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It is necessary at the outset of this lecture to 
I apologize to this assemblage of mature theoreticians 

for talking about an essentially engineering subject. 
My excuse for doing so is that whereas my subject 
represents one of the most important current applica-

I tions of the theory of linear graphs, it is all too clear 
I from the literature that a number of misconceptions 

about it are be ing passed along from person to person. 
A word of warning is in order also. The subject I am 
to discuss is like a multifaced ge m in that it has many 
facets , eac h of which can add to an appreciation of 
the beauty of the whole objec t. Indeed whole books 
have been written on a r es tricted aspect of the total 
subject; the application of linear graphs to electric 
networks for example . This being the case, it is 
foolish to think that I can give a definitiv e exposition 
of the subjec t in less than an hour. At most, it will be 
possible only to touch upon those ideas and concepts 
whic h either are rather basic or are often overlooked 
by so me people who use the techniques . 

It is well at the outset to bear in mind that the theory 
oflinear graphs is used, in the application under discus
sion, as an aid, and as a unifying co ncept in the analysis 
of what can be called hereafter, an engineering sys tem. 
In particular, the techniques are applicable to those 
engineering systems which can be described, with 
adequate precision, by a finite number of physical 
variables. This limitation assures us that we shall be 
dealing only with finit e linear graphs as will become 
more evident later. These remarks suggest, or rather 
demand, that we look carefully at engineering analyses 
and extract from them those concepts and operations 
that are pertinent to the problem at hand. By thi s 
it is meant that our problem is to justify, in so me logical 
fashion, just how the properties of linear graphs, whic h 
after all are only lines on a sheet of paper, can be used 
in a meaningful way in the analysis of a finite engi
neering sys tem. Surely no one in thi s audience be
lieves that a linear graph drawn on the blackboard in 
thi s room and, say, a motor-ge nerator down th e hall are 
the same object. And surely more than one person 
here is wondering why such a trite remark has been 
made. There are two reasons. In the first place 
some trite remarks emphasize fundamental concepts. 
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Such a case is at hand for it is absolutely basic to 
understand that a linear graph and an e ngineering 
system under analysis are distinct objects. Second, 
the remark is made to counteract certain misconce p
tions that appear in the open literature. For example, 
one well known book co ntains a sente nce whic h begins , 
" we de fin e an electric network to be a linear graph, 
e tc." For goodness sake, an elec tri c ne twork cannot 
be de fined to be anyth ing but an electric ne twork. In 
fac t, it couldn ' t care less how anyone de fines it. That 
is another trite s tateme nt full of deep meaning for an 
electric network, or any e ngineering system for that 
matter, will go on pe rforming its own [unction in its 
own peculiar way no matter what a theoretician down 
the hall has to say about it. He nce a theore ti cian, if 
he is a good one, will not try to warp the character
is ti cs of a sys te m to fit hi s own whims and notion s; 
rather he can only hope that hi s whims and notions 
may have some reaso nable corres ponde nce to what 
goes on in the real sys te m. 

Using the example of the motor-ge ne rator se t down 
the hall, it is obvious that anyth ing a th eore ti c ian does 
at hi s desk has no reaction whatsoever with the sys te m 
under analysis. In other words, the performance of 
the motor-generator is co mpletely unaffec ted by any
thing an analyst does with a pencil and a pad of paper. 
These remarks point up the fac t that an analysis of an 
engineering sys te m is strictly a me ntal exerc ise in
dulged in by a theoretician. Failure to recognize 
this fact can lead to unrealistic concepts; it has done 
so not too infrequently in the past. 

It should be apparent at thi s point that if a linear 
graph is to be useful at all in the analysis of an engi
neering sys te m it is highly likely that it can do so only 
by virtue of an isomorphism between some, but not all, 
of its properties and some of the me ntal obj ects whic h 
are created in the course of analyzing a system. The 
remainder of the remarks to be made today show in 
outline how such an isomorphism can be established. 

Let us begin by looking at the pertine nt me ntal 
exercises indulged in by an analyst. The order in 
which these mental operations will be discussed is not 
necessarily the order in which they are done in a 
specific application. 

First, some assumptions must be made about the 
nature of space and time. It is often ass umed for 



example that space is Euclidean and that time is 
isochronous. It would be good if it could be asserted 
that analysts are aware of their making such assump
tions each time they do so; but unfortunately this is 
not the case. Nevertheless, these assumptions are 
inherent in most engineering analyses. 

Next the analyst looks at those energy mechanisms 
which exist in his system under analysis. He then 
must place each mechanism into one of three cate
gories; (1) the mechanism is judged to be unimportant 
and hence is excluded from the analysis, (2) the mecha
nism is too significient to be ignored, yet there is no 
need to analyze it in detail, in which case it is covered 
up by some artful dodge, and (3) the mechanism is 
significant and it is desirable to analyze it in detail. 
Again using the motor-generator set as an example, 
the magnetostrictive effect, which always exists to 
some degree in the laminations of the magnet, probably 
is insignificant and can be excluded from the analysis 
of the system without introducing an appreciable 
error. The details of what happens to the heat gen
erated by the curre nt flowing through the windings on 
the rotor may not be of significance. The total amount 
of energy involved in this mechanism probably is too 
large to be ignored so it must be included in the anal
ysis, but not in detail, by assigning a resistance to the 
winding. A similar coverup job is usually done with 
respect to the magnetic fields established in the set 
by a magnet of some sort. Finally it is usually the 
case that there is great interest in the electrical energy 
supplied to and extracted from the system and in its 
mechanical behavior. These two energy mechanisms 
are then analyzed in detail; but note that this is so 
only because of a primary interest in the details of these 
mechanisms. 

Having identified those mechanisms which are to be 
analyzed in detail, the analyst is then faced with the 
problem of selecting variables which are appropriate 
for describing these mechanisms. It is to be empha
sized at this point that the information that the analyst 
desires is contained in these variables; hence their 
selection is not a matter to be treated lightly. 

It is observed first that for anyone mechanism two 
kinds of variables are required. Again citing the 
motor-generator set, the electrical portion of the system 
is usually described in terms of voltage drops and elec
tric currents although such a selection is not manda
tory. A voltage drop is typical of a class of variable 
which Firestone called across variables. Mathema
ticians usually call them contravariant variables. 
Their important characteristic is that they are defined 
in terms of two terminals in the system where by a 
terminal is meant a point or a surface needed to define 
the variable. Conceptually any across variable can 
be measured by an appropriate instrument attached 
to two terminals. Currents, on the other hand, are 
typical of a second type of variable; one which acts as 
if something is propagated through the system. The 
phrase "as if" is intended to imply, to paraphrase a 
comment of Faraday, "the variable may not represent 
the actual propagation of something through the sys
tem; but if it did, the system would act just like it 

does ." Firestone called these through variables 
while mathematicians call them covariant variables. 
Anyone variable of this type can be measured, at least 
conceptually, by breaking the system at a terminal and 
then inserting an appropriate meter. . 

Having made a selection of variables for one sort of 
energy mechanism, an analyst no longer has complete 
freedom in selecting variables for another mechanism. 
Note that in the illustration cited above, the product of 
the two variables selected to describe the electrical 
portion of the system, namely voltage drops and cur
rents, has the physical dimensions of power. This 
fact leads to the requirement that appropriate variables 
for the purely mechanical portions of the system must 
yield the same sort of a product. Thus torques and 
angular velocities might be used as appropriate 
variables. 

Having selected appropriate variables, the analyst 
then conceptually decomposes the system into a set 
of simple elements. By a simple element is meant a 
conceptual object, with identified terminals, whose 
performance is describable by a known set of rela
tions involving the variables already selected. These 
relations are called Constitutive Equations. 

Quite a lot of things can be said about elements but 
only a few items can be discussed here . First of all 
an analyst locates the terminals of the device. In 
this process certain points or surfaces, which seem not 
to be a part of the element, are needed to define some 
of the across variables. A very simple example arises 
with the rigid mass in rectilinear motion with its con-

stitutive equationf= m ~~. This equation is true only 

if the across variable, v, is defined between some point 
on, or in, the rigid body, the center of mass for example, 
and an inertial reference. The inertial reference at 
first glance seems not to be a part of the element but 
this point of view is not correct. Situations analogous 
to the foregoing are common. Terminals which seem 
not to be in the element are called External References. 

Next an analyst will seek to find a set of independent 
across variables for the element. He will try to select 
them so as to be the most advantageous in terms of 
those bits of information which he is seeking. With
out going into the details, bounds can be set on the 
number of such variables in terms of the number of 
terminals on the element. If V is the number of in
dependent across variables associated with the element 
and T is the number of terminals, then T/2,,;;: V,,;;: 
(T-1). 
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Having established a set of across variables defined 
as a set of terminals, a graphical symbol for the element 
is created by the following procedure. (1) A set of 
open or solid circles equal in number to the terminals 
on the element are put on a sheet of paper and each 
circle is identified with one specific terminal. (2) One 
line segment is drawn for each independent across vari
able, the line terminating on the pair of circles which 
correspond to the terminals of the device between 
which the variable is defined. (3) Certain portions of 
each line segment are replaced by standardized adorn-



ments which serve to show the nature of the eleme nt 
which s tands in correspondence to the graphical 
symbol. Koenig has called the process of adding the 
adornments, coding the symbol. Thi s is an apt desig
nation. It s hould be borne in mind that the coding 
of a graphical symbol implies the cons titutive equation 
for the eleme nt. Thus if the coding is a sawtoothed 
line, it is gene rally known that the element is a resistor 
with a constitutive equation e = iR or i = Ce. The 
ability to write a constitutive equation in several ways 
is quite the rule rather than the exception. 

We come now to two properties of through variables, 
neither of which can be prove n from first principles . 
They represent the experience of the scientific world 
to date and in no case where engineering syste ms can 
be analyzed has an exception been found. Firs t there 
are as many through variables associated with an ele
ment as the re are across variables . Thus a single 
line in a graphical symbol s tands in I-to-l correspond
ence with one across and one through variable. 
Second, the through variables act as if they are trans
mitted unc ha nged from one terminal to another along 
the same conceptual path suggested by the line seg
ment. If the through variables leaving an ele ment are 
considered p ositive and those entering negative, the 
foregoing continuity principle leads to the result 
that the algebraic s um of the through variables leaving 
an ele me nt is zero. This condition is aptly called the 
Incidence Law. Generally, it is s tated in the simpler 
form; " the algebraic sum of all through variables 
leaving a junction point is zero." The foregoing s ta te
ments show tha t a through variable is an ori e nted 
quantity; it can be transmitted in either of two direc
tions. 

Across va riables obey a different law. Such a 
variable is basically, and by definition, the difference 
of two scalar quantities, each scalar quantity b eing 
associated with a specific terminal. The terminal 
associated with the scalar quantity which is subtracted 
is called the Reference Terminal for that variable. 
Thus every across variable is an orie nted quantity in 
the sense th a t its definition must specify which of two 
terminals is the refere nce . If the algebraic sum of 
across variables associated with a mesh is computed in 
terms of the scalar quantities a t terminals it is easy to 
show that the result is always zero. Thus across varia
bles sati sfy the Mesh Law; namely that the algebraic 
sum of across variables around a mesh is zero . It is 
well to note that whereas the Mesh Law can be proven 
from firs t principles, ' the Incide nce Law is only a 
s tateme nt of experience. 

At this point an analyst has in hand a set of elements 
eac h with identified terminals, an independent set 
of across variables , a coded graphical symbol for the 
eleme nt, and a set of constitutive equations. If he 
has done his work syste matically, each element ter
minal corresponds to one , and only one, terminal in the 
original connected system. It is to be noted that 
whereas eac h element terminal corresponds to only 
one sys tem terminal, whic h hereafter shall be called a 
Junction Point , each junction point can, and usually 
does, correspond to more than one element terminal. 
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In other words, a junction point I S a coincidence of 
several element terminals. Using these facts the 
analys t can generate easily a schematic diagram for the 
connected sys te m by placing circles, say, on a shee t of 
paper ; eac h c ircle corresponding to one specific 
junction point in the sys te m. Graphical symbols for 
the ele ments are now connec ted be tween the junc tion 
points so that eac h ele ment terminal is made coincide nt 
with the junc tion point to whic h it corresponds. 
This process amounts to showing graphically how the 
across variables satisfy the mesh laws . A more e n
gineering like statement is that the process specifies 
the connectivity existing among the ele me nts . 

The foregoing process may lead to a sche matic di a
gram with a congested, or messy, appearance. En
gineers have techniques for improving the appearance 
of these diagrams; but of these only one is of concern 
to us today. This technique res ts upon the fac t that if 
it is known that the across variable de fined between 
two supposedly different junction points is always zero, 
the n in fact the two junc tion points are one and the 
same. S uch a situation is shown in a sche matic 
diagram by an uncoded line segment conn ected be
tween the two supposedly different junction points. 
If desired the analys t could show that the two separate 
junction points are in fac t the same by s hrinking the 
uncoded line segment to zero. The process can be 
reversed. If a junc tion point has many line segme nts 
incident upon it, thus leading to a conges ted di agram, 
thi s single junc tion point can be represented in the 
schematic di agram as several junc tion points joined 
by uncoded line segments . Of course, thi s separation 
must be done so that all mesh relations are still satis
fi ed and no new meshes are introduced into the 
diagram. 

At this point the following can be asserted, " To 
every finite engineering sys te m made up of elements 
whose cons titutive equations are known, there exis ts 
a sche matic diagram whic h specifies the connectivity 
of the sys te ms and the cons titutive equations for each 
ele ment. " The truth of this s tateme nt is obvious 
since a process for creating s uc h a diagram has been 
defin ed. The principle is worded to show that if a 
syste m cannot be conceptually decomposed into ele
me nts whose terminals and cons titutive equations 
are known then suc h syste ms can not be diagramed 
or analyzed at the moment. This s ituation exis ts for 
example with systems in which thermal energy is 
converted to some other form, and vice versa . 

It is important to note that the mes h and the inci
dence laws , which are ofte n termed the F eld Equations, 
are linear in the algebraic sense. Constitutive equa
tions on the other hand need not be linear and the 
exciting situations for the future are the nonlinear ones. 
This difference cannot be e mphasized too muc h for it 
is a rare person indeed who keeps these two ite ms sepa
rated in his mind and in his analyses . Note that the 
field equations concern themselves only with the con
nectivity of the system; they have nothing whatsoever 
to do with the constitutive relations. 

If one can wax philosophical for a mome nt, it may be 
pointed out that there are only two ingredients in-



volved in establishing descriptive equations for a sys
tem; these are the connectivity of the system and the 
constitutive equations of the elements_ These two 
types of information correspond to the two engineering 
operations of selecting some devices from a bin, shelf, 
or ordering them from a supplier and then riveting, 
soldering, gluing, or otherwise joining them together. 
That is all there is to creating an engineering system. 
Thus it is seen that the generation of correct descrip
tive equations for a system can involve at most the con
nectivity of the system and the constitutive equations. 
Our task is to show how connectivity can be specified 
and how it can be made to react on the constitutive 
equations to yield equations for the system as a whole. 

An analysis of an engineering system involves two 
distinct and separate phases; the formulation and the 
solution phase. All of the physical and engineering 
principles needed to deal with the system are used in 
the formulation phase. A bit of mathematics is used 
in this phase also. The more difficult mathematics is 
involved in the second phase, that is in solving the 
equations already formulated. This phase is also the 
most time consuming. It is a fact that generally 
speaking, we have mathematical tools for solving 
linear equations, but not for nonlinear equations. 
But if system equations are linear, so also are the con
stitutive equations for the elements. In such a situ
ation we have linear field equations, linear constitutive 
equations, and linear system equations. It is not 
surprising therefore that these items have become 
confused in the minds of workers. This is not a logi
cal position to assume and furthermore it severely 
restricts one's ability to deal with these exotic nonlinear 
engineering systems which are appearing in ever 
increasing numbers these latter years_ 

Let us now make a closer contact with the theory 
of linear graphs. Let a schematic diagram be given 
for an engineering system. In this diagram let each 
uncoded line segment be shrunk to zero. Finally let 
the coding be removed from each line segment. The 
result is a geometrical graph in which each vertex has 
a 1-to-1 correspondence to a conceptual junction point 
in the system and each edge, or arc, has a 1-to-1 cor
respondence to one across and one through variable. 
We now seek properties of the graph which follow the 
same algebraic laws as the across and through vari
ables, i.e., the mesh and incidence laws. Again it is 
emphasized that these are linear laws. Let it be stated 
for emphasis that the linear graph has a correspond
ence only with the field equation of a system, not to its 
constitutive relations. These latter relations corre
spond to the coding of a schematic diagram; but all 
coding has been removed. It is not difficult to identify 
those properties of a graph that are needed. Since 
the theory is rather elementary and known to nearly 
everybody in this audience, only the highlights of the 
argument will be given. 

Every edge in a graph has a boundary, say aei' 
Let the collection of all edge boundaries be repre
sented by the row vector aE. It is well known that the 
elements of aE belong to a linear vector space. Hence 
any object in the space is given by a relation of the form 

e; = aEYJ where YJ is a column vector whose elements 
are taken from the field of rational numbers. Further
more an independent set of new objects can be defined 
by a matrix relation of the form aE* = aEK where K is a 
nonsingular matrix with rational numbers as elements. 

Each edge also provides an incidence, on two ver
tices . Let this be oei if the edge ei is oriented away 
from the vertex and -oe; if e; is oriented toward the 
vertex. The collection of all edge incidences will be 
represented by the column vector oE. 

Each vertex can be viewed either as providing a part 
of the boundaries of some edges or as having an inci
dence because of them_ The first notion for a vertex 
will be represented by Vj and the second by Vj. Let 
the boundary proper1y of vertices be collected together 
into the row vector Vand the incidence properties into 
the column vector V. 

Since the time of Poincare it has been known that 
aE' = V 1T and P = 1ToE where 1T is a rectangular matrix. 
The elements of aE are said to correspond to the ele
ments of oE. Suppose that the first relation is post 
multiplied by K giving aEK = aE* = V1TK = V1T*. The 
corresponding elements from a new set of incidence 
objects can be found by using the principle that the 
incidence on any vertex is independent of the set of 
incidence objects used as a basis. Thus V = 1ToE 
= 1T(KK-l)oE = (1TK)(K- 1oE) = 7T*oE* where oE* 
= K-1oE. These facts give rise to the invariance 
principle aEoE= aE*oE*. 

A mesh is defined to be a graphical object that has 
no boundary. Thus a mesh is specified by a column 
vector YJ which satisfies aEYJ = V 1TYJ = O. Thus 
1TYJ = 0 for a mesh. There are an unlimited number of 
solutions to this equation but it is easy to show that 
the number of independent solutions is E - v + ./" where 
E is the number of edges in the graph, v the number of 
vertices and ./" the number of disjoint parts. Call 
this number /-t, the number of independent meshes. 

Hereafter K will be used only in the so-called canoni
cal form in which the first /-t columns define /-t inde
pendent meshes_ Thus K can be written in the parti
tioned form K = IMIPI where M, the so-called mesh 
connection matrix is the first /-t columns. Since K is 
nonsingular it has an inverse which can be written 

in the conformally partitioned form K-l = I~; I where N 

is the so-called nodal connection matrix and the primes 
denote transposition_ If aE* and oE* are partitioned 
conformally according to the scheme aE* = laEilaE~1 

8E* 
and oE* = laE~1 it is easy to show that aE= aE~N 

2 

and aEt = 0 since the objects ' which give rise to the 
elements of aEt are all meshes. 

It is clear that the boundaries of edges satisfy the 
mesh law. Hence using the fact that there is an across 
variable which corresponds to each edge it is clear 
that each across variable corresponds algebraically 
to the boundary of its corresponding edge and that 
aE can be replaced by A' where A is a column vector 
of across variables. For example A=NAr 

In a similar fashion, oE can be replaced by a column 
vector T where the elements of T are through variables, 
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but at the same time, it is necessary to impQ..se the inci
dence laws. That is , to each eleme nt in V we se t in 
corresponde nce a scalar , say i k , and le t the collec tion 
of ele me nts be writte n I. Thus we have 1= 7TT = 7TKT* 

=7TIMIPI I ~;I= 7TMT;+ 7TPTi= 7TPT: since NM=O 

by de finition. Now the elements of I are set equal to 
zero to correspond to the incidence laws. It c an be 
shown th at TTP is nonsingular and hence that T: = O. 

Since T = KTi = IMIPII ~; I it follows that T = MT; . 

Using the res ults to date, it is important to observe 
the invaria nce principle yields A'T =A;'N'MT'(= O 
since N' M = 0 as is easily shown fro m the relation 
K- l K = I. This principle says that for any engi neering 
syste m the formal matrix product of the ac ross and 
through vari ables for the sys tem is always zero. One 
speciaL zed in terpre ta tion of this principl e is th at all 
of the e nergy suppLed to a sys te m is either stored or 
di ssipated , a rather obvious resul t. It is st ra nge th at 
the principle is not well know n since it is so bas ic; in 
fac t it would appear that few people indeed have even 
heard of it. It is even s tranger that it was only a few 
years ago that the pr inc iple was proved in the s pecial 
case of elec tric ne tworks by an e ngineer, a t the P hilli ps 
co mpa ny in Holl and. Only by the argume nt given 
here has it been proved fo r all o ther cases. 

Le t us now cons ider the co nstituti ve equ a tions for a 
sys te m. It is usually possible to wri te this in a matrix 
form like AA = T + Tg where A is an opera tor matrix 
and Tg is a column vec tor of through vari ables deli vered 
by the sources in the system. Now let the equation 
A=NAi be used to elimin ate A giv ing ANAi= T +Tg. 
Finally le t the relation be p re multiplied by N' giving 
N'ANAi=N'T +N'Tg=N' Tg since N'T =N'MT'(= O. 
This equation gives the so-called nodal formulation. 
It s hould be obser ved that if A contai ns so me nonlinear 
opera tors care must be taken in handling the indicated 
opera tions in order to get correct results. 

A parallel type of developme nt yields the so-called 
mesh fo rmulation. Let the co nstituti ve equatio ns be 
writte n in the form If;T = A + Ai! where If; is a ma trix of 
opera tors and Ag is a column vector of across vari ables 
supplied by sources . Let T= MTi be subs tituted and 
let the result be pre multiplied by M' giving M'If;MT~ 
=M'A+M'Ag= M'Ag since M'A = M' NAi= O since 
M'N= O. 

In either case the constitutive relations e nter through 
a n operator, A or If;, and a vector of variables specified 
by sources, either Tg or Ag. The connec tivity of the 
system is specified by N in one case and M in the other ; 
the descriptions are equivale nt. Thus it is seen that 
the connec ti vity of the system reacts on the co nstituti ve 
equa tions by a congruence tr ansform ation to give a 
correc t se t of equations for the sys te m as a whole. 

If the engineering system under analys is involves 
only one energy mec ha ni sm which is to be analyzed 
in detail the foregoing procedures are adequate to 
ha ndle the formulation phase . We shall le t the pro
fessional mathe maticians worry about the second or 
solution ph ase. 
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If, however, the sys tem involves two or more energy 
mechanis ms, eac h of whic h is to be analyzed in detail , 
so me ex tra complica tions arise . Time will not allow 
a de ta iled di scuss ion of thi s case . Since a substantial 
fraction of modern and interes ting syste ms are of thi s 
type it is a bit of a pity th at we cannot go into such 
analyses in de tail. The s ubjec t is important and is 
worthy of a length y discuss ion on its own merits. 
We shall only say here that the co ncept of a perfec t 
coupler, with its two types, is in volved he re; where 
by a perfec t coupler is meant a co nce ptu al mec ha ni sm 
whic h can neither create, s tore, nor di ss i pa te ene rgy 
but can transfer it from one part of the syste m to 
another, often changing its type in th e process. These 
conceptual ele ments perform their fun c tio n by impos
ing constraints on the variables . The impos ition of 
these constraints on the equations obtai ned by the 
previous technique is not a hard math e matical prob
le m, but will not be covered today. S uffi ce it to say 
that these extensions allow us to treat any sys tem, no 
matter how co mplicated , if we know the co nnecti vity 
of the sys te m and the constitutive equatio ns of the 
ele me nts. 

If most of yo u feel that the materi al I have presented 
today is almos t in sultingly s imple the n my lecture has 
been a success. I can onl y hope that thi s is the case 
fo r afte r all many of the important se ts of concepts 
and procedures in the na tural scie nces are bas ically 
s imple. Once a prope r set of co nce pts has bee n 
asse mbled and ex traneous matters elimin ated we are 
left wi th a simple but powerful tec hnique for making 
the formula tion of sys te m equations almos t a routine 
process. 
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