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The results c ited in the title are unifi ed by th e following theore m: For a ny matroid M a nd any 
subse ts Nand K of e le me nts in M , there e xi s t as many as k disjoint subsets of N which span K a nd 
which spa n each ot he r if and only if the re is no contraction matroid M X A where NnA partitions int o 
as few as k se ts such th at eac h is independen t in M X A and suc h that at least one of the m does not 
s pan KnA in M x A. 

2.1. The Problem 

A. Le h man [3] 2 posed the following game to be 
played be twee n two players on any give n matroid M 
with a di s tingui shed ele ment e. The playe rs are called 
the cut player and the short playe r. Th ey take turn s 
and (to be explicit) the cut player goes firs t. Eac h 
player in hi s turn tags a n element of M , other than e, 
not already tagged. The short player wi ns if he tags 
a set of elements which span e. Th e c ut playe r wins 
otherwise - that is, the cut player wins if the eleme nts, 
other than e, which he has not tagged do not span e. 

The game, determined by M and e, is called a short 
game if the short player can win again st any s trategy 
of the cut player. We wiU call ~he game nonshort if 
the cut player can win agai nst any s trategy of the short 
player. Clearly a game is one or the other. For a ny 
M and e, Lehman charac terizes s hort games and de
scribes a winning strategy for the short player. 

Recall from sec tion 1.4 that a set T in a matroid M is 
said to span a set A in M if for every eEA , either eET or 
there is a circuit C of M such that C-eCT. Recall 
that a base B of M is a se t which span s M (e.g., a span
ning set of M) and which also is independent. 

Where the game is played on a grap h G, it is not 
necessary to have an edge corresponding to e but 
s ufficient to have two distinguished " termi nal" nodes, 
VI and V2, which would be the ends of e. Here, th e goal 
of the short player is to tag a se t of edges whic h co n
tains a path of edges joining VI to V2. The goal of th e 
cut player is to tag a se t of edges whic h separates VI 

from V2. 

A theorem due indepe nde ntly to Tutte [6] and Nas h
Williams [4] charac terizes for any graph G the maxi
mum number of edge- wise disjoint subgraphs, eac h 
connec ted and co ntaining all nodes of G, into which 
the edges of G can be partitioned. For a connec ted 
grap h G, the edges of a co nnec ted subgraph which con
tains every node of G correspond to the elements of a 
spanning se t of the matroid of G, and conver~ely. 

I This pap er is a seque l 10 the preceding one, ·' Min imum Partiti on or a Mat ruld Int o 
Indcpc nclcll [ SulJse l s." T he numbering sys tem the re . including references. is continued 
he re. T his work was s upported by the Arm y Hesea rch Office (Durham) and the Defense 
Commu nieat ions Agency. 

t Figu res in bracke ts ind icate the lit erature references on page 72. 
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The purpose of the present note is to unify these two 
theori es. Theorem 2 s tates th e strai ghtforward gen
eralization to matroids of the TuLLe and Nas h-Willi a ms 
theore m. Theorem 3 is Le hman 's main th eorem c har
acterizi ng s hort games. Theore m 4 is an analogous 
theorem charac terizin g nOll short games . (Le hm an 
characte ri zes nons hort games indirec tly by using "dual 
matroids" which we avoid.) Theorem 5, for the case 
where K = N = M , yields theorem 2. For th e case 
wh ere k = 2, it yields the "only if ' parts of theore ms 3 
a nd 4. Th e " if" parts of theore ms 3 and 4 are proved 
by describing the winn ing s trategies whe n the res pec
tive conditions hold (in one case thi s follows Lehman, 
[3]). 

Theorem I in sec tion 1.3 a nd theorem 2 are in a se nse 
dual to each other but not in the usual matroid sense. 
Each can be proved from the oth e r. We use theorem I 
to prove theorem 5. 

Theorem 5 appears inte res ting in itself. We call it 
the "cospanning-set theore m" after a mai n id ea of 
Lehman 's theory. For a graph C with a prescribed 
subse t of nodes called terminals, it gives a "good" 
characterization for th e nonexis te nce of k edge-wise 
di sjoint connected subgrap hs (e .g., trees), all with 
precisely the same se t of nodes whic h includes th e 
te rminals. 

If the matroid M of the cospanning-set th eore m is a 
finite se t of vec tors in a space L, the n for give n s ubsets 
N and K of M, the theorem provid es a "good" c harac
terization for the nonex is te nce of as many as k di s
joint subsets Nt of N and a subs pace L' of L su ch that 
each Ni exactly spans L' and suc h that L' contain s K. 

2.2. Contractions 

We use the following inporta nt co ncept on matroids 
due to Tutte (c h. II of [7] ). For any se t A of elements 
in a matroid M, define th e circuits of M X A to be the 
minimal nonempty intersec tions of A with circ uits of M. 

PROPOSITION 6: The set of elements A and the cir
cuits ofM X A are a matroid (denoted by M X A), caLLed 
the contraction ofM to A . 

PROOF: Axioms I e and 2e for M X A follow immedi
ately from prop. 3 for M . 



COROLLARY: Wh~re A and A are complementary sub
sets of matroid M, A is closed (a span) in M if and only 
if matroid M X A contains no " loops," that is elements 
of rank zero. 

PROPOS ITI ON 7: Where K and A are subsets of 
matroid M, subset T ' of A spans KnA in M X A if and 
only if there is a subset T ofM such that T' = T n A and 
such that T spans K in M. 

COROLLARY: The spanning sets of matroid M X A 
are precisely the intersections of A with spanning sets 
ofM. 

PROOF OF PROP. 7: Suppose T' = TnA where T 
spans Kin M. S ince T spans K, for any element e in 
K n A, either eET or there is a circuit C in M such that 
C - e cT. If eET then eET' and hence T' spans e in 
MxA. If there is a C the n, by de finition of MxA, 
there is a circuit C' of M xA such that eEC'CC. It 
follows that C' - ecT' and hence T' spans e in M xA. 
Thus, the " if" part is proved. 

Suppose subse t T' of A span s KnA in MxA. Let 
T = T' UA where A is the co mple ment of A in M. Then 
T' = TnA . Let e be any element of K . If eET, the n 
T spans e in M. Otherwise, eEK n A, and e~T'. Since 
T' spans e in M X A, there is a circui t C' of M X A suc h 
that eEC' and C'-eCT'. By de finition of M xA , 
there is a circuit C of M such that C' = cnA. There
fore, T spans e, since eEC and C- ec T. Thus, the 
"only if ' part is proved. 

Tutte uses M · A to denote what we mean by the 
submatroid A of M; he does not follow Whitney's in
formality of letting A mean both a matroid and its se t 
of elements. We will use Tutte's n otation and also, 
where convenient, we will depart from it again by 
referring to M X A simply as the contrac tion matroid , 
A, of M just as we refe r to M· A as the submatroid, 
A, of M. Also, A denotes the elements of eith er. 

Where M(C) is the matroid of graph C, the matroid 
of a subgraph H of a graph C is the s ubmatroid of M(C) 
which con tain s the e le ments corresponding to the 
edges of H, and conversely. The matroid of a "con
trac tion grap h" H of C is the co ntraction of M(C) which 
contains the elements corresponding to the edges of 
H , and conversely. 

The most in struc tive way to describe the meaning 
of co ntrac tion graph is visually. . The con trac tion 
graph H of C whose edges are the set H of edges in 
C is the graph obtained from C by contracting to a 
point each edge of C not in H. 

It should be pointed out that in order for there to be 
a co ntraction H of C for eve ry subset H of edges in C, 
we must extend our meaning of graph (i n sec. 1.1) to 
graphs which include edges which "meet the same 
node a t both e nds." These " loop" edges are circuits 
by themselves; th ey correspond to matroid ele ments 
which are not contained in any independent se t of the 
matroid. This sort of matroid element corresponds in 
a matrix to a column of all zeros. In a matrix N(C), a 
loop of graph C can be represented by a column of N(C) 
which contains a 2 in the row corresponding to the 
node met and which contains zeros elsew here. Rela
tive to the matroid structure, the column is all zeros, 
mod. 2. 

We have pointed out how any contraction of the 
matroid of a graph can be represented as the matroid 
of a graph . It is also possible to represent any con
trac tion of the matroid of a matrix as the matroid of 
a matrix. 

By deleting (or cutting) set of elements A in matroid 
M, we mean replacing matroid M by its sub matroid on 
the set M - A. By contracting (or shorting) set of 
ele me nts A in matroid M, we me an replacing matroid 
M Ly its contraction to the set M - A . Clearly, from 
the definition of sub matroid, we can get a sub matroid 
M' of M by dele ting the elements of M not in M' one 
after another in any order. Clearly, from the corollary 
to prop. 7, we can get a contraction matroid M' of M by 
contracting the elements of M not in M' one after an
other in any order. It can be proved that for any 
elements a and b in a matroid M, deleting a and then 
contracting b is the same as contrac ting b and then 
dele ting a. The proof is omitted. These results can 
be summarized by the following: 

PROPOSITION 8: The operations of deleting certain 
elements together with the operations of contracting 
certain other elements in a matroid are associative 
and commutative. 

The above proposition is equivalent to Tutte's iden
tities 3.33 in [7]. Tutte defines a minor of a matroid 
M. to be any matroid obtained from M by dele ting cer
tam ele ments and contrac ting certain other elements 
in M_ 

The following theorem is presented by Tutte (theo
rem 3_53 of [7] ) in terms of "dendroids." 

PROPOSITION 9: If A and A are complementary sets 
of elements in matroid M, then the elements in a base 
of M X A together with the elements in a base of M . A 
are the elements in a base ofM. 

Proof omitted_ 
COROLLARY: r(M - A) + r(M X A) = r(M). 
We have been calling r(M . A) the rank r(A) of se t A 

in matroid M. We denote r(M X A) as function t(A) 
of sets A in matroid M . 

The following theorem, which for the case of con
nec ted graphs is the one due to Tutte and Nas h
Williams, completely parallels theore m 1. The " if' 
part of theorem 2 follows immediately from the " if ' 
part of theorem 5 (where M = N = K). 

THEOREM 2: The elements of a matroid M can be 
partitioned into as many as k sets, each a spanning set 
of M, if and only if there is no subset A of elements of 
M for which 

IAI < k - t(A)_ 

Any contraction grap h of a connec ted graph is con
nected. Using the last paragraph of 1.7, observe that 
where M is the matroid of a connected graph C, t(A) 
is the number of nodes minus one of a contraction 
graph of C, and IA I is the number of edges in that 
contraction graph. . 

Notice that, since t(A) = r(M) - r(A), theorem 2 is 
eas ily stated without the notion of contraction. 

To prove the "only if' part of theore m 2, assume that 
M partitions into k sets, each spanning M. By taking 
a subset of each of the m, we get disjoint bases 
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I Bi(i = 1, ... , k). Let A be any subse t of M and le t A 
be its compleme nt. Since Bi is independent , r(A ) 
~IAnBJ Since Bi is a base, IAnBil+IAnBil= IBil 
= r(M). Combining the two gives IA nBd ~ r(M) 
- r(A) = t(A). Therefore IA I ~ 2.i IA nBd ~ k· t(A). 

2.3. Short Games 

It turn s ou t to be just as easy to analyze games where, 
for the graph case, any subset of nodes of G are dis· 
tingui s hed as terminals and the goal of the short playe r 
is to tag a se t of edges in G whic h contains the edges of 
a connec ted subgraph containing all the terminals. To 
inte rpre t thi s game in matroid terms, adjoin to G a set 
of new edges which form a connected graph K contain· 
ing precisely the terminals as nodes . Th e n relative 
to the matroid of graph GUK, th e goal of th e short 
playe r is to tag a se t of elem ents corresponding to 
edges in G which spans th e se t of ele ments correspond· 
ing to edges in K. 

For any matroid M and none mpty subse ts Nand K, 
consider the gam e L(M , N, K) whe re, as before, t he cut 
playe r and s hort player take turns taggin g diffe re nt 
elements of N, the cut player going first. The s hort 
playe r wins if he tags a se t of ele me nts whi c h span K. 
Otherwise , the cut playe r wins . Call L(M , N, K) a 
short game if th e s hort player can win agains t any s trat· 
egy of the cut player. 

Le hman's main theore m (expli c itly for th e case 
where K is a single ele me nt) is 

THEOREM 3: L(M, N, K) is a short game if and only 
if N contains two disjoint sets , Ao and Bo, of elements 
which span each other and which span K. 

Notice that in the two·te rminal graph case, the s hort 
playe r wants to ge t a path joining the te rminals. Th e 
struc ture characte rizing wh e n he can is two edgewise 

, disjoint trees eac h containing the terminals and each 
containing precisely the same nodes as the other. 

Lehman calls two (or more) se ts whic h span eac h 
other cospanning. Let us ve rify that two di sjoint co· 
spanning sets Ao and Bo in N whi c h s pan K provide a 
winning s trategy in the game L(M, N, K) for the s hort 
player. AU that we need consid er is the span Mo=5(Ao) 
=5(Bo) in M. Clearly, we can take Ao and Bo to be 
bases of submatroid Mo ; assume that they are . If the 
cut player tags an element not in Ao U Bo, we can pre· 
tend that at the same time he also tags some eleme nt 
of Ao U Bo. Clearly, the short player would not be tak· 
ing an illegal advantage by pretending this. Therefore, 
suppose the cut player in his firs t turn tags ele ment 
ao in Ao. 

By axiom 2 (in 1.1) there is an ele ment bo of Bo such 
that (Ao - ao) U bo is a base of Mo. Th e short player 
should tag an element boo It follows from prop. 7 that 
disjoint se ts AI =Ao-ao and BI = Bo-bo are s panning 
sets of the contraction matroid M 1 = Mo - bo of Mo. 

Since it is the cut player' s turn again, the s ituation 
of AI and BI relative to MI is as it was for Ao and Bo 
relative to Mo except that MI is s malle r. Assuming 
there is a s trategy for the succeeding turn s whereby 
the short player can tag a se t of elements which con· 
tains a base T of reduced matroid M I , then by prop. 9 
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the se t TUbo of elements, which the s hort playe r will 
have tagged, is a base of matroid Mo and hence spans 
se t K in matroid M. 

Whe n Bo contains only one element bo, the n bo it se lf 
spans Mo a nd K. Hence , by induction on th e number 
of e le me nts , we ha ve a winning s trategy for the s hort 
player. Thi s proves th e " if" part of theorem 3. Th e 
harder "only iC ' part will fullow from theore m 4 and 
theorem 5. 

2.4. Nonshort Games 

The notion of contraction can always be used in 
place of the more familiar notion uf "matroid du a lit y," 
and conversely, because of a theore m (3 .27 of [7]) reo 
lating the contraction matroids uf an M to t he sub· 
matroids of the " dual to M." Some tim es on e not ion is 
convenient, sometimes th e othe r. We do not use dual · 
ity he re. Le hman in treating th e sam e topic uses 
mainly duality . 

Le hman 's inte rpre tation of hi s dual res ult s charac· 
te rizing whe n the cut playe r c an win for th e case of 
graphs does not direc tl y provid e a "good " c harac te r· 
izati on in th e se nse of the absolut e supe rvi sor. Clearl y 
hi s c harac te rization of a s hort gam e is good in th e case 
of graph s. Howe ver, he does not g ive the following 
analogou s c harac te rization for non s hort ga mes. (C om· 
pare Le hman's theore m (26) and it s graph int e rpre ta· 
ti on with our th eore m 4 and its contrac tion graph inte r· 
pre tation. See al so th e comme nt on hi s theure m (26) 
whic h follows hi s theorem (29) .) 

THEOREM 4: L(M, N , K) is a non·short game if and 
only i/there is a contraction matroid M ' a/matroid M 
where set N ' = N n M' can be partitioned into two sets 
II and I ~ such that II and It are both independent in M' 
and such that l ~ does not span th e set K' = K n M' in M '. 

Le t us verify that an M', II, and It provide a winnin g 
s trategy for th e cut player in game OM, N, K ). If II 
does not span K ' in M' the n the c ut playe r can tag any· 
thing on hi s firs t turn. Oth erwi se, he s hould tag an 
ele me nt el in II suc h that il -e l does not s pan K' in M '. 

Since I ~ does not span K', th e re is a n ele me nt eEK' 
suc h that r(e ) "'" O. If eEl I, th e n e is an ele me nt e l . 
Othe rwise , by axiom 2' there is a unique c irc uit C in 
IIU e and so any element of C- e is an ele me nt e l . 
(C - e is not empty since r(e) "'" 0.) Now neithe r the 
untagged elements I; = II - el of II nor the untagged 
ele me nts I!, = h of It span K' in contraction matroid M' . 

Even if the short player tags an eleme nt not in M', 
clearly the cut player is not taking an illegal advantage 
by pretending the short player also tags an u ntagged 
element in M' if there are any. Therefore, assume the 
short player does tag one, say et in I:'. Consider the 
contraction matroid M" = M' - et of M. (By prop. 8, 
the contraction of matroid M' to set M" is th e same as 
the contraction of matroid M to se t M".) By the c i r· 
cuit definition of contraction matroid, se t r; = I:' - et 
will be independent in M" and will not span K''"=K' n M" 
inM". 

Again by the definition of contraction mat.roid, if et 
is not in the span of I; in M' then I; .is inde pe nde nt in 
M". In this case, the cut player s hould tag som e e le· 



ment e; such that I'; = I; - e; does not span K" in M". 
By the definition of contraction matroid and prop. 3, 

if e2 is in the span of !; in matroid M' then set I; con
tains just one circuit of contraction M" and does not 
span K" in M". In this case, the cut player should tag 
some element e; in the one circuit of I; in M", so that 
I'; = I; - e; is independent in M". 

Thus in either case, after the cut player takes his sec
ond turn, the untagged elements of M" partition into 
sets I'; and I~ where, in contraction M", both are inde
pendent and neither spans K". There are no elements 
tagged by the short player in M". The situation is 
identical .10 the one in M' right after the cut player took 
hi s first turn except that M" has fe wer un tagged 
elements. 

Hence, by induction on the numbe r of untagged ele
ments in the contraction matroid, if the cut player tags 
as describ ed, he e ve ntually reaches a contraction 
matroid MUI) in which all the elements are tagged by 
him, and yet for which there is an eEK(" ) = MU, ) n K 
such that r(e) "'" 0 in MUI) (since K(h) is not spanned by 
the empty II" ) or the empty I~II)). The cut player will 
then have won the game, because for the short player 
to win he must tag a set, say T, which spans K in 
matroid M. By prop. 7, for any such T and any set 
M(") in M, TnM(" ) must span KUI)=KnM(h) in matroid 
MUI), which is impossible. This proves the "if" part 
of theorem 4. 

2.5. Cospanning-Sets Theorem 

We still have to prove the "only if' parts of theorems 
3 and 4. They follow immediately from theorem 5 
(for the case k = 2). We proved the part of theorem 3 
which says "P =9 (L is a short game)". We proved the 
part of theorem 4 which says "Q =9 (L is not a short 
game)". Theorem 5 says "P (=9 not Q". Logic yields 
that H(L is a short game) ~P" and H(L is not a short 
game)~Q". 

THEOREM 5: For any matroid M and any sub
sets Nand K of elements in M, there exist as many 
as k disjoint subsets of N which span each other 
and which span K, if any only if there is no con
traction matroid M' of M where N n M' partitions into 
as few as k sets such that each is independent in M' 
and such that at least one of them does not span K n M' 

PROOF: The "only if' part of theorem 5 follows from 
the "if' part of prop. 7. Suppose in matroid M there 
exist k disjoint subsets Ti of NeM, which span each 
other and which span KeM_ Let M' be any contrac
tion of M. Where a set Ti is the T of prop. 7; where 
set M' is the A and matroid M' is the M X A of prop. 7; 
and where 5, the span (closure) in M of each T;, is the 
K of prop. 7; prop. 7 says that T; = Ti n M' spans 
S'=SnM' in matroid M'. Since each T; spans 5', 
each T; contains at least r(S') elements where r(S') is 
the rank of set 5' in matroid M' . Since all the sets T'. 
are mutually disjoint, NnS' contains at least k· r(S') 
elements. 

On the other hand, suppose N n M' partitions into 
as few as k independent sets Ii of M' where one of 
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them I, does not span KnM' and hence does not 
span 5'. Since each I; =!inS' is independent, 
each !; contains at most r{S') elements. Since I; 
does not span S', it contains fewer than reS') elements. 
Therefore NnS' = U!f contains fewer than k· reS') 
elements . Thus, the "only if ' part of theorem 5 I 

is proved. 
The "if' part of theorem 5 follows from propositions 

8 and 9 and theorem 1. Let M be any matroid, let 
Nand K be any subsets of M, and let k be any positive 
integer. Suppose Ao is a maximal subset of N such 
that lAo I = k . r(Ao) and IA I ~ k . r(A) for all A eAo. 
Set Ao may be empty. By theorem 1, Ao partitions 
into k independent sets, I i - Since IAol = k . r(Ao), 
each Ii must be a base of submatroid Ao and of course i 

also a base of S(Ao), the span of Ao in M. 
Let M' be the contraction matroid of M obtained by 

contracting S(Ao) in M. Suppose A, is a subset of 
N' =NnM' such that lAd =k· r(A,) and IAI ~ k· r(A) 
in matroid M' for all AeA t • Then like Ao in M, 
A, partitions into k bases I; of sub matroid A, of M'. 
By prop. 8, sub matroid A, of M' is the contraction 
to A, of the submatroid A, US(Ao) of M. Call it minor 
A ,. By prop. 9, a base of minor A, together with a 
base of submatroid S(Ao) of M is a base of submatroid 
AI US(Ao) of M. 

In particular, by pairing the sets I; one-to-one with 
the sets l;, we get k disjoint bases 1'; = I'i U Ii of sub
matroid AI US(Ao) of M. Since UI~=AoUA, eN 
and since the sets I'; span each other in M,IAoUAII 
= k . r(Ao UA 1) and, by the "only if' part of theorem 1, 
IAI ~ k· r(A) in M for all AeAoUA,_ However, 
Ao was taken to be maximal for this property, and hence 
A, is empty. Thus, matroid M' contains no nonempty 
A" as defined. 

Since S(Ao) is closed in M, the matroid M', obtained 
by contracting S(Ao), contains no element of rank 
zero (corollary to prop. 6). Suppose N' =NnM' 
contains a nonempty set A2 such that IA21 ~ k· n(A2) 
in M'. Take At to be minimal. By the nonexistence 
in M' of a nonempty A, as described above, we have 
that IA 21> k . r{A2) . Since there are no elements of 
rank zero, A2 contains at least two elements. Deleting 
an element from A2 to get a nonempty A 3 , we have 
IA31 ~ k . r(A 2) ~ k . r(A3) in M', which contradicts the 
minimality of A 2• Therefore, for all nonempty subsets 
A of N',IAI< k·r(A) in M'_ 

Suppose some element gEK is contained in matroid 
M'. Since g does not have zero rank, there exists a 
matroid M", which contains the elements of M' 
plus a new auxiliary element h, such that hand g 
form a circuit in M" and such that submatroid Mil - h 
of M" is the matroid M'. It is easy to verify that 
M" is such a matroid where the circuits of M" are 
(1) the set consisting of g and h, (2) the circuits of 
M', and (3) sets (C-g)Uh where C is a circuit of 
M' which contains g. Let N" =N' U h. It follows 
from the relation IA 1< k· rCA) in matroid M' for all 
nonempty AeN', thatIA"I ~ k· rCA,,) in Mil for all 
A" in NIL 



Hence by theorem 1, Nil can be partitioned into k 
independent sets Pi of Mil, including the se t, say 1':, 
which contains h. In matroid M' the se t [': - h is 
independent and does not span g. All of the othe r 
sets I~ are independent in M'. These se ts 1'/ and I'; 
- h are a partition of N' . 
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Thus, if there is no such partItIOn of N' =NnM' 
for contraction M' of M then no element of K is in 
M'. Thus K CS(Ao) . In this case, the k bases [j 
of submatroid S(Ao) of M span each other a nd span 
K in M. This co mpl e tes the proof of theore m 5. 

(paper 69B1·13S) 
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