stitutive equations for the elements. In such a situ-
ation we have linear field equations, linear constitutive
equations, and linear system equations. It is not
surprising therefore that these items have become
confused in the minds of workers. This is not a logi-
cal position to assume and furthermore it severely
restricts one’s ability to deal with these exotic nonlinear
engineering systems which are appearing in ever
increasing numbers these latter years.

Let us now make a closer contact with the theory
of linear graphs. Let a schematic diagram be given
for an engineering system. In this diagram let each
uncoded line segment be shrunk to zero. Finally let
the coding be removed from each line segment. The
result is a geometrical graph in which each vertex has
a 1-to-1 correspondence to a conceptual junction point
in the system and each edge, or arc, has a 1-to-1 cor-
respondence to one across and one through variable.
We now seek properties of the graph which follow the
same algebraic laws as the across and through vari-
ables, i.e., the mesh and incidence laws. Again it is
emphasized that these are linear laws. Let it be stated
for emphasis that the linear graph has a correspond-
ence only with the field equation of a system, not to its
constitutive relations. These latter relations corre-
spond to the coding of a schematic diagram; but all
coding has been removed. It is not difficult to identify
those properties of a graph that are needed. Since
the theory is rather elementary and known to nearly
everybody in this audience, only the highlights of the
argument will be given.

Every edge in a graph has a boundary, say de;.
Let the collection of all edge boundaries be repre-
sented by the row vector 0E. It is well known that the
elements of dF belong to a linear vector space. Hence
any object in the space is given by a relation of the form

ef =9Em where 7 is a column vector whose elements
are taken from the field of rational numbers. Further-
more an independent set of new objects can be defined
by a matrix relation of the form dE* = dEK where K is a
nonsingular matrix with rational numbers as elements.

Each edge also provides an incidence, on two ver-
tices. Let this be de; if the edge e; is oriented away
from the vertex and —de; if e; is oriented toward the
vertex. The collection of all edge incidences will be
represented by the column vector 8F.

Each vertex can be viewed either as providing a part
of the boundaries of some edges or as having an inci-
dence because of them. The first notion for a vertex
will be represented by 7; and the second by 7;. Let
the boundary property of vertices be collected together
into the row vector ¥ and the incidence properties into
the column vector V.

Since the time of Poincaré it has been known that
dE =V and V=m6E where 7 is a rectangular matrix.
The elements of JE are said to correspond to the ele-
ments of 8E. Suppose that the first relation is post
multiplied by K giving dEK = 0E* =VaK=Va*. The
corresponding elements from a new set of incidence
objects can be found by using the principle that the
incidence on any vertex is independent of the set of
incidence objects used as a basis. Thus V=ndE
=m(KK-Y)oFE = (mK)(K-10F) = w*8E* where §E*
=K-'8E. These facts give rise to the invariance
principle dESE = 0E*SE™.

A mesh is defined to be a graphical object that has
no boundary. Thus a mesh is specified by a column
vector 7 which satisfies 9Em=FVan=0. Thus
71 =0 for a mesh. There are an unlimited number of
solutions to this equation but it is easy to show that
the number of independent solutions is € — v +./ where
€ is the number of edges in the graph, v the number of
vertices and .”” the number of disjoint parts. Call
this number w, the number of independent meshes.

Hereafter K will be used only in the so-called canoni-
cal form in which the first u columns define u inde-
pendent meshes. Thus K can be written in the parti-
tioned form K= |M|P| where M, the so-called mesh
connection matrix is the first u columns. Since K is
nonsingular it has an inverse which can be written
in the conformally partitioned form K-1= |%| where NV
is the so-called nodal connection matrix and the primes
denote transposition. If E* and SE* are partitioned
conformally according to the scheme dE* =|dE*|dE%|

SE
BE—U it is easy to show that 9E=09E}N
2;

and dEF=0 since the objects which give rise to the
elements of JEF are all meshes.

It is clear that the boundaries of edges satisfy the
mesh law. Hence using the fact that there is an across
variable which corresponds to each edge it is clear
that each across variable corresponds algebraically
to the boundary of its corresponding edge and that
dE can be replaced by A’ where A is a column vector
of across variables. For example A=NA%¥.

In a similar fashion, 8E can be replaced by a column.
vector T where the elements of T are through variables,
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but at the same time, it is necessary to impose the inci-
dence laws. That is, to each element in V we set in
correspondence a scalar, say ik, and let the collection
of elements be written I. Thus we have [ =#T=7KT*

%
=m|M|P| % =7mMT}+ wPT} =wPT} since NM=0

by definition. Now the elements of I are set equal to
zero to correspond to the incidence laws. It can be
shown that 7P is nonsingular and hence that T =0.

Since T=KT}=|M|P| it follows that T'=MT}.

i
i

Using the results to date, it is important to observe
the invariance principle yields A'T=A}'N'MT¥=0
since N'M =0 as is easily shown from the relation
K-'K=1. This principle says that for any engineering
system the formal matrix product of the across and
through variables for the system is always zero. One
specialized interpretation of this principle is that all
of the energy supplied to a system is either stored or
dissipated, a rather obvious result. It is strange that
the principle is not well known since it is so basic; in
fact it would appear that few people indeed have even
heard of it. It is even stranger that it was only a few
years ago that the principle was proved in the special
case of electric networks by an engineer, at the Phillips
company in Holland. Only by the argument given
here has it been proved for all other cases.

Let us now consider the constitutive equations for a
system. It is usually possible to write this in a matrix
form like AA=T+T, where A is an operator matrix
and 7 is a column vector of through variables delivered
by the sources in the system. Now let the equation
A=NA}F be used to eliminate A giving ANAF=T+T,.
Finally let the relation be premultiplied by N’ giving
N'ANA¥=N'T+N'Tyg=N'Ty since N'T=N'MT¥=0.
This equation gives the so-called nodal formulation.
It should be observed that if A contains some nonlinear
operators care must be taken in handling the indicated
operations in order to get correct results.

A parallel type of development yields the so-called
mesh formulation. Let the constitutive equations be
written in the form yT=A4+ A, where { is a matrix of
operators and 4, is a column vector of across variables
supplied by sources. - Let T'=MTF¥ be substituted and
let the result be premultiplied by M’ giving M"yMT
=M'A+MA,=M'A, since M'A=M'NAf=0 since
M'N=0.

In either case the constitutive relations enter through
an operator, A or s, and a vector of variables specified
by sources, either Ty or A,. The connectivity of the
system is specified by N in one case and M in the other;
the descriptions are equivalent. Thus it is seen that
the connectivity of the system reacts on the constitutive
equations by a congruence transformation to give a
correct set of equations for the system as a whole.

If the engineering system under analysis involves
only one energy mechanism which is to be analyzed
in detail the foregoing procedures are adequate to
handle the formulation phase. We shall let the pro-
fessional mathematicians worry about the second or
solution phase.
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If, however, the system involves two or more energy
mechanisms, each of which is to be analyzed in detail,
some extra complications arise. Time will not allow
a detailed discussion of this case. Since a substantial
fraction of modern and interesting systems are of this
type it is a bit of a pity that we cannot go into such
analyses in detail. The subject is important and is
worthy of a lengthy discussion on its own merits.
We shall only say here that the concept of a perfect
coupler, with its two types, is involved here; where
by a perfect coupler is meant a conceptual mechanism
which can neither create, store, nor dissipate energy
but can transfer it from one part of the system to
another, often changing its type in the process. These
conceptual elements perform their function by impos-
ing constraints on the variables. The imposition of
these constraints on the equations obtained by the
previous technique is not a hard mathematical prob-
lem, but will not be covered today. Suffice it to say
that these extensions allow us to treat any system, no
matter how complicated, if we know the connectivity
of the system and the constitutive equations of the
elements.

If most of you feel that the material | have presented
today is almost insultingly simple then my lecture has
been a success. I can only hope that this is the case
for after all many of the important sets of concepts
and procedures in the natural sciences are basically
simple. Once a proper set of concepts has been
assembled and extraneous matters eliminated we are
left with a simple but powerful technique for making
the formulation of system equations almost a routine
process.
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