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Menge r's Theore m asse rt s t hat if x and yare ve rti ces of a graph wh ic h a re not joined b y an edge 
and if it takes at least k ot he r vert ices to separate x and y, the n x and y can be JOined by k di s tinc t arcs "' 
the graph whic h have o nl y th eir e nd-vertices in common . . . 

Mu c h of the pape r is take n up by the de terminati on of an equiva le nt s tate me nt In volving th e ra nks 
of s ubgral)h s of contrac t ions of t he original grap h, but not ex pli c it Iy me ntioning ve rt ices . An analogous 
propos it io n for matroids ca n the n be s tat ed . For matroid theo r y has ana logs of subgraphs and co ntrac ­
ti ons, but not of ve rti ces. Once s tat ed the ge neralized theore m can be proved without gr eat diffi c ult y. 

1. Statement of the Theorem 

In this paper we state and prove a theo rem about 
general matroids whic h can be regarded as a general­
ization of Menger's Theorem for grap hs . We state 
this th eore m in the present sec tion. The remainder 
of the paper fans into two parts . The firs t part, con­
stituting sec tion 2, is concerned with justifying the 
claim that Menger's Theore m can be deduced from 
our matroid theore m as a special case. The second 
part is concerned with the proof of the theorem. Thus 
a read er interes ted in general matroids but not in 
graphs might omit section 2. 

Le t M be a matroid on a se t E, and le t X and Y be 
di sjoint subsets of E. 

If {S, T} is any partition of E we write 

geM, 5, 1) 

= r(M) - reM X 5) - r(M X T) + 1. 

We also write k(M; X, Y) for the minimum of g(M; 5, T), 
take n over all partitions {S, T} of E for which X~S 
and YeT. 

We define h(M; X, Y) as the maximum of geM' ; X, y), 
tak e n over all minors M' of M of th e form 
(M X 5) . (XU y). 

The theorem to be proved is 

1.1 heM; X, Y)= k(M ; X, Y). 

2. Menger's Theorem for Graphs 

Le t x and y be di stinct ve rtices of a graph G whic.h 
are not joined by an edge. A se t 5 ~ V(G) - {x, y} tS 

said to separate x and y if each path from x to y in 
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G passes through a vertex of S. The le ast poss ible 
number 151 of me mbers of s uc h a se t 5 will be denoted 
by keG; x, y). 

A path in G is called simple if it passes through no 
edge or vertex more than once . 

Let {P" P2 , • • • , P,,} be a set of h simple paths in 
G. They are disjoint if no two have a common edge 
or ve rtex. If they are all paths from x to y we say 
they are internally disjoint if no two of them have a 
com mon edge or vertex apart from the two vertices 
x and y. 

W e write h(G; x, y) for the maximum number of 
internally disjoint s imple paths in G from x to y. 
Menger's Theore m, in one ve rsion, asserts that 

2.1 h(G; x, y) = k(G; x, y). 

The theorem can be s tated in several equivale nt 
though apparently different form s . The mos t con­
venient for our purposes is the following. 

We replace x and y by disjoint non-null sets X and 
YoI' edges of G. W e de fin e k(G; X, Y) as th e smallest 
number of vertices forming a set 5 which separates 
X and Y, that is such that each s imple path in G with 
one end a vertex of G . X and the other of G . Y passes 
through a vertex of S. (Here we use the notation of 
sec. 3.1 of "Lectures on Matroids".) 

W e now define h(G; X, Y) as the maximum number 
of disjoint simple paths joining X and Y, that is having 
one end in V(G · X) and the other in V(G· Y). It must 
be borne in mind that a "simple" path may be degen­
erate, that is co nsi s t of a single vertex. 

Our second version of Menger's Theore m asserts 
that 

2.2 h(G; X, Y) = keG; X, Y). 
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To deduce 2.1 from 2.2 we take X and Y to be the se ts 
of edges incident with x and y respectively. The 
derivation of 2.2 from 2.1 becomes obvious after the 
following cons truction is made. We introduce new 
vertices x and y, and join them to all the vertices of 
G . X and G· Y respectively by new edges. 

It might seem more natural to take X and Y as se ts 
of vertices rather than edges. This is don e , for ex­
ample, by Konig. But then no generalization to 
matroids is suggested, since matroids have no verti ces. 

In di scussions of Theorem 2.2 there is no real loss 
of generality in supposing G . X to be connected. For 
we can make it so by adjoining new edges, each to 
both G and X, and this operation does not affec t the 
numbers h(G; X, Y) and k(G ; X, Y). There is also no 
harm in assuming G . Y connected. 

We may also assume G connected. For in all non­
trivial cases the connected subgraphs G· X and G . Y 
are contained in the same component H of G, and we 
may replace G by H. 

Let us try to give a definition of k(G; X, Y) which 
does not me ntion vertices. 

If 5 and T are comple mentary subsets of E(G) we 
define 'T) (G; 5, T) as the number of common vertices of 
G·5 and G· T. We next define JL(G ; X, Y) as the min­
imum value of 'T)(G ; 5, T), when 5 and T are r estricted 
only by the conditions X~5 and Y~T. 

2.3 JL(G; X, Y) = k(G ; X, Y). 

PROOF: If 5 and T a.re defined as above, then each 
simple path joining X and Y has its first vertex incide nt 
with a member of 5 and its last with a member of T. 
Hence one of its vertices is incident with members of 
both 5 and T. We deduce that the common vertices 
of G . 5 and G . T form a set separating X and Y. Thus 
JL(G; X, Y) ;?! k(G; X, y). 

Conversely suppose we have a set Q of vertices sep­
arating X and Y. Let 5 be the set of all edges A of G 
such that some simple path P traversing A has the 
following properties . 

(i) The first vertex of P is incident with an edge 
of X. 

(ii) No vertex of P, save possibly the last, belongs 
to Q. 

It is clear that 5 n Y is null and that if T= E(G) - 5 
then any common vertex of G ·5 and G· T is in Q. 
Hence JL(G; X, Y).s; k(G; X, y), since as a special case 
we may have IQI = k(G ; X, Y). 

The theorem follows. 
2.4 5uppose G, G· X and G . Yare connected. Let 
{5, T} be a partition of E(G) such that X ~5 and 
Y~T. Then 

'T)(G; 5, T) - k(G; X, y) 

;?! po(G . S) + po(G . T) - 2. 

Clearly po(G . S) + po(G . T) ;?! 3, by 2.3. 
Without loss of generality we may suppose G· 5 to 

have a component G· 51 which does not meet G . X. 
Let thi s component mee t q components of G . T and 
le t it have p common vertices with G· T. The n, ab­
breviating Po(G· U) as Po(U), we have the following 
relations hips . 

(i) 0 < q .s; p. 

(ii) Po(5 - 5 I) = Po(5) - 1 

(iii) Po(TU5 1) =po(T)-q+ 1, 

(iv) 'T)(G; 5 -51, TU5 1) 

= 'T)(G ; 5, T)-p. 

The inequality 0 < q follows from the fact that G IS 

connected. 
We now have 

'T)(G ; 5, n- k(G; X, Y) 

='T)(G; 5-S], TU5 1)-k(G; X, y)+p, 

;?! Po(5 - 51) + Po(TU5 1) + p - 2, 

by the choice of 5 and T. For 

by (i), (ii), and (iii). He nce 

'T)(G ; S, T)-k(G ; X, Y) 

;?! Po(5) + Po(T) + p - q - 2, 

by (ii) and (iii), 

;?! Po(5) + Po(T) - 2. 

But this is contrary to assumption. The theore m 
follows. 

If G is a graph of po (G) components the rank of its 
bond-matroid B(G) can be deduced from Theore m 
2.21 of "Matroids." A principal fores t of G consists 
of po(G) disjoint trees, and in any tree the number of I 

vertices exceeds the number of edges by 1. So by 
the theorem just quoted we have 

2.5 r(B(G)) = iV(G)I- po(G). 

Now let 5 and T be complementary subsets of E(G). 
Using Theorem 3.321 of "Matroids" we find that 

PROOF: Assume that the theorem fails, and that 2.6 
po(G . 5) + po(G . T) has the least value consistent with 

r(B(G)) - r(B(G) X 5) - r(B(G) X T) 

= r(B(G) . n + r(B(G) · 5) - r(B(G)), this condition. 
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by "Matroids," 3.54, 

= V(G· 1)+ V(G· S)- V(G) 

,- po(G . n - po(G . S) + Po(G), 

by " Matroids," 3.321, 
I 

= YJ(G; S, n + po(G) 

- po(G . S) - Po(G· T), 

if G has no isolated vertices. 
2.7 If G, G· X and G· Yare connected, then k(G ; 
X, Y) is the minimum of 

r(B(G)) - r(B(G) X S) - r(B(G) X T) + 1, 

taken over all partitions {S , T} of E(G) such that 
I XeS and YeT. 

I -PROOF : D~no te thi s minimum by m. Applying 2.4 
1 to the result jus t proved we find that m ~ keG; X, 1'). 
I Moreover if YJ (G; S, n = k(G; X , Y) we have Po(G· S) 

= po(G . 1) = 1, by 2.4, and therefore 

r(B( G)) - r(8( G) X S) - r(B( G) X T) + 1 
= YJ(G; S , T) = keG; X , Y) . 

The theore m follows . 
Theorem 2.7 has the following corollary 

2.71 keG; X , Y) = k(B(G); X, Y). 

It is clear that the d e finiti on of h(G; X, Y) given above 
is equivalent to the following; h(G; X, Y) is the maxi· 
mum number of di sjoint connec ted subgraphs of G, 
no one including an e dge of X UY, such that eac h has 
at leas t one vertex in common with eac h of the graphs 
G· X a nd G· Y. 

We express thi s result in terms of the notation of 
sec tion 3.1 of " Matroids" as follows . The vertices of 
the graph H = (G X S) . (XU y), where Xu Y~S~E, are 
the components of G : (E(G) - S) . The y are thus dis­
joint connected subgraphs of G. The edges of Hare 
the me mbers of Xu Y. The ends of each such edge 
in H are those vertices of that graph which, as sub­
graphs of G, contain the e nds of the edge in G. 

It follows that h(G; X, Y) is the maximum number of 
common vertices of H . X and H . Y, where H = (G X S) 
. (X U Y) ranges over all possible choices of S. It is the 
maximum of YJ(H ; X, y), take n over all poss ible choices 
of S. If we assume that G, G· X and G . Yare con­
nec ted we can readily verify that H, H· X and H· Y 
are also connected. We then have YJ (H; X, Y) = g(B(H); 
X , y) , by 2.6. But B(H) = (B(G) X S) . (X U Y). It fol­
lows that 

2.8 h(B(G); X , Y) = h(G; X , Y). 

Formulae 2.71 and 2.8 hold when G, G· X and G· Y 
are connected. They justify the assertion that 1.1 
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then includes 2.2 as a special case. The extension 
to the general case for graphs may be made by devices 
alread y described. 

3. Some Auxiliary Theorems 

We prove Menger 's Theorem for matroids in the 
next section. Here we give a preliminary discussion 
of the functions 

geM; S, T) and k(M ; X, Y). 

3.1 Let {S, T} be any partition of E . Then 

PROOF: 

g(M*; S, 1) =g(M; S, 1). 

geM; S, 1) 

= reM) - reM X S) - reM X n + 1 

= - reM) + reM . n + reM . S) + 1, 

by "Matroids ," 3.54, 

=-IEI + r(M* ) + ITI- r«M· T)*) 

+ ISI- r«M· S)* ) + 1, 

by " Matroids ," 3.52, 

= r(M*) - r(M* X n - r(M* X S) + 1, 

by "Matroids ," 3.351, 

= g(M*,S, T). 

As a Corollary we have 

3.11 Let X and Y be disjoint subsets of E. Then 

k(M* ; X , Y) = k(M; X , Y). 

3.2 Let {S, T} and {U, V} be partitions of E. Then 

geM; SUU, Tn1l) + g(M; snu, TUV) 
~ geM; S, T)+g(M; U, 1I) . 

PROOF: 

geM: SUU, Tn1l)+g(M; snu, TU1I) 

= 2r(M) + 2 - reM X (S UU)) - reM X (sn U)) 

- reM X (TU V)) - reM X (Tn 11)) 

~ 2r(M) + 2 - reM X S) - reM X U) 

- reM X n - reM X V), 



by " Matroids," 3.56 

= ~(M; 5, T)+~(M; U, V). 

Suppose aESC;;;E. We define an integer 8(M; 5, a) 
as follows. 8(M; 5, a)= 1 if there is an atom X of M 
such that aEX~S, and 8(M; 5, a)=O otherwise. Thus 

8(M; 5, a) = r«M X 5)· {a}). 

We take note of the following trivial result. 
3.3 IfaES~T~E, and 8(M; S, a)=l, then 8(M; T, a) 
=1. 

From now on we abbreviate r(M X 5) as r(S). Thus, 
using 3.54 of "Matroids" we have 
3.4 IfaES~E, then 

r(S)=r(S- {a})+8(M; S, a) 

Given a cell aEE we abbreviate the expressions 
M X (E- {a}) and M· (E- {a}) as M~ and M~ respec­
tively. 
3.51 If{S, T} is a partition ofE-{a} then 

~(M~; S, T) 

=~(M; SU{a}, T)-8(M; E, a)+8(M, SU{a}, a), 

by 3.4 and the definition of the function ~(M; U, V) . 
3.52 If {S, T} and a are as in 3.51, then 

~(M~; 5, T) 

=~(M; SU{a}, 1)+r{a})-8(M; TU{a}, a). 

PROOF: 

If U~E- {a} we have 

r(M~ XU) = r(M X (UU {a}))· U), 

by "Matroids'," 3.333, 

=r(UU{a})-r({a}), 

by "Matroids," 3.54. 
We deduce that 

~(M~; S, 1) 

= r(M~) - r(M~ X S) - riM;; X 1) + 1 

= r(E) - r( {a} ) - r(S U {a} ) + r( {a} ) 

-r(TU{a})+r({a})+ 1 

= ~(M; S U {a}, T) + r( {a} ) 

- 8(M; TU {a}, a). 

By 3.3 the difference 8(M; E, a)-8(M; SU {a}, a) of 
3.51 is either lor O. Similarly, since r({a})=8(M; 
{a}, a), the difference 8(M; TU {a}, a) - r({ a}) of 3.52 
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is either 1 or o. Hence, by 3.51, 3.52, and the defini -
tion of kiM; X, Y) we have the following theorem. 
3.6 If X and Yare disjoint subsets of E, and aEE­
(X U y), then the following propositions hold. 

(i) k(M; X, Y) ~ k(M~; X, Y) ~ k( M; X,Y) -1, 

(ii) k(M; X, Y) ~ k(M~; X, Y) ~ k(M; X, Y)-1. 

We can improve upon this result as follows. 
3.7 If X, Y and a are as in 3.6, then either 

k(M~; X,Y)=k(M; X, Y) 

or 

k(M;;; X, Y) =k(M; X, Y). 

I 

PROOF: Suppose the theorem to fail. Then there 
exist partitions {S, T} and {U, V} of E- {a}, with 
X ~ S n U and Y ~ Tn V, which ha ve the following I 
properties. 

(i) ~(M; SU{a}, T)=~(M; S, TU{a}) 

=~(M~; S, 1)+ 1 =k(M; X, y), 

(ii) ~(M; UU{a}, V)=~(M; U, VU{a}) 

=~(M~; U, V)+l=k(M;X, Y). 

Using 3.51 we find 

~(M:'; U, V) ~ k(M; X, Y). 

So, by (i) and 3.2, 

~(M~; S U U, Tn V) + ~(M~; S n U, TU V) 

~ 2k(M; X, y)-1. 

We may therefore suppose, without loss of generality, 
that 

(iii) ~(M; S U Uu {a}, Tn V) 
=~(M; SUU, (Tn V)U {a}) 

=~(M~; SUU, Tn V)+ l=k(M; X, Y). 

By 3.52 and (ii) we have 

8(M; Uu {a}, a) = 1, 

and by 3.51 and (iii) we have 

8(M; Su UU {a}, a) =0. 

But these results contradict 3.3. The theorem 
follows. 
3.8 If X, Y, and a are as in 3.6, then 

h(M; X, Y) = Max [h(M:'; X, y), h(M:'; X, Y)]. 
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PROOF. Consider a minor M 1 = (M X S) . (X U Y) 
of M. If a¢S we can write Ml = (M~ X S) . (X U Y). 
If however aES we have 

Ml =((M x S)· (S - {a}»' (XU Y) 

= (M~ X (S- {a}»' (XUY). 

Conversely a minor M2 of M:1 of the form (M~ X S) . 
(X U Y) can be rewritten as (M X S) . (X U Y). For a 
minor M2 = (M~ X S)· (XU Y) we have 

M 2 =((M· (E- {am x S)· (X UY) 

= (M X (S U {a}» . (X U Y). 

Hence the minors of M of the form (M X S) . (X U Y) 
are the minors of M ~ of the form (M ~ X S) . (X U Y) 

I together with those of M~ of the form (M~ X S) . (X U Y). 
I The theorem follows . 

4. Proof of the Main Theorem 
We proceed to prove the proposition already stated 

as 2.1, namely that 

4.1 h(M ;X, Y) = k(M; X, Y) 

for arbitrary disjoint subse ts X and Y of E. 
Write m=IE -(X uY)l. If m= O the theorem is 

trivially true, since both heM; X, Y) and k(M; X, Y) are 
equal to ~(M; X, Y). 

Assume as an inductive hypothesis that it is true 
whenever m is less than some positive integer q and 
consider the case m=q. 

Choose aEE - (X U Y). Then 

k(M; X, Y) = Max [k(M~; X, y), k(M;;; X, Y)], 

by 3.6 and 3.7, 

= Max [h(M~; X, y), h(M~; X, Y)], 

by the inductive hypoth es is, 

= h(M;X, y) , 

by 3.8. 
Thus the theorem holds also when m = q. It fol­

(Paper 69Bl- 132) lows in general by induction. 
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