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The results cited in the title are unified by the following theorem:

For any matroid M and any

subsets NV and K of elements in M, there exist as many as k disjoint subsets of N which span K and
which span each other if and only if there is no contraction matroid M X A where NN A partitions into
as few as k sets such that each is independent in M X A and such that at least one of them does not

span KNA in M X A.

2.1. The Problem

A. Lehman [3]2 posed the following game to be
played between two players on any given matroid M
with a distinguished element e. The players are called
the cut player and the short player. They take turns
and (to be explicit) the cut player goes first. Each
player in his turn tags an element of M, other than e,
not already tagged. The short player wins if he tags
a set of elements which span e. The cut player wins
otherwise —that is, the cut player wins if the elements,
other than e, which he has not tagged do not span e.

The game, determined by M and e, is called a short
game if the short player can win against any strategy
of the cut player. We will call the game nonshort if
the cut player can win against any strategy of the short
player. Clearly a game is one or the other. For any
M and e, Lehman characterizes short games and de-
scribes a winning strategy for the short player.

Recall from section 1.4 that a set T in a matroid M is
said to span a set 4 in M if for every eeA, either e€l or
there is a circuit C of M such that C—eCT. Recall
that a base B of M is a set which spans M (e.g., a span-
ning set of M) and which also is independent.

Where the game is played on a graph G, it is not
necessary to have an edge corresponding to e but
sufficient to have two distinguished “terminal” nodes,
v1 and v2, which would be the ends of e.  Here, the goal
of the short player is to tag a set of edges which con-
tains a path of edges joining v, to v.. The goal of the
cut player is to tag a set of edges which separates v,
from v..

A theorem due independently to Tutte [6] and Nash-
Williams [4] characterizes for any graph G the maxi-
mum number of edge-wise disjoint subgraphs, each
connected and containing all nodes of G, into which
the edges of G can be partitioned. For a connected
graph G, the edges of a connected subgraph which con-
tains every node of G correspond to the elements of a
spanning set of the matroid of G, and conversely.

! This paper is a sequel to the preceding one, “Minimum Partition of a Matroid Into
Independent Subsets.”  The numbering system there, including references, is continued
here. This work was supported by the Army Research Office (Durham) and the Defense
Communications Agency.

* Figures in brackets indicate the literature references on page 72.
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The purpose of the present note is to unify these two
theories. Theorem 2 states the straightforward gen-
eralization to matroids of the Tutte and Nash-Williams
theorem. Theorem 3 is Lehman’s main theorem char-
acterizing short games. Theorem 4 is an analogous
theorem characterizing nonshort games. (Lehman
characterizes nonshort games indirectly by using ““dual
matroids” which we avoid.) Theorem 5, for the case
where K=N=M, vyields theorem 2. For the case
where k=2, it yields the “only if”” parts of theorems 3
and 4. The “if”” parts of theorems 3 and 4 are proved
by describing the winning strategies when the respec-
tive conditions hold (in one case this follows Lehman,
[3]).

Theorem 1 in section 1.3 and theorem 2 are in a sense
dual to each other but not in the usual matroid sense.
Each can be proved from the other.  We use theorem 1
to prove theorem 5.

Theorem 5 appears interesting in itself. We call it
the ‘““cospanning-set theorem” after a main idea of
Lehman’s theory. For a graph G with a prescribed
subset of nodes called terminals, it gives a “good”
characterization for the nonexistence of £ edge-wise
disjoint connected subgraphs (e.g., trees), all with
precisely the same set of nodes which includes the
terminals.

If the matroid M of the cospanning-set theorem is a
finite set of vectors in a space L, then for given subsets
N and K of M, the theorem provides a “good” charac-
terization for the nonexistence of as many as k& dis-
joint subsets N; of N and a subspace L' of L such that
each N; exactly spans L' and such that L' contains K.

2.2. Contractions

We use the following inportant concept on matroids
due to Tutte (ch. I of [7]). For any set 4 of elements
in a matroid M, define the circuits of M X A4 to be the
minimal nonempty intersections of A with circuits of M.

PROPOSITION 6: The set of elements A and the cir-
cuits of M X A are a matroid (denoted by M X A), called
the contraction of M to A.

Proor: Axioms 1. and 2. for M X A follow immedi-
ately from prop. 3 for M.



COROLLARY: Where A and A are complementary sub-
sets of matroid M, A is closed (a span) in M if and only
if matroid M X A contains no “‘loops,” that is elements
of rank zero.

PROPOSITION 7: Where K and A are subsets of

matroid M, subset T' of A spans KNA in M X A if and
only if there is a subset T of M such that T"=TNA and
such that T spans K in M.

COROLLARY: The spanning sets of matroid M XA
are precisely the intersections of A with spanning sets
of M.

PROOF OF PROP. 7: Suppose I"=TNA where T
spans K in M. Since T spans K, for any element e in
KN A, either e€T or there is a circuit € in M such that
C—eCT. If eeT then eeT” and hence 1" spans e in
M X A. 1If there is a C then, by definition of M X4,
there is a circuit C' of M X A such that eeC'CC. It
follows that C' —eCT’ and hence T’ spans e in M X 4.
Thus, the *“if”” part is proved.

Suppose subset 7" of A spans KNA in MXA. Let

T=T"UA where 4 is the complement of 4 in M. Then
T'=TNA. Let e be any element of K. 1f e€eT, then
T spans ein M. Otherwise, eeKNA, and e¢T’. Since

T’ spans e in M X A, there is a circuit C" of M X A4 such
that eeC’ and C'—eCT’'. By definition of M XA,
there is a circuit C of M such that C'=CNA. There-
fore, T spans e, since eeC and C—eCT. Thus, the
“only if”” part is proved.

Tutte uses M- A to denote what we mean by the
submatroid 4 of M: he does not follow Whitney’s in-
formality of letting 4 mean both a matroid and its set
of elements. We will use Tutte’s notation and also,
where convenient, we will depart from it again by
referring to M X A simply as the contraction matroid,
A, of M just as we refer to M- A as the submatroid,
A, of M. Also, A denotes the elements of either.

Where M(G) is the matroid of graph G, the matroid
of a subgraph H of a graph G is the submatroid of M(G)
which contains the elements corresponding to the
edges of H, and conversely. The matroid of a “con-
traction graph” H of G is the contraction of M(G) which
contains the elements corresponding to the edges of
H, and conversely.

The most instructive way to describe the meaning
of contraction graph is visually. *The contraction
graph H of G whose edges are the set H of edges in
G is the graph obtained from G by contracting to a
point each edge of G not in H.

It should be pointed out that in order for there to be
a contraction H of G for every subset H of edges in G,
we must extend our meaning of graph (in sec. 1.1) to
graphs which include edges which “meet the same
node at both ends.” These “loop’ edges are circuits
by themselves: they correspond to matroid elements
which are not contained in any independent set of the
matroid. This sort of matroid element corresponds in
a matrix to a column of all zeros. In a matrix N(G), a
loop of graph G can be represented by a column of N(G)
which contains a 2 in the row corresponding to the
node met and which contains zeros elsewhere. Rela-
tive to the matroid structure, the column is all zeros,
mod. 2.

We have pointed out how any contraction of the
matroid of a graph can be represented as the matroid
of a graph. It is also possible to represent any con-
traction of the matroid of a matrix as the matroid of
a matrix.

By deleting (or cutting) set of elements A in matroid
M, we mean replacing matroid M by its submatroid on
the set M—A. By contracting (or shorting) set of
elements A4 in matroid M, we mean replacing matroid
M by its contraction to the set M—A. Clearly, from
the definition of submatroid, we can get a submatroid
M' of M by deleting the elements of M not in M’ one
after another in any order. Clearly, from the corollary
to prop. 7, we can get a contraction matroid M’ of M by
contracting the elements of M not in M’ one after an-
other in any order. It can be proved that for any
elements a and b in a matroid M, deleting a and then
contracting b is the same as contracting b and then
deleting a. The proof is omitted. These results can
be summarized by the following:

PROPOSITION 8: The operations of deleting certain
elements together with the operations of contracting
certain other elements in a matroid are associative
and commutative.

The above proposition is equivalent to Tutte’s iden-
tities 3.33 in [7]. Tutte defines a minor of a matroid
M to be any matroid obtained from M by deleting cer-
tain elements and contracting certain other elements
in M.

The following theorem is presented by Tutte (theo-
rem 3.53 of [7] ) in terms of ““dendroids.”

PROPOSITION 9: If A and A are complementary sets
of elements in matroid M, then the elements in a base
of M X A together with the elements in a base of M - A
are the elements in a base of M.

Proof omitted. _

COROLLARY: r(M - A)+r(M X A)=r(M).

We have been calling (M - A) the rank r(A) of set A
in matroid M. We denote (M X A) as function #(A4)
of sets 4 in matroid M.

The following theorem, which for the case of con-
nected graphs is the one due to Tutte and Nash-
Williams, completely parallels theorem 1. The “if”
part of theorem 2 follows immediately from the “if”’
part of theorem 5 (where M =N =K).

THEOREM 2: The elements of a matroid M can be
partitioned into as many as k sets, each a spanning set
of M, if and only if there is no subset A of elements of
M for which

[A] <k -t(A).

Any contraction graph of a connected graph is con-
nected. Using the last paragraph of 1.7, observe that
where M is the matroid of a connected graph G, t(4)
is the number of nodes minus one of a contraction
graph of G, and |4| is the number of edges in that
contraction graph. o

Notice that, since #(A)=r(M)—r(A), theorem 2 is
easily stated without the notion of contraction.

To prove the “only if”” part of theorem 2, assume that
M partitions into k sets, each spanning M. By taking
a subset of each of them, we get disjoint bases
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Bi(i=1, ..., k). Let 4 be any subset of M and let 4
be its complement. Since B; is independent, HA)
=|ANB;|. Since B; is a base, |ANB;|+|ANB;|=|Bi|
=r(M). Combining the two gives |ANB;|= M)
—r(A) =t(4). Therefore |A|=3i|ANB;|=k-t(A).

2.3. Short Games

[t turns out to be just as easy to analyze games where,
for the graph case, any subset of nodes of G are dis-
tinguished as terminals and the goal of the short player
is to tag a set of edges in G which contains the edges of
a connected subgraph containing all the terminals. To
interpret this game in matroid terms, adjoin to G a set
of new edges which form a connected graph K contain-
ing precisely the terminals as nodes. Then relative
to the matroid of graph GUK, the goal of the short
player is to tag a set of elements corresponding to
edges in G which spans the set of elements correspond-
ing to edges in K.

For any matroid M and nonempty subsets N and K,
consider the game L(M, N, K) where, as before, the cut
player and short player take turns tagging different
elements of /V, the cut player going first. The short
player wins if he tags a set of elements which span K.
Otherwise, the cut player wins. Call LM, N, K) a
short game if the short player can win against any strat-
egy of the cut player.

LLehman’s main theorem (explicitly for the case
where K is a single element) is

THEOREM 3: L(M, N, K) is a short game if and only
if N contains two disjoint sets, Ay and By, of elements
which span each other and which span K.

Notice that in the two-terminal graph case, the short
player wants to get a path joining the terminals. The
structure characterizing when he can is two edgewise
disjoint trees each containing the terminals and each
containing precisely the same nodes as the other.

LLehman calls two (or more) sets which span each
other cospanning. Let us verify that two disjoint co-
spanning sets Ay and By in N which span K provide a
winning strategy in the game L(M, N, K) for the short
player. All that we need consider is the span My=S(A4,)
=S(By) in M. Clearly, we can take 4, and B, to be
bases of submatroid M,; assume that they are. If the
cut player tags an element not in 4oUB,, we can pre-
tend that at the same time he also tags some element
of AyUB,y. Clearly, the short player would not be tak-
ing an illegal advantage by pretending this. Therefore,
suppose the cut player in his first turn tags element
Qo in A().

By axiom 2 (in 1.1) there is an element b, of B, such
that (40— ay) Uby is a base of M,. The short player
should tag an element by. It follows from prop. 7 that
disjoint sets 4,=Ay—ao and B, = By— b, are spanning
sets of the contraction matroid M, =M, — by of M.

Since it is the cut player’s turn again, the situation
of A, and B, relative to M, is as it was for 4y and B,
relative to M, except that M, is smaller. Assuming
there is a strategy for the succeeding turns whereby
the short player can tag a set of elements which con-
tains a base 7" of reduced matroid M, then by prop. 9
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the set TUb, of elements, which the short player will
have tagged, is a base of matroid M, and hence spans
set K in matroid M.

When B, contains only one element by, then by itself
spans M, and K. Hence, by induction on the number
of elements, we have a winning strategy for the short
player. This proves the “if”” part of theorem 3. The
harder “only if”” part will follow from theorem 4 and
theorem 5.

2.4. Nonshort Games

The notion of contraction can always be used in
place of the more familiar notion of ““matroid duality,”
and conversely, because of a theorem (3.27 of [7]) re-
lating the contraction matroids of an M to the sub-
matroids of the “dual to M.””  Sometimes one notion is
convenient, sometimes the other. We do not use dual-
ity here. Lehman in treating the same topic uses
mainly duality.

Lehman’s interpretation of his dual results charac-
terizing when the cut player can win for the case of
graphs does not directly provide a ““good™ character-
ization in the sense of the absolute supervisor.  Clearly
his characterization of a short game is good in the case
of graphs. However, he does not give the following
analogous characterization for nonshort games. (Com-
pare Lehman’s theorem (26) and its graph interpreta-
tion with our theorem 4 and its contraction graph inter-
pretation. See also the comment on his theorem (26)
which follows his theorem (29).)

THEOREM 4: L(M, N, K) is a non-short game if and
only if there is a contraction matroid M" of matroid M
where set N'=NNM'" can be partitioned into two sets
I, and 1, such that 1, and 1, are both independent in M’
and such that 1, does not span the set K" =KNM' in M'.

Let us verify that an M’, I, and I, provide a winning
strategy for the cut player in game LM, N, K). 1If I,
does not span K’ in M’ then the cut player can tag any-
thing on his first turn. Otherwise, he should tag an
element e, in I, such that I, —e; does not span K" in M'.

Since I, does not span K’, there is an element eeK’
such that r(e) # 0. If eel;, then e is an element e;.
Otherwise, by axiom 2’ there is a unique circuit C in
IiUe and so any element of C—e is an element e;.
(C—e is not empty since r(e) #0.) Now neither the
untagged elements I;=1I;—e; of I; nor the untagged
elements I, =1, of I, span K’ in contraction matroid M'.

Even if the short player tags an element not in M’,
clearly the cut player is not taking an illegal advantage
by pretending the short player also tags an untagged
element in M’ if there are any. Therefore, assume the
short player does tag one, say e, in I,. Consider the
contraction matroid M"=M'—e, of M. (By prop. 8,
the contraction of matroid M’ to set M" is the same as
the contraction of matroid M to set M".) By the cir-
cuit definition of contraction matroid, set I;=1,—e,
will be independent in M” and will not span K"=K' N\ M"
in M".

Again by the definition of contraction matroid, if e.
is not in the span of I in M’ then I is independent in
M". In this case, the cut player should tag some ele-



ment e; such that I'Y'=1;—e; does not span K" in M".

By the definition of contraction matroid and prop. 3,
if e» is in the span of /| in matroid M’ then set I] con-
tains just one circuit of contraction M" and does not
span K” in M". In this case, the cut player should tag
some element e; in the one circuit of /] in M", so that
I'=1,— e, is independent in M".

Thus in either case, after the cut player takes his sec-
ond turn, the untagged elements of M" partition into
sets I and I, where, in contraction M", both are inde-
pendent and neither spans K”. There are no elements
tagged by the short player in M”. The situation is
identical to the one in M’ right after the cut player took
his first turn except that M" has fewer untagged
elements.

Hence, by induction on the number of untagged ele-
ments in the contraction matroid, if the cut player tags
as described, he eventually reaches a contraction
matroid M in which all the elements are tagged by
him, and yet for which there is an eeK™=M"NK
such that r(e) # 0 in M" (since K is not spanned by
the empty I{" or the empty I{"). The cut player will
then have won the game, because for the short player
to win he must tag a set, say T, which spans K in
matroid M. By prop. 7, for any such T and any set
M™ in M, TOM™ must span K =KNM™ in matroid
M™_ which is impossible. This proves the “if”” part
of theorem 4.

2.5. Cospanning-Sets Theorem

We still have to prove the “only if”” parts of theorems
3 and 4. They follow immediately from theorem 5
(for the case £=2). We proved the part of theorem 3
which says “P = (L is a short game)”’. We proved the
part of theorem 4 which says “Q = (L is not a short
game)”’. Theorem 5 says “P & not Q. Logic yields
that “(L is a short game)=P” and “(L is not a short
game)=>(Q"".

THEOREM 5: For any matroid M and any sub-
sets N and K of elements in M, there exist as many
as k disjoint subsets of N which span each other
and which span K, if any only if there is no con-
traction matroid M' of M where NNM' partitions into
as few as k sets such that each is independent in M’
and such that at least one of them does not span KN'M'

PrOOF: The “only if”” part of theorem 5 follows from
the “if”” part of prop. 7. Suppose in matroid M there
exist £ disjoint subsets T; of NCM, which span each
other and which span KCM. Let M’ be any contrac-
tion of M. Where a set T; is the T of prop. 7; where
set M’ is the A and matroid M’ is the M X A of prop. 7;
and where S, the span (closure) in M of each T}, is the
K of prop. 7; prop. 7 says that T/=T;\M' spans
S"=SNM'" in matroid M'. Since each T/ spans S’,
each T} contains at least r(S’) elements where r(S’) is
the rank of set S’ in matroid M'. Since all the sets 7,
are mutually disjoint, NNS’ contains at least k- r(S’)
elements.

On the other hand, suppose NNM' partitions into
as few as k independent sets I; of M’ where one of
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them I, does not span KNM' and hence does not
span S'. Since each I;=I;NS" is independent,
each I] contains at most r(S’) elements. Since I
does not span S’, it contains fewer than r(S’) elements.
Therefore NNS'= UI! contains fewer than k- r(S’)
elements. Thus, the “only if”” part of theorem 5
is proved.

The “if”” part of theorem 5 follows from propositions
8 and 9 and theorem 1. Let M be any matroid, let
N and K be any subsets of M, and let £ be any positive
integer. Suppose A, is a maximal subset of N such
that [Ao| =Fk-rHA4o) and |A|<Fk-r(A4) for all ACA,.
Set Ay may be empty. By theorem 1, A, partitions
into k£ independent sets, [;. Since |Ao|=Fk - r(4o),
each I; must be a base of submatroid 4, and of course
also a base of S(4y), the span of Ay in M.

Let M’ be the contraction matroid of M obtained by
contracting S(4y) in M. Suppose A; is a subset of
N'=NNM' such that |4,|=Fk - (4,) and |4| < k- "(A)
in matroid M’ for all ACA,;. Then like 4y in M,
A, partitions into k bases [ of submatroid 4, of M'.
By prop. 8, submatroid 4, of M’ is the contraction
to A; of the submatroid 4,US(4,) of M. Call it minor
A;. By prop. 9, a base of minor A4, together with a
base of submatroid S(4,) of M is a base of submatroid
A1US(Ay) of M.

In particular, by pairing the sets I one-to-one with
the sets I;, we get k disjoint bases I/=1"UI; of sub-
matroid A4;US(4o) of M. Since UI[=A4,UA,CN
and since the sets I’ span each other in M,|4oUA,|
=k-rAyUA,) and, by the “only if”’ part of theorem 1,
|A| <k-rA4) in M for all ACA,UA,. However,
Ao was taken to be maximal for this property, and hence
Ay is empty. Thus, matroid M’ contains no nonempty
A, as defined.

Since S(A4,) is closed in M, the matroid M’, obtained
by contracting S(4o), contains no element of rank
zero (corollary to prop. 6). Suppose N'=NNM'
contains a nonempty set A» such that|4:|= k-r(4s)
in M'. Take A, to be minimal. By the nonexistence
in M’ of a nonempty A, as described above, we have
that|A4s|> k-n(4:). Since there are no elements of
rank zero, A» contains at least two elements. Deleting
an element from A4, to get a nonempty A3, we have
|As| = k- r(As) = k- {A3) in M', which contradicts the
minimality of 4,. Therefore, for all nonempty subsets
A of N',|JA|<k-r(A) in M'.

Suppose some element geK is contained in matroid
M'. Since g does not have zero rank, there exists a
matroid M;, which contains the elements of M’
plus a new auxiliary element A, such that A and g
form a circuit in M), and such that submatroid M,—h
of M) is the matroid M'. It is easy to verify that
M), is such a matroid where the circuits of M, are
(1) the set consisting of g and h, (2) the circuits of
M', and (3) sets (C—g)Uh where C is a circuit of
M’ which contains g. Let Ny=N'Uh. It follows
from the relation|4|< k-r(A) in matroid M’ for all
nonempty ACN’, that|4,|<k-r(4y) in M, for all
An in Ny,



Hence by theorem 1, N, can be partitioned into k Thus, if there is no such partition of N'=NNM'
independent sets I" of My, including the set, say I", for contraction M’ of M then no element of K is in
which contains h. In matroid M’ the set ["—h is M'. Thus KCS(4o). In this case, the k bases [;
independent and does not span g. All of the other of submatroid S(4o) of M span each other and span
sets [" are independent in M'. These sets I" and I K in M. This completes the proof of theorem 5.

— iti f N'.
h are a partition o (Paper 69B1.135)
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