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Minimum Partition of a Matroid Into Independent 
Subsets! 

Jack Edmonds 

(December 1, 1964) 

A matroid M is a finite se t M of e le me nts with a famil y of subsets, called independent, such th a t 
(I) every subset of an independe nt se t is independent, and (2) for e ve ry subset A of M , all maximal 
indepe nde nt s ubsets of A have the sa me cardinality , called the rank r\A) of A. It is proved that a 
matroid can be partitioned into as few as k sets , each inde pende nt , if and only if every s ubse t A has 
cardinality at mos t k . r(A ). 

1.0. Introduction 

Matroids can be regarded as a ce rtain abstraction 
of matri ces [8].2 They represent the properti es of 
matrices whic h are invariant under ele me ntary row 
operations but whic h are not invariant under ele men
tary column operations - namely properties of depend
ence among the columns_ For any matrix over any 
field , there is a matroid whose elements correspond 
to the columns of the matrix and whose independe nt 

, sets of ele ments correspond to the linearly inde pe ndent 
sets of columns_ A matroid M is completely deter
mined by its elements and its indepe ndent sets of 
ele ments. 

The same letter will be used to denote a matroid 
and its set of elements. The le tter I with various sub 
or superscripts will be used to denote an independent 
set. 

The interes t of matroids does not li e only in how they 
generalize some known theorems of linear algebra. 
There are examples, which I shall r eport elsewhere, 
of matroids whic h do not arise from any matrix over 
any field- so matroid theory does truly generalize an 
aspec t of matrices. However, matroid theory is jus
tifi ed by new problems in matrix theory itself - in fact 
by problems in the special matrix theory of graphs 

, (networks). It happens that an axiomatic matroid set
ting is most natural for viewing these proble ms and that 
matrix machinery is clumsy and superfluous for view
ing them. The situation is somewhat similar to the 
superfluity of (real) matrices to the theory of linear op
erators, though there a quite different aspect of mat
rices is superfluous. When it comes to implementing 
either theory, matrices are often the way to do it. 

Matroid theory so far has been motivated mainly 
by graphs, a special class of matrices. A graph G may 
be regarded as a matrixN(G) of zeroes and ones, mod 2, 

I Sponsored by the Army Researc h Office (Durham), Presented at the Seminar on 
Malroids, Nat ional Bureau of Standards, Aug. 3J-Sept. 11 , 1964. I am much indebted 
10 Alfred Lehman for e ncouraging my inte res t in the subjec t. 

Z Figures in brackets ind icate the references at the end of thi s pape r. 

wh ic h has exactly two ones in each column. The 
columns are the edges of the graph and the rows are 
the nodes of the gr ap h. An edge and a node are said 
to meet if there is a one located in that column and 
that row. Of course a grap h can also be regarded 
vi sually as a geometri c netwo rk . It is often helpful 
to visualize state ments on matroids for the case of 
graphs, though it can be misleading. Matroids do 
not contain objects correspondin g to nodes or rows . 

Theorem 1 on "minimum partitions," the subj ect of 
thi s paper , was discovered in the process of unifying 
results described in the next paper, " On Lehman's 
Switching Game and a Theorem of Tutte and Nash
Williams" (denoted here as "Part II"), which is a direct 
sequel. Theore m 1 is shown there to be closely re
lated to those res ults. Lately, I have learned that 
Theorem 1 for the case of graphs (see sec. 1.7) was 
anticipated by Nas h-Williams [5]. 

By borrowing from work of others, I inte nd that this 
paper toge ther with possible seq uels be partly exposi
tory and technically almos t self-contained. 

1.1. The Problem 

Various aspec ts of matroids - in par ti cular, the first 
pair of axioms we cite - hold intrin sic interes t which 
is quite separate from linear algebra. 

AXIOM 1: Every subset of an independent set of 
elements is independent. 

Any finite collection of elements and family of so
called independent sets of these ele me nts whic h sati s
fies axiom 1 we shall call an independe nce syste m. 
This also happens to be the definiti on of an abs tract 
simplicial complex, though the topology of complexes 
will not concern us-

It is easy to describe implicitly large independe nce 
systems which are apparently very unwieldy to an
alyze. First example: given a graph G, defin e an 
independent set of nodes in G to be such that no edge 
of G meets two nodes of the set. Second example : 
define an independe nt set of edges in G to be such th at 
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no node meets two edges of the set. Third example: 
define an independent set of edges in G to be such that 
the edges of the set, as column vectors of N(G), are 
linearly independent. The third example is the pro
totype of the systems we shall study here. 

A minimum coloring of the nodes of a graph G is a 
partition of the nodes into as few sets (colors) as pos
sible so that each set is independent. A good char
acterization of the minimum colorings of the nodes in 
a graph is unknown (unless the graph is bipartite, i.e., 
the nodes can be colored with two colors). To find 
one would undoubtedly settle the "four color" 
conjecture. 

A problem closely related to minimum coloring is 
the "packing problem." That is to find a good char
acterization (and an algorithm) for maximum cardinal
ity independent sets. More generally the "weighted 
packing problem" is, where each element of the system 
carries a real numerical weight, to characterize the 
independent sets whose weight-sums are maximum. 
The packing problem for the systems of the first 
example is also very much unsolved (unless the graph 
is bipartite). 

The minimum coloring problem for the systems of 
the second example is unsolved (unless the graph is 
bipartite). Its solution would also undoubtedly set
tle the four-color conjecture. However the packing 
problem, and more generally the weighted packing 
problem, is solved for the second example by the ex
tensive theory of "matchings in graphs." 

For the third example the packing problem is in a 
sense trivial. It is well known that the system of 
linearly independent sets of edges in a graph, and 
more generally the system of linearly independent 
sets of columns in a matrix, satisfies the following: 

AXIOM 2: For any subset A of the elements, all maxi
mal independent sets contained in A contain the same 
number of elements. 

A matroid is a (finite) system of elements and sets 
of elements which satisfies axioms I and 2. 

For any independence system, any subsystem con
sisting of a subset A of the elements and all of the 
independent sets contained in A is an independence 
system. Thus, a matroid is an independence system 
where the packing problem is postulated to be trivial 
for the system and all of its subsystems. For me, hav
ing spent much labor on packing problems, it is 
pleasant to study such systems. Matroids have a 
surprising richness of structure, as even the special 
case of graphic matroids shows. 

Clearly, a subsystem of a matroid M is a matroid. 
We call it a submatroid and we use the same symbol 
to denote it and its set of elements. The rank, rCA), 
of a set A of elements in M or the rank, rCA), of the 
submatroid A of M is the number of elements in each 
maximal independent set contained in A, i.e ., the num
ber of elements in a bas e of A. 

The main result of this paper is a solution of the 
minimum coloring problem for the independent sets 
of a matroid. Another paper will treat the weighted 
packing problem for matroids. 
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1.2. Ground Rules 

One is tempted to surmise that a minimum coloring 
can be effected for a system by some simple process 
like extracting a maximal independent set to take on 
the first color, then extracting a maximal independent 
set of what is left to take on the second color, and so 
on till all elements are colored. This is usually far 
from being successful even for matroids, though it 
is precisely matroids for which a similar sort of mono
tonic procedure always yields a maximum cardinality 
independent set and, as we shall see, in another paper, 
also always yields a maximum weight-sum independent 
set when the elements carry arbitrary real weights. 

Consider the class of matroids implicit in the class 
MF of all matrices over fields of integers modulo primes. 
(For large enough prime, this class includes the 
matroid of any matrix over the rational field.) We 
seek a good algorithm for partitioning the columns 
(elements of the matroid) of anyone of the matrices 
(matroids) into as few sets as possible so that each set 
is independent. Of course, by carrying out the mono
tonic coloring procedure described above in all possible 
ways for a given matrix, one can be assured of encoun
tering such a partition for the matrix, but this would 
entail a horrendous amount of work. We seek an al
gorithm for which the work involved increases only 
algebraically with the size of the matrix to which it is 
applied, where we regard the size of a matrix as in
creasing only linearly with the number of columns, 
the number of rows, and the characteristic of the field. 
As in most combinatorial problems, finding a finite 
algorithm is trivial but finding an algorithm which 
meets this condition for practical feasibility is not 
trivial. 

We seek a good characterization of the minimum 
number of independent sets into which the columns 
of a matrix of Mr can be partitioned. As the criterion 
of "good" for the characterization we apply the "prin
ciple of the absolute supervisor." The good charac
terization will describe certain information about the 
matrix which the supervisor can require his assistant 
to search out along with a minimum partition and 
which the supervisor can then use with ease to verify 
with mathematical certainty that the partition is in
deed minimum. Having a good characterization does 
not mean necessarily that there is a good algorithm. 
The assistant might have to kill himself with work to 
find the information and the partition. 

Theorem 1 on partitioning matroids provides the 
good characterization in the case of matrices of Mr. 
The proof of the theorem yields a good algorithm in 
the case of matrices of Mr. (We will not elaborate on 
how.) The theorem and the proof apply as well to 
all matroids via the matroid axioms. However, the 
"goodness" for matrices depends on being able to 
carry out constructively with ease those matrix opera
tions which correspond to the existential assertions 
of the theory. A fundamental problem of matroid 
theory is to find a good representation for general 
matroids - good perhaps relative to the rank and the 
number of elements in the matroids. There is a very 



elegant lattice representation (geometric latti ces, [1, 
2]), but it is not something you would want to record 
e xcept for the very simples t matroids . 

1.3. The Theorem 
The cardinality of a set A is de noted by IA I. The 

rank of a se t A is denoted by rCA). 

THEOREM 1: The elements of a matroid M can be 
partitioned into as few as k sets, each of which is inde
pendent, if and only if there is no subset A of elements 
of M for which 

IAI > k . rCA). 

The theorem makes sense fo r any ind epende nce 
3ys tem M if we define the rank rCA) of any subse t A 
to be the maximum cardinality of an inde pende nt set 
in A. In fac t, the "only if" part of th e th eore m is 
tru e for any indepe ndence sys tem M_ Let Ii(i = 1, 
. . . , k) be k indepe ndent se ts in M for whi c h 

A-

U f i = M. 
;= 1 

For any subse t A of M , II inA I ~ rCA) and 

" IAI ~ L If inAI ~ k · rCA ). 
;= 1 

Thus the "only if" part is proved. 
In general for the colorin g problem in nonmatroidal 

sys tems, the other half of the theorem is not true. 
However, the Konig theore m on matc hings in bi
partite graphs can be regarded as a valid ins tance of 
theorem 1 for certain nonmatroidal sys te ms. A bi
partite grap h is a graph whose nodes can be parti 
tioned into two se ts each indepe ndent (by coincidence, 
an in s tance of the coloring proble m in our firs t ex
ample). The Konig th eo re m says that for a bipartite 
grap h G the minimum number of nodes which meet 
all the edges equals the maximum number of edges 
suc h that no node meets more than one of th e m. 
(This theorem solves the pac king problem for a special 
case of our second example of independe nce sys te m.) 

Fourth example: For a grap h G, le t the ele me nts of 
the sys te m M be the edges of G. For eac h node of 
G, le t the se t of edges which meet the node be an in
dependent se t in M. Let the subsets of these se ts 
be the res t of the independe nt sets in M_ Th e Ko nig 
relation for a graph G implies theorem 1 for sys tem M. 

Theore m 1 for the system M arising from G does 
not imply the Konig theorem for G. For ind ependence 
systems in general the relation r epresented by th eore m 
1 is weaker than the relation represented by the Konig 
theorem - the latter be ing that the minimum numbe r 
of indepe ndent se ts which toge the r contain all the 
ele me nts equals the maximum number of eleme nts 
in a se t of rank one. It' s ni ce to have the weaker 
relation of theore m 1 because it might apply to other 
sys tems where the well known Konig relation does not. 
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1.4. Terminology 

The re are various famili es, (1) through (6), of subse ts 
of the ele me nts in a matroid M whic h are used in de
sc ribing the s tru cture of M . 

(1) The family of ind epe nd e nt se ts of M. 
(2) The family of min im al depend e nt se ts of e le

ments in M (whe re depe nde nt mea ns not ind e pe nd e nt). 
These are called the circuits in M. Th e le tte r C with 
various sub or supersc ript s wi ll bc used to de not e a 
circuit. 

(3) The family of spans or closed sets in M. A span 
S in M is a se t of ele ments sHc h tha t no c ircuit of M 
contains exactly one element not in S. That is , 
Is n C I =to 1 for every circuit C in M. 

The span or closure ofa subse t A orM is the minimal 
span in M which contains A . Clearly, the span of A , 
which we always denote by SeA), is unique. Where A 
is a subset of column vectors in a matrix M of column 
vec tors, SeA) is all the columns in M whic h are linea r 
combinations of A . 

The terms above are used ex te nsively in sec t io n 1.5 
and sec tion 1.6 to prove theore m 1. The te rms be low, 
through (4) and (5), are used exte nsively in Part II. 

A s ubse t A of M is said to span a subse t K of M whe n 
K C SeA). It follows from propos i tion 4, to come, that 
A spans K in M if and only if f or each e le me nt eEK 
e ither eEA or the ir is a ci rcuit C of M suc h that eEC 
and C -eCA. 

(4) The famil y of spanning se ts of M . A spanning 
subset of M is a subse t of M which s pan s M - in othe r 
words, a subse t of M whose span is M. 

(5) The family of bases of M . A base of M is a 
maximal inde pe nde nt se t of M. A base can also be 
defined as a minimal spanning se t of M. 

The terms in (1), (2), and (5) are take n from Whitney 
[8]. The te rms "closed se t" and "span of A" are 
ta ke n from Le hman [3]. There is an alte rnati ve 
te rminology due to Tuit e [7]. Since these are major 
sources on matroids , it is worthwh ile to se t dow n th e 
relations hip . To do so it is necessary to invoke th e 
muc h used notion of " dual matroid ," though it is not 
used he re or in Part II. Pape rs [3] , [7], and [8] 
show that the se t-co mple me nt s of the bases in a 
matroid M are the bases of a so-called dual matroid M *. 

The bases of matroid M are called by Tutt e th e 
dendroids of M. The ele ment s of M are called by Tuite 
the cells of M. The independent se ts of M a re called 
by Lehman the trees of M. 

The circ uits of a matroid M are what Tutte calls th e 
atoms of dual matroid M*. The circ uit s of M* are the 
atoms of M. Thus here is ano th er spec ial fa mily of 
subse ts of a matroid M. 

(6) The family of atom s (dual c irc uits) in M . 
The rows of a matrix No, unde r add ition a nd sub

trac tion, gene rate a group of row vec tors whic h Tutt e 
calls a chain-group , say the chain-group N of matrix 
No. The matroid M of matrix No is of course a n in
varie nt of c hain-group N, and it is what Tutte call s th e 
matroid of chain-group N. An atom of M of N is de
fin ed as a se t of e le ments in M whi c h correspond s to 
a minimal none mpty se t of row-vec tor compo nents 



such that there is some member of chain-group N 
which has its nonzero values in precisely these com
pone nts. The row-vectors orthogonal to each row of 
matrix No form another chain-group, say N* . Its 
matroid is M*, the dual of M. Atoms of M* by defini
tion correspond to minimal dependent sets of columns 
in matrix No . That is, they are the circuits of the 
matroid M of No . 

Tutte de fines a flat of matroid M to be a union of 
atoms of M, or the empty se t. It can be shown that a 
flat of M is the set-complement of a span (closed se t) 
in M, and conversely. 

Where A is a subset of elements in M, Tutte denotes 
by M· A what here is called the submatroid A of M 
(following Whitney). The meanings of the rank r(M) 
of matroid M coincide, and Tutte denotes by T"M . A) 
what here is called the rank rCA) of set A in M (follow
ing Whitney). However, for a set A, what Tutte de
notes by r A is not r(A) = reM . A) but " r(M X A)" which 
is used in Part II. 

1.5. The Lemmas 

In the proof of theorem 1 we will use axiom 1 and 
the following axiom 2' for matroids instead of axioms 
1 and 2. 

AXIOM 2': The union of any independent set and 
any element contains at most one circuit (minimal 
dependent set). 

PROPOSITION 1: Axioms 1 and 2' are equivalent to 
axioms 1 and 2. 

PROOF: Assuming 1 and 2, suppose independent set 
I together with element e contains two distinct circuits 
CI and C2• Assume I is minimal for this possibility. 
eECI n C2• There is an element elECI - C2 and an ele
ment e2EC2 - C I. Set I U e - el - e2 is independent 
since otherwise (I - el) is a smaller independent set 
than I for which (1- ed U e contains more than one 
circuit. Set I and set I U e - el - e2 are maximal in
dependent subsets of set IU e. This contradicts 
axiom 2. 

Assuming 1 and 2', suppose II and 12 are both maxi
mal independent subsets of a set A such that 1111 < 11z1. 
Assume II UI2 is minimal for this possibility. There 
is an el in II -Iz and Iz U el is dependent. By 2' , Iz U el 
contains a unique circuit C which must contain some 
element e2 not in II . Since 12 is larger than II it must 
contain another element besides e2 not in II and hence 
12 U II - e2 is dependent. Therefore, since 12 U el - e2 
is independent, there is some I; such that elEl; CII - 12 
and such that I~ = 12 U I; - e2 is maximal independent 
in A . Because I; contains an element not in Iz, 
1121 ~ Ihl > lId· However, since II UI~ is a proper sub
sel of II U/z, this contradicts the minimality assumption 
for II UI2. The proposition is proved. 

PROPOSITION 2: Axioms 1 and 2' are equivalent to 
the following axioms, Ie and 2e, Jor a matroid in terms 
of its circuits (where starting with circuits, independent 
sets are defined as sets containing no circuits). 

AXIOM Ie: No circuit contains another circuit. 
AXIOM 2e: If distinct circuits CI and C2 both contain 

an element e then CI U C2 - e contains a circuit. 
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A proof of proposition 2 is obvious. 
The next very useful proposition is taken in [7] and 

[8] to be an axiom ins tead of 2e. Alfred Lehman dis
covered that Ie and 2e suffice. 

PROPOSfTION 3: If CI and C2 are circuits of a matroid 
M with an element eECI n C2 and an element aEC I-
C2 , then there is a circ uit C such that 

PROOF (Lehman) : Assuming Ie and 2e, suppose 
C I, C2 , a, and e are such that the theorem is false and 
CI UC2 is minimal. There is a circuitC3 CCIUC2 -e, 
but ate. Tliere is an element bEC3 n (C2 - Ct). By 
minimality of CI U C2 for falsity of the theorem and 
since atCz U C3 , there is a circuit C4 such that 
eEC4 C C2 U C3 - b. Again by the minimality and since 
b¢C I U C4 , there is a circuit C such that 

contradicti ng the falsity of the theorem. 
PROPOSITION 4: An element e of a matroid M is in 

the span SeA) of a set A in M if and only if e is in A or 
there is a circuit C of M for which C - A = e. 

PROOF: The "if' part of the theore m is asserted 
in the de finition of span. Assuming the "only if ' 
part false, by the definition of span there must be an 
A and eES(A) - A for which there is no C with C - A = e 
but for which there is a C and nonempty E with 
C -(AU E )=e wh ere for each e'EE there is a C' with 
C'-A=e'. Assume E to be minimal so that EcC. 
By prop. 3, for any e' and C' there is a CI for which 
eECICCUC'-e'. Hence, CI-(AU}<"I)=e where EI 
is a proper subset of E, contradicting the minimality 
of E. 

Besides axioms 1 and 2' and the definitions of circuit 
and span, the only other fact on matroids used to prove 
theorem 1 is 

PROPOSITION 5: The span of a set A in a matroid 
M is the (unique) maximal set S in M which contains 
A and which has the same rank as A. 

In partic ular the additional fact used in proving 
theorem 1 is that the span of an independent set I has 
rank equal to the cardinality of I. 

PROOF OF PROP 5: If, for SeA) the span of A, r(S(A)) 
> r(A), the n by axiom 2 a base I of A is not a base of 
SeA), i.e., there is an element eES(A) - I such that 
IU e is independent. By prop. 4, e is not in the span 
S(I) of I but A is in S(I). Since the span of a set is 
the minimal span containing the set, SeA) C SCI). Thus , 
by contradiction, r(S(A)) = r(A) . 

Le t eES'(A) where A CS'(A ) and r(A) = r(S'(A)). Then, 
where I is a base of A , either eEl or e U I is dependent. 
Thus eES(A), Therefore , SeA) is the unique maximal 
set where A cS(A) and r(S(A )) = r(A). 

1.6. The Main Proof 

PROOF of theore m 1 (the " if" part): Assume that for 
eve ry subset A of matroid M, IA I ~ k . r(A). Actually, 
it is sufficient that for e very span S in M, ISI~ k· reS). 



The goal is to get all the elements of M into jus t k in
dependent sets of M_ Let F be a famil y of k mutually 
di sjoint indepe ndent sets of M_ Any number of these 
sets may be empty. These se ts are to be regarded as 
labeled so that each may be alte red in the course of 
the proof while still maintaining its label-ide ntity. 
Suppose there is a n ele me nt x of M such that U {I: lEF} 
cM - x. We shall see how to rearrange elements 
among the me mbe rs of F to make room for x in one of 
the m while preserving the indepe ndence (and mutual 
di sjointness) of the m all. The process can be re
peated until each ele ment of M is in a me mber of F. 
Thus the theorem will be proved. 

Implementing thi s proof to an algorithm for par
titioning (if possible) a matroid Minto k inde pe ndent 
sets is quite straight-forward as long as an algorithm 
is known for the following: for any A C M and eEM, 
find a circuit C such that eECCA U e or else de termine 
that there is none. In the algorithm [or partitioning 
M , one of course would not first verify IA I "s; k . r(A) for 
all A c;;, M, but would s imply proceed on the assumption 
that it is true and th e n s top if a contradict io n arises . 

If e very me mber of F contained as many as r{M) 
eleme nts, then s ince they are di sjo int and do not 
contain x, the union of all k of them toge the r with x, 
which is a s ubse t o[ M, would have cardinalit y 
greate r than k . r(M) . Howe ver, IMI "s; k . r{M). Hence 
there is an liEF for which III 1< r(M). Similarly, 
XES 1= 5 (1 I) implies that there is an lzEF [or whi ch 
I/zn51 I < r(51), si nce if each me mber of F had r(5d 
eleme nts in 51, the n the ir union together with .x 
would be more than k·r(5 1) ele me nts in 51 , but 151 I "s; 
k· r(5 1). 

Denoting M by So, then like wise in general 

implies that the re is an 1;+IEF for which 1/;+1 n5;i < 
r(5;), s in ce 15;1 "s; k . r(5;). These [;'s are not neces
sarily di s tinct me mbe rs of F. 

Where 

we have 

Since rank is a nonnegative integer, we must eve ntually 
reach an integer h for whic h 

and 

XES; for i = l, ... , h-l. 

By construction, 51~52~ _ .. ~5". 

If 1" Ux is indepe ndent then replacing III by It. U x 
disposes of x. Othe rwise there is a unique circuit 
CCt" U x. Since C - x c511-1 would imply XES II 
=5(l"n511-1), the re is an XIEC-X such that Xlf511-1. 
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We replace It, in F by independent set It, U x - Xl. 

The new family is still called F and the new set 
carries the label-identity in F which It, had. This 
and the followi ng informal conventions are used simply 
to avoid introducing a lot more indices. Any other 
I; whic h was the same me mber of F as It. is now 
It,U X-X I. We will di s tinguish between the current 
Ii and the original I;. The 5;'s do not change. 

We have di sposed of X a nd no w we must find a 
place for XI in some mem ber of F . S ince xlf5" - I 
and xIE50, and since the 5;'s are monoton ically nes ted, 
there is some index i(l) "s; h - 1 for which 

Denote h by i(O) and denote X by Xo. Assume induc
tively that Xof5 i(O) , xoE5i(o)- I, Xlf5;(I), x IE5;( I)- I, .. -, 
xA5;U), xjE5;(j) - I, where i(O) > i(l) > . _ . > i(j). As
sume further that 1 ;( 0) was replaced in F by 1;(0) U Xo 
- XI, the n 1;(1) was r eplaced in F by 1;{J) UXI-X~, ... , 
and the n /; (j _ I) was replaced in F by [;(j - J) U Xj - 1- Xj; 
where XIECoC / ;(0) Uxo, Xz EC I C/;(I )U x I, . .. , and 
XjECj_ I C I;(j _ I) U Xj_ I . 

Suppose there is a circuit LjCJ;(j)UXj. Set [;(j) 
might have the same label-ide ntity in F as 1 ;(</) for 
seve ral values of q < j , a nd so the co nte nts of I ;U) may 
have c hanged several times since the original I ;U) whi ch 
gave rise to 5;U) = 5(l;(j)n5;(j) - I). In particular, Xq 
for some q < j may have bee n adjoined to I;(j) . How
e ver, by the induction hypothesis any such X </ is 
con tained in 5;(q) - I and thus in 5;(j) . 

Therefore all eleme nts of Cj - Xj whic h are not in 
the original I ;U) are in 5;U) . By definition of 5;(j), all 
e le me nts o[ the original [; (j) which a re in 5;(j) - I are al so 
in 5j(J). Thus if all ele me nts of Cj - Xj are in 5 ;(j) - I the n 
they are all in 5;U), but since 5;(j) is a span then Xj also 
would be in 5;(j), contradicti ng the inductive hypothesis . 
He nce, there exis ts some element Xj + I of Cj such that 
Xj + 1¢5;(j) - I. Since Xj + IE50, th ere is some i(j + 1) < i(j) 
such th at Xj + 1¢5;(j+ I) and Xj + IE5;(j + 1)- I. 

The refore whe n the re ex is ts a Cj , we repeat th e in
duc tive s te p by replac i ng I ;(j) by 1;(j) U Xj - Xj+ I. 

Si nce i(O) > i(l) > . .. , eventually we mu s t re ac h an 
i(j) for whic h there is no CjC /;(j)Uxj. Th e n we can 
re place I ;(j) in F by independe nt set I ;U) U Xj without 
havin g to di splace another ele me nt Xj +l. End of 
proof. 

1. 7. Corollary 

For the special case whe re M is the matroid o[ a 
graph G, theorem 1 can be s implifi ed so mewhat: 

COROLLARY (Nash-Williams [5] ): The edges of a 
graph G can be colored with as few as k colors so that 
no circuit of G is all one color, ii and only if there is no 
subset U of nodes in G such that, where Eu is the set of 
edges in G which have both ends in U, 

IEul > k(IUI-1). 

Symbols I VI and IEul denote, res pec tively, th e 
cardinalities of V and Eu. 



Not every subset A of elements in the matroid 
M(G) of G, nor even every closed set A of elements in 
M(G), corresponds to a se t of edges of type Eu. How· 
ever, the relation I A I ~ k . r(A) for every set A corre
sponding to a set Eu of edges which form a connected 
subgraph of G implies the relation for every subset A 
of elemen ts in M(G). 

The corollary follows (we omit the proof) from 
theorem 1 by using the following characterization of 
the rank function of a graph due to Whitney: 

The rank r(E) of any subset E of edges in G, i.e., the 
rank of the matroid subset corresponding to E, equals 
the number of nodes minus the number of connected 
components in the subgraph, G· E, consisting of the 
edges E and the nodes they meet, or equivalently in the 
subgraph, G : E, consisting of the edges E and all the 
nodes of G. The notation G· E and G: E is due to 
Tutte, chapter III of [7]. 
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