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Menger’s Theorem asserts that if x and y are vertices of a graph which are not joined by an edge
and if it takes at least & other vertices to separate x and y, then x and y can be joined by £ distinct arcs in
the graph which have only their end-vertices in common.

Much of the paper is taken up by the determination of an equivalent statement involving the ranks

of subgraphs of contractions of the original graph, but not explicitly mentioning vertices.
For matroid theory has analogs of subgraphs and contrac-
Once stated the generalized theorem can be proved without great difficulty.

proposition for matroids can then be stated.
tions, but not of vertices.

1. Statement of the Theorem

In this paper we state and prove a theorem about
general matroids which can be regarded as a general-
ization of Menger’s Theorem for graphs. We state
this theorem in the present section. The remainder
of the paper falls into two parts. The first part, con-
stituting section 2, is concerned with justifying the
claim that Menger’s Theorem can be deduced from
our matroid theorem as a special case. The second
part is concerned with the proof of the theorem. Thus
a reader interested in general matroids but not in
graphs might omit section 2.

Let M be a matroid on a set E, and let X and Y be
disjoint subsets of E.

If {S, T} is any partition of E we write

&M, S, T)
=rM)—r(M XS)—rM X T)+1.

We also write k(M ; X, Y) for the minimum of éM; S, T),
taken over all partitions {S, T} of E for which XCS
and YCT.

We define A(M: X, Y) as the maximum of &M'; X, Y),

taken over all minors M’ of M of the form
(MxS)-(XUY).

The theorem to be proved is
1.1 hM; X, Y)=kM: X, Y).

2. Menger's Theorem for Graphs

Let x and y be distinct vertices of a graph G which
are not joined by an edge. A set SCV(G)—{x, y} is
said to separatex and y if each path from x to y in

An analogous

G passes through a vertex of S. The least possible
number [S| of members of such a set S will be denoted
by k(G; x, y).

A path in G is called simple if it passes through no
edge or vertex more than once.

Let {Py, P>, . . ., P} be a set of h simple paths in
G. They are disjoint if no two have a common edge
or vertex. If they are all paths from x to y we say
they are internally disjoint if no two of them have a
common edge or vertex apart from the two vertices
x and y.

We write A(G; x, y) for the maximum number of
internally disjoint simple paths in G from x to y.
Menger’s Theorem, in one version, asserts that

9.1l hG; x, y)=k(G: x, ).

The theorem can be stated in several equivalent
though apparently different forms. The most con-
venient for our purposes is the following.

We replace x and y by disjoint non-null sets X and
Y of edges of G. We define k(G; X, Y) as the smallest
number of vertices forming a set S which separates
X and Y, that is such that each simple path in G with
one end a vertex of G - X and the other of G - Y passes
through a vertex of S. (Here we use the notation of
sec. 3.1 of “Lectures on Matroids”.)

We now define A(G; X, Y) as the maximum number
of disjoint simple paths joining X and Y, that is having
one end in V(G - X) and the other in V(G - Y). It must
be borne in mind that a “simple” path may be degen-
erate, that is consist of a single vertex.
hOur second version of Menger’s Theorem asserts
that

2% MG: X, Y)=k(G; X, Y).
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To deduce 2.1 from 2.2 we take X and Y to be the sets
of edges incident with x and y respectively. The
derivation of 2.2 from 2.1 becomes obvious after the
following construction is made. We introduce new
vertices x and y, and join them to all the vertices of
G- X and G - Y respectively by new edges.

It might seem more natural to take X and Y as sets
of vertices rather than edges. This is done, for ex-
ample, by Konig. But then no generalization to
matroids is suggested, since matroids have no vertices.

In discussions of Theorem 2.2 there is no real loss
of generality in supposing G - X to be connected. For
we can make it so by adjoining new edges, each to
both G and X, and this operation does not affect the
numbers A(G; X, Y) and k(G; X, Y). There is also no
harm in assuming G - Y connected.

We may also assume G connected. For in all non-
trivial cases the connected subgraphs G-X and G-Y
are contained in the same component H of G, and we
may replace G by H.

Let us try to give a definition of A&(G: X, Y) which
does not mention vertices.

If S and T are complementary subsets of E(G) we
define n(G; S, T) as the number of common vertices of
G-Sand G-T. We next define u(G; X, Y) as the min-
imum value of n(G; S, T), when S and T are restricted
only by the conditions XCS and YCT.

2.3 wG; X, Y)=kG: X, Y).

Proor: If S and T are defined as above, then each
simple path joining X and Y has its first vertex incident
with a member of S and its last with a member of T.
Hence one of its vertices is incident with members of
both S and T. We deduce that the common vertices
of G- S and G - T form a set separating X and Y. Thus
wG: X, Y) = kG X, Y).

Conversely suppose we have a set Q of vertices sep-
arating X and Y. Let S be the set of all edges 4 of G
such that some simple path P traversing A has the
following properties.

(i) The first vertex of P is incident with an edge
of X.

(i) No vertex of P, save possibly the last, belongs
to Q.

It is clear that SNY is null and that if T=E(G)—S
then any common vertex of G-S and G- T is in Q.
Hence w(G; X, Y) < k(G; X, Y), since as a special case
we may have |Q|=k(G: X, Y).

The theorem follows.

2.4 Suppose G, G-X and G-Y are connected. Let
{S, T} be a partition of E(G) such that XCS and
YCT. Then

7(G: S, D—KG: X, )
= po(G - S)+poG-T)—2.
PROOF: Assume that the theorem fails, and that

po(G - S)+ po(G - T) has the least value consistent with
this condition.
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Clearly po(G - S)+po(G - T) = 3, by 2.3.

Without loss of generality we may suppose G - S to
have a component G -S;, which does not meet G - X.
Let this component meet ¢ components of G+ T and
let it have p common vertices with G+ T. Then, ab-
breviating po(G - U) as po(U), we have the following
relationships.

(i)
(i)

0<qg<p.

Po(S—S1)=poS)—1
(iii) po(TUS)=po(T)—q+1,
(iv) n(G; S—S,, TUS))

=n(G; S, T)—p.

The inequality 0 < g follows from the fact that G is
connected.
We now have

nG: S, —kG: X, Y)
=n(G: S—=S5:, TUS)—kG: X, Y)+p,
= po(S — S1) + po(TUS)) +p—2,
by the choice of S and T. For
PoS—S81)+po(TUS,) < po(S)+ po(T),
Hence

nG: S, D—kKG: X, Y)

= po(S)+po)+p—q—2,

by (i), (i1), and (iii).

by (ii) and (iii),
= po(S) + po(T) — 2.

But this is contrary to assumption. The theorem
follows.

If G is a graph of py(G) components the rank of its
bond-matroid B(G) can be deduced from Theorem
2.21 of “Matroids.” A principal forest of G consists
of po(G) disjoint trees, and in any tree the number of
vertices exceeds the number of edges by 1. So by
the theorem just quoted we have

2.5 r(B(G)= |V(G)| — po(G).

Now let S and T be complementary subsets of E(G).
Using Theorem 3.321 of “Matroids’ we find that
2.6 nB(G)) — r(B(G) X S)—rB(G) X T)

r(B(G) - T)+r(B(G) - S)—nB(G)),



by “Matroids,” 3.54,

=VG-T)+V(G-S)—V(G)
~ PG - 1) = po(G - )+ po(6),
by “Matroids,” 3.321,
=n(G: S, T)+pdG)
—polG - S)—po(G - 1),

if G has no isolated vertices.
27 If G, G-X and G-Y are connected, then k(G:
X, Y) is the minimum of

rB(G) —r(B(G) X ) —r(B(G) X T)+1,

taken over all partitions {S, T} of E(G) such that
XCS and YCT.

PrOOF: Denote this minimum by m. Applying 2.4
to the result just proved we find that m = k(G; X, Y).
Moreover if n(G; S, T)=k(G; X, Y) we have py(G - S)
=poG-T)=1, by 2.4, and therefore

HB(G)—HB(G) X S)—r(B(G) X T)+1
=G; S, L= kG X, ).

The theorem follows.
Theorem 2.7 has the following corollary

2.71 KG: X, Y)=kB(G); X, Y).

It is clear that the definition of A(G; X, Y) given above
is equivalent to the following; A(G; X, Y) is the maxi-
mum number of disjoint connected subgraphs of G,
no one including an edge of XUY, such that each has
at least one vertex in common with each of the graphs
G-X and G-Y.

We express this result in terms of the notation of
section 3.1 of “Matroids”™ as follows. The vertices of
the graph H=(G XS) - (XUY), where XUYCSCE, are
the components of G:(E(G)—S). They are thus dis-
joint connected subgraphs of G. The edges of H are
the members of XUY. The ends of each such edge
in H are those vertices of that graph which, as sub-
graphs of G, contain the ends of the edge in G.

It follows that A(G; X, Y) is the maximum number of
common vertices of H - X and H - Y, where H=(G XYS)
- (XUY) ranges over all possible choices of S. It is the
maximum of n(H; X, Y), taken over all possible choices
of S. If we assume that G, G- X and G -Y are con-
nected we can readily verify that H, H-X and H-Y
are also connected. We then have n(H; X, Y)=&(B(H);
X, Y), by 2.6. But B(H)=(B(G)XS)- (XUY). It fol-
lows that
2.8 HB(G); X, Y) = h(G; X, V).

Formulae 2.71 and 2.8 hold when G, G- X and G-Y
are connected. They justify the assertion that 1.1

)

then includes 2.2 as a special case. The extension
to the general case for graphs may be made by devices
already described.

3. Some Auxiliary Theorems
We prove Menger’s Theorem for matroids in the
next section. Here we give a preliminary discussion
of the functions

EM: S, T) and kM; X, Y).

3.1 Let {S, T} be any partition of E. Then
EM*; S, T)=EM; S, 1.
PROOF:

EM: S, T)
=r(M)—rMXS)—r(M XT)+1
==—rM)+rM-T)+rM-S)+1,

by “Matroids,” 3.54,
=—|E|+rM*)+|T| = r(M - T)%)
+ S| —=r(M - $*)+1,
by “Matroids,” 3.52,
=rM*)—r(M*XT)—r(M*XS)+1,
by “Matroids,” 3.351,
=&M*, S, T).
As a Corollary we have
3.11 Let X and Y be disjoint subsets of E. Then
kM*: X, Y)=kM: X, Y).
3.2 Let {S, T} and {U, V} be partitions of E. Then

EM; SUU, TNV)+EM; SNU, TUY)
<EM: S, T)+EM; U, V).

PROOF:

EM: SUU, TNV)+&M; SNU, TUY)
=2rM)+2—rM X (SUU))— (M X (SN D))
—1(M X(TUV))—r(M X (TNV))
< 2r(M)+2—r(M X S)— (M X U)
—rMXT)—r(MXV),



by “Matroids,” 3.56
=E&M; S, T +éM: U, V).

Suppose aeSCE. We define an integer 6(M; S, a)
as follows. O(M; S, a)=1 if there is an atom X of M
such that aeXCS, and 8(M; S, a)=0 otherwise. Thus

0M; S, a)=r(M XS) - {a}).

We take note of the following trivial result.
3.3 IfaeSCTCE, and 6(M; S, a)=1, then 6(M; T, a)
=1.

From now on we abbreviate r(M X S) as n(S).

using 3.54 of ““Matroids’ we have
3.4 IfaeSCE, then

Thus,

rS)=nS—{a})+6(M: S, a
Given a cell aeE we abbreviate the expressions
M X(E—{a}) and M - (E—{a}) as M and M respec-
tively.
351 If{S, T} is a partition of E—{a} then
&My S, T)
=&M; SU{a}, D—0M: E, a)+6M, SU{a}, a),

by 3.4 and the definition of the function &WM; U, V).
3.52 If{S, T} and a are as in 3.51, then

&M;; S, T)
=¢éM; SU{a}, )+ r{a})—6M; TU{a}, a).

ProOOF:
If UCE—{a} we have

AMy; X U)=r(M X (UU{a})) - U),
by “Matroids,” 3.333,
=nUU{a})—r{a}),

by “Matroids,” 3.54.
We deduce that

&My S, T)
= (M) —r(M! X S)—r(M" X T) + 1
=nE)—r{a})—r(SU{a})+r{a})
—nTU{a})+r{a})+1
=&M; SU{a}, T)+r({a})
—6(M: TU{a}, a).
By 3.3 the difference 6(M; E, a)— 6(M: SU{a}, a) of

3.51 is either 1 or 0. Similarly, since r({a})=0(M;
{a}, a), the difference 0(M; TU{a}, a)—r({a}) of 3.52

is either 1 or 0. Hence, by 3.51, 3.52, and the defini-
tion of k(M; X, Y) we have the following theorem.
3.6 If X and Y are disjoint subsets of E, and aeE —
(XUY), then the following propositions hold.

(i) k(M; X, Y)=kM,; X,Y)=kM; X,Y)—1,

() A(M; X,Y)=kM); X,Y)=kM; X,Y)—1.

We can improve upon this result as follows.

3.7 IfX,Y and a are as in 3.6, then either
k(My; X,Y)=k(M: X, Y)
or

k(Mz; X, Y)=kM; X, Y).

PROOF: Suppose the theorem to fail. Then there
exist partitions {S, T} and {U, V} of E—{a}, with
XCSNU and YCTNV, which have the following
properties.

(i) &M;SU{a}, D=EM; S, TU{a})

=&My; S, D+1=kM; X, Y),
(i) €M; UU{a}, V)=&M; U, VU{a})

=&ML U, M+1=kM:; X, Y).

Using 3.51 we find
EMy; U, V)< kM; X, Y).
So, by (i) and 3.2,
EMy; SUU, TONV)+£&M; SNU, TUY)
<2kM:X,Y)—1.

We may therefore suppose, without loss of generality,
that

(i) &M: SUUU{a}, TNV)

=&M: SUU, (TNV)U{a})
=&M!; SUU, TNV)+1=kM: X, Y).
By 3.52 and (i) we have
OM; UU{a}, a)=1,
and by 3.51 and (iii) we have
6M;: SUUU{a}, a)=0.

But these results contradict 3.3. The theorem

follows.
3.8 IfX,Y, and a are as in 3.6, then

hM; X, Y)=Max [hMy; X, V), AM,; X, Y)].



ProoF. Consider a minor M;=(M X S)- (XUY) 4. Proof of the Main Theorem

of M. If a¢S we can write M,=(M;XS) - (XUY). We proceed to prove the proposition already stated
If however aeS we have as 2.1, namely that

Mi=((MxS) (S—{a}) - XUY) 4.1 hM: X, Y)=kM: X, Y)

=Mix(S—{a}) - (XUY). for arbitrary disjoint subsets X and Y of E.
Write m=|E—XUY)|. If m=0 the theorem is

Conversely a minor M, of M|, of the form (M) XS)- o : . X Y)
(XUY) can be rewritten as (M XS):-(XUY). For a Lr(l;;:lilllt):) ér(lj;;;m)%? both A(M; X, ) anc KM; X, 1)jaze

minor M= (M; XS)-(XUY) we have Assume as an inductive hypothesis that it is true
whenever m is less than some positive integer g and
M= (M - (E—{a})) XS) - (XUY) consider the case m=gq.

= . 1
— (M x(SU{a}) - XUY). Choose aeE — (X UY) hen
Hence the minors of M of the form (M X S) - (XUY) SRS ) o G

are the minors of M of the form (M) XS)-(XUY)
together with those of A" of the form (M*% S)- (xU¥). P 0 and 37

The theorem follows. =Max [A(M; X,Y), A(M!; X, Y)],

by the inductive hypothesis,
=hM; X, Y),
by 3.8.

Thus the theorem holds also when m=gq. It fol-
(Paper 69B1-132) lows in general by induction.
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