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Menge r's Theore m asse rt s t hat if x and yare ve rti ces of a graph wh ic h a re not joined b y an edge 
and if it takes at least k ot he r vert ices to separate x and y, the n x and y can be JOined by k di s tinc t arcs "' 
the graph whic h have o nl y th eir e nd-vertices in common . . . 

Mu c h of the pape r is take n up by the de terminati on of an equiva le nt s tate me nt In volving th e ra nks 
of s ubgral)h s of contrac t ions of t he original grap h, but not ex pli c it Iy me ntioning ve rt ices . An analogous 
propos it io n for matroids ca n the n be s tat ed . For matroid theo r y has ana logs of subgraphs and co ntrac 
ti ons, but not of ve rti ces. Once s tat ed the ge neralized theore m can be proved without gr eat diffi c ult y. 

1. Statement of the Theorem 

In this paper we state and prove a theo rem about 
general matroids whic h can be regarded as a general
ization of Menger's Theorem for grap hs . We state 
this th eore m in the present sec tion. The remainder 
of the paper fans into two parts . The firs t part, con
stituting sec tion 2, is concerned with justifying the 
claim that Menger's Theore m can be deduced from 
our matroid theore m as a special case. The second 
part is concerned with the proof of the theorem. Thus 
a read er interes ted in general matroids but not in 
graphs might omit section 2. 

Le t M be a matroid on a se t E, and le t X and Y be 
di sjoint subsets of E. 

If {S, T} is any partition of E we write 

geM, 5, 1) 

= r(M) - reM X 5) - r(M X T) + 1. 

We also write k(M; X, Y) for the minimum of g(M; 5, T), 
take n over all partitions {S, T} of E for which X~S 
and YeT. 

We define h(M; X, Y) as the maximum of geM' ; X, y), 
tak e n over all minors M' of M of th e form 
(M X 5) . (XU y). 

The theorem to be proved is 

1.1 heM; X, Y)= k(M ; X, Y). 

2. Menger's Theorem for Graphs 

Le t x and y be di stinct ve rtices of a graph G whic.h 
are not joined by an edge. A se t 5 ~ V(G) - {x, y} tS 

said to separate x and y if each path from x to y in 
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G passes through a vertex of S. The le ast poss ible 
number 151 of me mbers of s uc h a se t 5 will be denoted 
by keG; x, y). 

A path in G is called simple if it passes through no 
edge or vertex more than once . 

Let {P" P2 , • • • , P,,} be a set of h simple paths in 
G. They are disjoint if no two have a common edge 
or ve rtex. If they are all paths from x to y we say 
they are internally disjoint if no two of them have a 
com mon edge or vertex apart from the two vertices 
x and y. 

W e write h(G; x, y) for the maximum number of 
internally disjoint s imple paths in G from x to y. 
Menger's Theore m, in one ve rsion, asserts that 

2.1 h(G; x, y) = k(G; x, y). 

The theorem can be s tated in several equivale nt 
though apparently different form s . The mos t con
venient for our purposes is the following. 

We replace x and y by disjoint non-null sets X and 
YoI' edges of G. W e de fin e k(G; X, Y) as th e smallest 
number of vertices forming a set 5 which separates 
X and Y, that is such that each s imple path in G with 
one end a vertex of G . X and the other of G . Y passes 
through a vertex of S. (Here we use the notation of 
sec. 3.1 of "Lectures on Matroids".) 

W e now define h(G; X, Y) as the maximum number 
of disjoint simple paths joining X and Y, that is having 
one end in V(G · X) and the other in V(G· Y). It must 
be borne in mind that a "simple" path may be degen
erate, that is co nsi s t of a single vertex. 

Our second version of Menger's Theore m asserts 
that 

2.2 h(G; X, Y) = keG; X, Y). 
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To deduce 2.1 from 2.2 we take X and Y to be the se ts 
of edges incident with x and y respectively. The 
derivation of 2.2 from 2.1 becomes obvious after the 
following cons truction is made. We introduce new 
vertices x and y, and join them to all the vertices of 
G . X and G· Y respectively by new edges. 

It might seem more natural to take X and Y as se ts 
of vertices rather than edges. This is don e , for ex
ample, by Konig. But then no generalization to 
matroids is suggested, since matroids have no verti ces. 

In di scussions of Theorem 2.2 there is no real loss 
of generality in supposing G . X to be connected. For 
we can make it so by adjoining new edges, each to 
both G and X, and this operation does not affec t the 
numbers h(G; X, Y) and k(G ; X, Y). There is also no 
harm in assuming G . Y connected. 

We may also assume G connected. For in all non
trivial cases the connected subgraphs G· X and G . Y 
are contained in the same component H of G, and we 
may replace G by H. 

Let us try to give a definition of k(G; X, Y) which 
does not me ntion vertices. 

If 5 and T are comple mentary subsets of E(G) we 
define 'T) (G; 5, T) as the number of common vertices of 
G·5 and G· T. We next define JL(G ; X, Y) as the min
imum value of 'T)(G ; 5, T), when 5 and T are r estricted 
only by the conditions X~5 and Y~T. 

2.3 JL(G; X, Y) = k(G ; X, Y). 

PROOF: If 5 and T a.re defined as above, then each 
simple path joining X and Y has its first vertex incide nt 
with a member of 5 and its last with a member of T. 
Hence one of its vertices is incident with members of 
both 5 and T. We deduce that the common vertices 
of G . 5 and G . T form a set separating X and Y. Thus 
JL(G; X, Y) ;?! k(G; X, y). 

Conversely suppose we have a set Q of vertices sep
arating X and Y. Let 5 be the set of all edges A of G 
such that some simple path P traversing A has the 
following properties . 

(i) The first vertex of P is incident with an edge 
of X. 

(ii) No vertex of P, save possibly the last, belongs 
to Q. 

It is clear that 5 n Y is null and that if T= E(G) - 5 
then any common vertex of G ·5 and G· T is in Q. 
Hence JL(G; X, Y).s; k(G; X, y), since as a special case 
we may have IQI = k(G ; X, Y). 

The theorem follows. 
2.4 5uppose G, G· X and G . Yare connected. Let 
{5, T} be a partition of E(G) such that X ~5 and 
Y~T. Then 

'T)(G; 5, T) - k(G; X, y) 

;?! po(G . S) + po(G . T) - 2. 

Clearly po(G . S) + po(G . T) ;?! 3, by 2.3. 
Without loss of generality we may suppose G· 5 to 

have a component G· 51 which does not meet G . X. 
Let thi s component mee t q components of G . T and 
le t it have p common vertices with G· T. The n, ab
breviating Po(G· U) as Po(U), we have the following 
relations hips . 

(i) 0 < q .s; p. 

(ii) Po(5 - 5 I) = Po(5) - 1 

(iii) Po(TU5 1) =po(T)-q+ 1, 

(iv) 'T)(G; 5 -51, TU5 1) 

= 'T)(G ; 5, T)-p. 

The inequality 0 < q follows from the fact that G IS 

connected. 
We now have 

'T)(G ; 5, n- k(G; X, Y) 

='T)(G; 5-S], TU5 1)-k(G; X, y)+p, 

;?! Po(5 - 51) + Po(TU5 1) + p - 2, 

by the choice of 5 and T. For 

by (i), (ii), and (iii). He nce 

'T)(G ; S, T)-k(G ; X, Y) 

;?! Po(5) + Po(T) + p - q - 2, 

by (ii) and (iii), 

;?! Po(5) + Po(T) - 2. 

But this is contrary to assumption. The theore m 
follows. 

If G is a graph of po (G) components the rank of its 
bond-matroid B(G) can be deduced from Theore m 
2.21 of "Matroids." A principal fores t of G consists 
of po(G) disjoint trees, and in any tree the number of I 

vertices exceeds the number of edges by 1. So by 
the theorem just quoted we have 

2.5 r(B(G)) = iV(G)I- po(G). 

Now let 5 and T be complementary subsets of E(G). 
Using Theorem 3.321 of "Matroids" we find that 

PROOF: Assume that the theorem fails, and that 2.6 
po(G . 5) + po(G . T) has the least value consistent with 

r(B(G)) - r(B(G) X 5) - r(B(G) X T) 

= r(B(G) . n + r(B(G) · 5) - r(B(G)), this condition. 
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by "Matroids," 3.54, 

= V(G· 1)+ V(G· S)- V(G) 

,- po(G . n - po(G . S) + Po(G), 

by " Matroids," 3.321, 
I 

= YJ(G; S, n + po(G) 

- po(G . S) - Po(G· T), 

if G has no isolated vertices. 
2.7 If G, G· X and G· Yare connected, then k(G ; 
X, Y) is the minimum of 

r(B(G)) - r(B(G) X S) - r(B(G) X T) + 1, 

taken over all partitions {S , T} of E(G) such that 
I XeS and YeT. 

I -PROOF : D~no te thi s minimum by m. Applying 2.4 
1 to the result jus t proved we find that m ~ keG; X, 1'). 
I Moreover if YJ (G; S, n = k(G; X , Y) we have Po(G· S) 

= po(G . 1) = 1, by 2.4, and therefore 

r(B( G)) - r(8( G) X S) - r(B( G) X T) + 1 
= YJ(G; S , T) = keG; X , Y) . 

The theore m follows . 
Theorem 2.7 has the following corollary 

2.71 keG; X , Y) = k(B(G); X, Y). 

It is clear that the d e finiti on of h(G; X, Y) given above 
is equivalent to the following; h(G; X, Y) is the maxi· 
mum number of di sjoint connec ted subgraphs of G, 
no one including an e dge of X UY, such that eac h has 
at leas t one vertex in common with eac h of the graphs 
G· X a nd G· Y. 

We express thi s result in terms of the notation of 
sec tion 3.1 of " Matroids" as follows . The vertices of 
the graph H = (G X S) . (XU y), where Xu Y~S~E, are 
the components of G : (E(G) - S) . The y are thus dis
joint connected subgraphs of G. The edges of Hare 
the me mbers of Xu Y. The ends of each such edge 
in H are those vertices of that graph which, as sub
graphs of G, contain the e nds of the edge in G. 

It follows that h(G; X, Y) is the maximum number of 
common vertices of H . X and H . Y, where H = (G X S) 
. (X U Y) ranges over all possible choices of S. It is the 
maximum of YJ(H ; X, y), take n over all poss ible choices 
of S. If we assume that G, G· X and G . Yare con
nec ted we can readily verify that H, H· X and H· Y 
are also connected. We then have YJ (H; X, Y) = g(B(H); 
X , y) , by 2.6. But B(H) = (B(G) X S) . (X U Y). It fol
lows that 

2.8 h(B(G); X , Y) = h(G; X , Y). 

Formulae 2.71 and 2.8 hold when G, G· X and G· Y 
are connected. They justify the assertion that 1.1 
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then includes 2.2 as a special case. The extension 
to the general case for graphs may be made by devices 
alread y described. 

3. Some Auxiliary Theorems 

We prove Menger 's Theorem for matroids in the 
next section. Here we give a preliminary discussion 
of the functions 

geM; S, T) and k(M ; X, Y). 

3.1 Let {S, T} be any partition of E . Then 

PROOF: 

g(M*; S, 1) =g(M; S, 1). 

geM; S, 1) 

= reM) - reM X S) - reM X n + 1 

= - reM) + reM . n + reM . S) + 1, 

by "Matroids ," 3.54, 

=-IEI + r(M* ) + ITI- r«M· T)*) 

+ ISI- r«M· S)* ) + 1, 

by " Matroids ," 3.52, 

= r(M*) - r(M* X n - r(M* X S) + 1, 

by "Matroids ," 3.351, 

= g(M*,S, T). 

As a Corollary we have 

3.11 Let X and Y be disjoint subsets of E. Then 

k(M* ; X , Y) = k(M; X , Y). 

3.2 Let {S, T} and {U, V} be partitions of E. Then 

geM; SUU, Tn1l) + g(M; snu, TUV) 
~ geM; S, T)+g(M; U, 1I) . 

PROOF: 

geM: SUU, Tn1l)+g(M; snu, TU1I) 

= 2r(M) + 2 - reM X (S UU)) - reM X (sn U)) 

- reM X (TU V)) - reM X (Tn 11)) 

~ 2r(M) + 2 - reM X S) - reM X U) 

- reM X n - reM X V), 



by " Matroids," 3.56 

= ~(M; 5, T)+~(M; U, V). 

Suppose aESC;;;E. We define an integer 8(M; 5, a) 
as follows. 8(M; 5, a)= 1 if there is an atom X of M 
such that aEX~S, and 8(M; 5, a)=O otherwise. Thus 

8(M; 5, a) = r«M X 5)· {a}). 

We take note of the following trivial result. 
3.3 IfaES~T~E, and 8(M; S, a)=l, then 8(M; T, a) 
=1. 

From now on we abbreviate r(M X 5) as r(S). Thus, 
using 3.54 of "Matroids" we have 
3.4 IfaES~E, then 

r(S)=r(S- {a})+8(M; S, a) 

Given a cell aEE we abbreviate the expressions 
M X (E- {a}) and M· (E- {a}) as M~ and M~ respec
tively. 
3.51 If{S, T} is a partition ofE-{a} then 

~(M~; S, T) 

=~(M; SU{a}, T)-8(M; E, a)+8(M, SU{a}, a), 

by 3.4 and the definition of the function ~(M; U, V) . 
3.52 If {S, T} and a are as in 3.51, then 

~(M~; 5, T) 

=~(M; SU{a}, 1)+r{a})-8(M; TU{a}, a). 

PROOF: 

If U~E- {a} we have 

r(M~ XU) = r(M X (UU {a}))· U), 

by "Matroids'," 3.333, 

=r(UU{a})-r({a}), 

by "Matroids," 3.54. 
We deduce that 

~(M~; S, 1) 

= r(M~) - r(M~ X S) - riM;; X 1) + 1 

= r(E) - r( {a} ) - r(S U {a} ) + r( {a} ) 

-r(TU{a})+r({a})+ 1 

= ~(M; S U {a}, T) + r( {a} ) 

- 8(M; TU {a}, a). 

By 3.3 the difference 8(M; E, a)-8(M; SU {a}, a) of 
3.51 is either lor O. Similarly, since r({a})=8(M; 
{a}, a), the difference 8(M; TU {a}, a) - r({ a}) of 3.52 
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is either 1 or o. Hence, by 3.51, 3.52, and the defini -
tion of kiM; X, Y) we have the following theorem. 
3.6 If X and Yare disjoint subsets of E, and aEE
(X U y), then the following propositions hold. 

(i) k(M; X, Y) ~ k(M~; X, Y) ~ k( M; X,Y) -1, 

(ii) k(M; X, Y) ~ k(M~; X, Y) ~ k(M; X, Y)-1. 

We can improve upon this result as follows. 
3.7 If X, Y and a are as in 3.6, then either 

k(M~; X,Y)=k(M; X, Y) 

or 

k(M;;; X, Y) =k(M; X, Y). 

I 

PROOF: Suppose the theorem to fail. Then there 
exist partitions {S, T} and {U, V} of E- {a}, with 
X ~ S n U and Y ~ Tn V, which ha ve the following I 
properties. 

(i) ~(M; SU{a}, T)=~(M; S, TU{a}) 

=~(M~; S, 1)+ 1 =k(M; X, y), 

(ii) ~(M; UU{a}, V)=~(M; U, VU{a}) 

=~(M~; U, V)+l=k(M;X, Y). 

Using 3.51 we find 

~(M:'; U, V) ~ k(M; X, Y). 

So, by (i) and 3.2, 

~(M~; S U U, Tn V) + ~(M~; S n U, TU V) 

~ 2k(M; X, y)-1. 

We may therefore suppose, without loss of generality, 
that 

(iii) ~(M; S U Uu {a}, Tn V) 
=~(M; SUU, (Tn V)U {a}) 

=~(M~; SUU, Tn V)+ l=k(M; X, Y). 

By 3.52 and (ii) we have 

8(M; Uu {a}, a) = 1, 

and by 3.51 and (iii) we have 

8(M; Su UU {a}, a) =0. 

But these results contradict 3.3. The theorem 
follows. 
3.8 If X, Y, and a are as in 3.6, then 

h(M; X, Y) = Max [h(M:'; X, y), h(M:'; X, Y)]. 
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PROOF. Consider a minor M 1 = (M X S) . (X U Y) 
of M. If a¢S we can write Ml = (M~ X S) . (X U Y). 
If however aES we have 

Ml =((M x S)· (S - {a}»' (XU Y) 

= (M~ X (S- {a}»' (XUY). 

Conversely a minor M2 of M:1 of the form (M~ X S) . 
(X U Y) can be rewritten as (M X S) . (X U Y). For a 
minor M2 = (M~ X S)· (XU Y) we have 

M 2 =((M· (E- {am x S)· (X UY) 

= (M X (S U {a}» . (X U Y). 

Hence the minors of M of the form (M X S) . (X U Y) 
are the minors of M ~ of the form (M ~ X S) . (X U Y) 

I together with those of M~ of the form (M~ X S) . (X U Y). 
I The theorem follows . 

4. Proof of the Main Theorem 
We proceed to prove the proposition already stated 

as 2.1, namely that 

4.1 h(M ;X, Y) = k(M; X, Y) 

for arbitrary disjoint subse ts X and Y of E. 
Write m=IE -(X uY)l. If m= O the theorem is 

trivially true, since both heM; X, Y) and k(M; X, Y) are 
equal to ~(M; X, Y). 

Assume as an inductive hypothesis that it is true 
whenever m is less than some positive integer q and 
consider the case m=q. 

Choose aEE - (X U Y). Then 

k(M; X, Y) = Max [k(M~; X, y), k(M;;; X, Y)], 

by 3.6 and 3.7, 

= Max [h(M~; X, y), h(M~; X, Y)], 

by the inductive hypoth es is, 

= h(M;X, y) , 

by 3.8. 
Thus the theorem holds also when m = q. It fol

(Paper 69Bl- 132) lows in general by induction. 
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