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Maximum Matching and a Polyhedron With O,1-Vertices1 

Jack Edmonds 

(Dece mbe r I , 1964) 

A matc hing in a graph C is a subset of edges in C suc h that no two meet the sa me node in C. 
The convex polyhedron C is charac te ri zed, where the extreme points of C correspond to the matchings 
in C. Where each edge of C car ri es a real num erical we ight, a n e ffi c ient algorithm is described for 
findin g a matching in C with max imum we ight· sum . 

Section 1 

An algorithm is described for optimally pamng a 
finit e set of objects. That is, given a real numerical 
weight for each unordered pair of objects in a se t 
Y, to selec t a family of mutually di sjoint pairs th e sum 
of whose wei ghts is maximum . The well-known 
optimum assignment proble m [5)2 is the sp ecial case 
where Y partitions into two se ts A and B suc h that 
pairs contained in A and pairs contain ed in Bare 
not positively weighted and therefo re are superfluous 
to the problem. For this "bipartite" case the algo
rithm becomes a variant of the Hungarian method [3]. 

The problem is treated in terms of a graph G whose 
nodes (vertices) are the objects Y and whose edges 
are pairs of objects, including at leas t all of th e posi
tively weighted pairs. A matching in G is a subse t 
of its edges such that no two mee t the same node in 
in G. The proble m is to find a maximum-weight-sum 
matching in C. Th e special case where all th e posi
tive weights are one is treated in detail in [2] and 
[6]. The description here of the more general algo
rithm uses the terminology set up in [2]. Paper [2] 
(especially sec . 5) helps also to motivate thi s paper, 
though it is not r eally a prerequisate till section 7 
here . 

The incr ease in difficulty of the maximum weight
sum matc hing algorithm relative to the s ize of the graph 
is not expone ntial, and only moderately algebraic. 
The algorithm does not involve any "blind-alley 
programming" -which, essentially, amounts to testing 
a great many combinations . 

The emphasis in this paper is on relating the 
matching problem to the theory of continuous linear 
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2 Figures in bracket s ind ica te the lit e ratu re references al the end of thi s pa pe r. 

inequalities. In particular, we prove a theore m 
analogous to one of G. Birkhoff [1] and 1. von Neuman 
[5] which says that the ex treme points of the convex 
se t of doubly s toc has tic matrices (order n by n) are 
the permutation matrices (order n by n). That 
theorem and the Hungarian method are based on 
Koni g's theOl'em about matc hings in bipartite graph s. 
Our work is related to results on graphs due to Tutte 
[4]. 

The re is an ex te nsive related literature besides these 
references. One may refer to surveys on graphs, 
linear programming, network flow, and combinatorial 
analysis (other than e numeration). However, paper 
[2] and thi s one are toge ther self-contained. For 
the algorithm without the polyhedral geo metry, sec
tions 4 and 7, here and in [2], suffice . 

The technique, described in sections 2 and 3, of 
using linear programming duality to derive a desc rip
tion of the co nvex polyhedra associated with a class of 
combinatorial structures appears applicable, where
ever the co mbinatori cs is adequately understood, 
independently of the partic ular nature of the associated 
algorithm. The results of thi s paper suggest that, 
in applying linear programming to a combinatorial 
problem, the number of relevant inequalities is not 
important but their combinatorial structure is. 

In another paper, I will extend the present work 
to "Optimum degree-constrained subgraphs". See 
the end of this paper for two main results of that 
extension. 

Section 2 

Let the real variables xeE correspond to the edges 
e of a finite graph C. Let C be the convex polyhedron 
of vectors < x > formed by the intersection of all the 
half-spaces given by the following inequalities (1), 
(2), and (3). 
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(1) x:;:,: 0, for all x~E. 
(2) for every node v of G, Ix,,;; 1 (summed over 

XEV), where V is the set of variables corresponding 
to the edges of G which meet node v. 

(3) for every subset S of 2r + 1 nodes in G where r 
is a strictly positive integer, Ix";; r (summed over 
xER), where R is the set of variables corresponding 
to the edges of G with both ends in S. 

Condition (I) is that the variables x take on only 
values zero and one. Assuming condition (I), each 
vector < x > represents and may be regarded as equiv· 
alent to the subset of edges in G which correspond 
to the one-valued components of < x>. 

Assuming (I), condition (2) is the definition of a 
matching in G. Assuming (I), condition (3) says that 
for any set S of 2r + 1 nodes (r, a positive integer) the 
set < x > of edges contains no more than r edges with 
both endpoints in S; clearly this is implied by the set 
of edges being a matching in G. Therefore, assuming 
(I), condition (2) implies condition (3) for vectors 
< x >. However, replacing (I) by the weaker condi
tion (1), it is easy to show that, where G contains a 
circuit with an odd number of edges, condition (2) 
does not imply condition (3) for vectors < x >. 

The essence of our following theorem (P) is that for 
purposes of linear-extremizing over the family of 
matchings in G, discreteness condition (I) and con
dition (2) can be replaced by the inequalities (1), (2), 
and (3). 

Let P be the set of vectors < x > such that each 
component is a zero or one and such that the one
components correspond to the edges of a matching in 
G. That is let P be the vectors < x > which satisfy 
(I) and (2). We call < x > EP a matching vector of G. 

THEOREM (P): P is the set of vertices (extreme points) 
of polyhedron C. 

Unless the graph G has an edge joining each pair 
of nodes, inequalities (1), (2), and (3) generally include 
more than the minimal set of bounding planes for C, 
but that is not so important. What is important in 
order to provide a good characterization for maximum 
weight-sum matchings in a graph G is a good charac
terization of some family of inequalities which to
gether bound precisely the convex hull of P. 

It is obvious that the points P are vertices of C - that 
is they belong to C and none lie half way between two 
other points of C. In fact, they are vertices of the 
larger polyhedron, C', given by inequalities (l) and 
(2), and they are not sliced away by (3). However, 
in C' there are other vertices. What remains to be 
proved is that vertices P are the only vertices in C. 

Every linear form in the variables of the space of a 
convex polyhedron is maximized over points in the 
polyhedron, if a maximum exists, by a vertex (and 
perhaps other points as well). Conversely, every 
vertex is the unique maximum over the polyhedron of 
some linear form. 

In particular, where each edge e of G carries a real 
weight c, theorem (P) implies that the maximum weight
sum for matching in G equals the maximum of 

(4) W = Icx (summed over xEE) , 

where real vector < x > satisfies (1), (2), and (3). 
And conversely, theorem (P) follows by proving that 
for all real < c >, W is maximized by a vector < x > 
whose components are zeroes and ones. 

Section 3 
Where [aij] is any real matrix and < bj > and < Ci > 

are real vectors, let < Xi > represent the vectors sat
isfying the inequalities Xi:;:': 0 and IaijXi ,,;; bj (summed 
over i) and let < Yj > represent the vectors satisfying 
the inequalities Yj :;:,: ° and IaijYj ;;;. Ci (summed over j). 
The duality theorem of linear programming says that 
max ICiXi = min IbjYj when these extrema exist for 
vectors < Xi > and < Yi >. 

To get the linear program which is dual to max
imizing W of (4) in the polyhedron C, we introduce a 
new variable corresponding to each inequality of (2) 
and (3). That is for each node v in G we introduce a 
variable, call it y, and for each set S of 2r+ 1 nodes 
in G (r, a positive integer) we introduce a variable, call 
it z. 

Let < y, z > denote the vector of all variables Y and z. 
The duality theorem says that the maximum of W is 
equal to the minimum of 

(5) U = Iy+ Irz (first sum taken over all nodes v and 
second sum taken over all sets S), where vector 
< y, z> satisfies the following nonnegativity inequal
ities (6), and the following inequalities (7), obtained 
from the transpose of the matrix of coefficients of 
inequalities (2) and (3). 

(6) For every node v, Y:;:,: 0; for every set S, z :;:,: O. 
(7) For every edge e of G and the nodes VI and V2 

which it meets, YI + Y2 + Iz ;;;. c (where YI and Y2 are 
the variables corresponding to VI and V2 and where 
the sum is taken over all z for which the corresponding 
set S contains VI and V2). The C is the coefficient in 
linear form W of the x which corresponds to edge e. 
In other words, C is the weight on edge e. 

For a fair sized graph G, vector < Y, z> has a huge 
number of components. However, in general any 
vector which is a vertex of a dual polyhedron has no 
more nonzero components than the total number of 
variables in the primal linear program. In particular, 
any vector < y, z > with which we deal will have no 
more nonzero components than the number of edges 
in G. 

As easily shown in general for dual linear programs, 
W,,;; U for all admissible vectors < x > and < Y, z >. 
Therefore to prove that any linear form W is maxi
mized in C by some matching vector, that is to prove 
theorem (P), it is sufficient to display a vector < x >EP 
and some vector < Y, z> satisfying (6) and (7) such 
that W = U. Notice that we are using here only the 
easy part of the duality theorem. In fact, by display
ing the vectors as described we will be proving, for the 
class of programs given by C and W, the harder part 
of the duality theorem, though that is incidental. 

Conversely, theorem (P) and the duality theorem 
(including the harder part) imply that a matching M 
in G has maximum weight-sum if and only if that 
weight-sum equals U for some < y, z> (with a mod-
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erate number of nonzero compone nts) which sa ti sfies 
(6) and (7). 

For an y coeffi cie nts < c > fo r W, th a t is for any 
weights < c > on th e edges of G, we s hall describe a 
matc hing vector < x > o EP, co rres po nding to a matc h
ing M in G, a nd a vector < y, z > = < y, Z > 0 such 
that (6) and (7) hold and furthermore s uc h that the 
following (8), (9), and (10) hold. 

(8) y = O for eac h node v whi c h is not an endpoin t 
of an edge in M . 

(9) equalit y holds for eac h ins tance of (7) where 
eEM. 

(10) for e ac h z > 0, the se t S contains both e ndpoi nts 
of r e dges in M. 

Therefor e, s umming toge th er on eac h s ide the equa
tion s of (8) and (9), we will ge t an in s tance of U= W, 
wh ere < y, z > = < y, Z> 0 and < x > = < x > o. 

Section 4 
We turn now to th eore m (M) whic h, fo r any matc h

ing M corres pondin g to a matc hing vector < x >0 
whic h maximizes W = cx, wiiJ yield a vector < y, Z >0, 
sati s fyin g (6), (7), (8), (9), and (10). Fro m thi s and 
from the discu ss io n in sect ion 3, it follow s that th e 
exi s te nce of a vector < y, Z > 0 is a necessary and s uffi 
c ient condit ion for a matching M to have maximum 
we ight- sum. Theorem (M) itself is also s uc h a 
condition in a differe nt form. Theore m (M) di s plays 
the existence of muc h tighte r and more co mplex s truc 
ture than simpLy th e vec tor < y , Z > 0, tighte r and mo re 
complex than really necessary for c harac terizing 
maximum matc hings. 

Elli s John son and C harles Zahn in s tudying thi s 
theory found that theo re m (M) can be bypassed in 
obtaining the vecto r < y, z > () a nd that th e maximum 
matching algo rithm can be execut e d in te rm s of 
parame te rs uf type y and z rathe r than th e nume ri cal 
parame te rs of theu re m (M). On e type of param e te r 
may be ar ithm e tically more co nve ni e nt than th e other, 
thou g h th e s ame combinatorial manipulat ion s see m 
esse ntial in e it he r c a se . Th eore m (M) see ms jus t ifi e d 
by th e in s ight it prov ides and by it s natura l re la ti o n
ship to the combinatorial manipulations of th e a lgo
rithm , so it mi ght as we ll be prove d on th e way to 
proving th eo re m (P). It is a direc t consequ e nce of 
th e algori thm as d esc rib ed in sec tion 7. More im
portant, it is part of the d esc ription. 

THEOREM (M) : For graph G wil h edge-weights 
< c>, a match ing M is max imum if and onLy if there 
exists a sequence {G;} i = 0, . . . , n . 

Eac h Gi is a graph toge th e r with a matc hing Mi , a 
num e ri cal we ig ht w(ei) for eac h e dge eiEGi, and a nu
me ri c al we ight w(vi) for eac h node viEGi. Sequence 
{Gd has th e following prope rti es. 

(a) Gil is grap h G wit h edge-we ight s wee) = c, with 
matching Mo = M, and with any vertex-weights satis- I 

fying t he general condit ion s below. 
(b) w(vi ) ~ 0 for all Vi EGi and w(vil ) + w(vk} ~ w(ei ) for 

all e iEGi where v~ and vh are the e ndpoints of ei• 

(c) For i = 0, ... , n - ] , t he re is in Gi a c irc uit (si mple 

closed path ) Bi containing "2ai + 1 e d ges, ai of th e m in 
Mi. C irc uit B i is calle d a blossom in (Gi, M ;). 

(d) w(vD + w(v~) = w(ei) for eiEBi. 
(e) I f a vert ex of Bi meets no e dge of Mi, it will be 

o ne of th e ve rt ices, say qi, with s malles t weight, w(qi), 
in Bi . 

(f) To obt a in grap h Gi+ 1 from g rap h Gi s hrink Bi 
and all e dges with both c nd-point s in Bi to a s ingle 
node U i +1 in Gi+ 1 whi c h, in place of th e verti ces of B i, 

is th e ne w e ndpoint of thos e edges hav in g with respec t 
to Gi one e ndpoint in Bi . The mat c hing in Gi+ 1 is 
Mi + 1 =MinGi+I. 

(g) Weigh t s in G i+ 1 are the same as cor res ponding 
we ight s in Gi except at U i + 1 and edges mee tin g U i + l. 

(h) For minimum W(qi) in Bi, W(U i+ I) ';;; W( qi). 
(i) F or eac h edge e i + 1 mee ting U i + l, le t ei be the 

corres pondin g edge in Gi, meetin g Vi of Bi. The n 

(j) Fo r Gil, w(V~') + w(v~) = w(e") fo r a ll e"EM I . 

(k) For a ve l·tex v"EG I not mee tin g a n e dge In Mil, 
w(v") = 0. 

Section 5 

Vector < y, z > 0 is as follows . The node -se ts S 
for whi c h th e corres ponding z in < y, z > 0 is pos it ive 
are amo ng those, say Si, corresponding to the Bi of 
theore m (M ). The nod es in eac h Si are th e nodes of 
G whi c h have been absorbed into th e nodes of Bi (i.e., 
into U i + l) in th e process of go ing from graph G= Go 
to graph Gi• De fin e 

(11) di=w(qi)-w(ui+ l ) for eac h Si, and d = O for 
every other se t S. 

(12) z = 2d, for all S. 
For each y co mponent of < y , z > 0, corres po nding 

to node v of G, we se t 
(13) y= w(v) - 2-d (summed over d corresponding to 

se ts S for whi c h VES), whe re w(v) is th e we ig ht as 
s igne d by th eore m (M) to node v in Go = G. 

PROOF: F or eac h edge e = eO wit h e ndpoints VI a nd 
V2 in G = Go, Je t ei with e ndpoints v{ and v~ be th e cor
r esponding e d ge in Gi, whe re j is s uch that e ither j = n 
or else e j has both ends .in Bj and thus is absorbed 
into uj + l • 

By virtue of (g), in the applic ations of formula (i) 
to ej and its pre-images , each w(vi) term is either W(V I) 
or W(V2) or else a certain W(Uk+1) where uk+t, the co n
traction of a BI.", absorbs one but not both of VI and V2 
in going from Go to Gil.. Conversely, each such W(UNI ) 

is either w(vf) or w(vD or else a certain w(vi ) term in one 
of the applications of (i) to ej and its pre -images. Fur
thermore, W(VI) is a certain w(v i ) te rm if and only if 
w(vl) is a certain w(ul." + I). Otherwise , W(VI) = w(vl). 
Similarly for W(V2). Thus by virtue of (g) , re peate d 
application of (i) and then repeated s ubs titution of 
(11), yields: 

(14) w(ei) = wee) + w(vl) + w(t4) - w(VI) - W(V2) + 2-d .. , 
where k is summed over all the BI." (or U k + l ) into which 
either VI or V2, but not both, are absorbed in go ing 
from Go to Gil. 
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By (b) and (14), 
(15) w(vl)+w(v2)-ldk~w(e)=c, where k is summed 

as in (14). Substituting (13) twice and (12) several 
times we get (7). 

By (d), (j), and (14), equality holds for (15) and thus 
for (7) when eEM. Hence (9) is verified. 

Substituting (11) for nonzero d in (13), recollecting 
terms, and using (g), we have 

(16) y=w(vn)+~[w(vk)_w(qk)], where k is summed 
over all the Bk into which v is absorbed and where 
vk and vn are the images of v in B" and Gn . Hence, 
by (b) and (e), we have y ~ o. By (h) and (11), z ~ o. 
Thus, (6) is verified. 

When a node v meets no edge of M, by (c) and (f) 
neither does any image Vi meet an edge of Mi. There· 
fore by (e) and (k) and (16), y=O in this case. Thus, 
(8) is verified. 

Condition (10) follows from (c) and (f). Thus, modulo 
the "only if" part of theorem (M), conditions (6) 
through (10) are verified for some < y, Z >0 and theo· 
rem (P) is proved. 

Section 6 
Since U ~ W in general, the "if" part of theorem 

(M) is proved by the above translation from {Gd to a 
< y, Z >0 for which U = W. 

It is much simpler for the matching algorithm, given 
< c >, to construct some maximum matching with a 
{G;} than to construct a {Gd for a particular maximum 
matching. Indeed, the simpler construction is all 
that is needed to get theorem (P). However, by a 
continuity argument we can show the existence of a 
{Gi } for any maximum matching M and thereby com· 
plete the proof of theorem (M). 

Add a positive E to the weight c of each edge e in 
M; leave all other edge weights the same. With this 
new < c >, M is the unique maximum matching and 
therefore, by the simpler construction, the algorithm 
in section 7, there exists a {G;} for it. 

An infinite sequence of sequences {G i }, correspond
ing to an infinite sequence of E ' S which approach zero, 
contains only a finite number of different combina
torial configurations aside from the values of the 
weights. The space of all possible weights is bounded 
and finite-dimensional. Hence there is a subsequence 
of {Gi}'s, combinatorially the same, with a limit which 
is a {Gi } like we want. 

Section 7 
The maximum-weight-sum matching algorithm con

sists of the maximum cardinality algorithm in [2] 
(secs. 4 and 7) together with small modifications sug
gested by theorem (M). 

Suppose we have a sequence {G i } (i = 0, . . . , m), 
with not-necessarily-maximum matchings {Mi }, sat
isfying all the conditions (a) through (j) , omitting only 
(k). To get a weak sequence of this kind to start with
take m=O, take the matching to be empty, and take 
sufficiently large vertex weights. 

We apply the algorithm in [2] to matching M", in 
the subgraph, G;n' of Gm which consists of all nodes of 

Gm plus all edges em for which w(v7') + w(v~') = w(em). 

If Gm does not satisfy (k) then there is an exposed node 
r in G~" for which w(r) > o. (Exposed means it meets 
no matching edge.) Start growing in G:n a planted 
tree rooted at r. 

If it grows into a flowered tree with blossom Bm , 

then in Gm shrink Bm to a u,"+l to obtain a Gm+ 1• Where 
qm is the node in Bm with smallest weight, set w(um+1) 

equal to W(qlll) and adjust the weights of the edges 
which meet um+l according to the formula in (i). Leave 
other weights in Gm+1 the same as in Gm • Thus, 
weights in Gm+l will satisfy conditions (b), (g), (h), (i), 
and (j). Furthermore, G;"+1 is the image in Gm +! of 
G:n, and so we continue in G~'+ 1 with the tree image. 

Eventually, possibly after a number of shrinkings, 
we obtain either: (1) an augumenting tree or, (2) a 
tree which has an outer vertex v with w(v) = 0 or, (3) a 
Hungarian tree which has outer vertices all with 
positive w. 

In case 1, augment. That is, interchange matching 
roles of edges in the augmenting path. This yields a 
matching with larger weight-sum in the graph, still 
call it Gm , and disposes of one or two vertices violating 
(k). In case 2, the path in the tree joining v to r is 
really "augmenting" also, though such paths are not 
encountered in [2]. Treat it like the path in case 1 
and it serves the same purpose. 

The fact that a matching is obtained which has 
larger weight-sum is not needed for the validation of 
the algorithm. The important fact is the decrease in 
the number of nodes r in the final term Gm of {Gd, 
such that r is exposed and wer) > o. After an augmen
tation in case 1 or 2, abandon the tree and start a new 
tree at another node r if there is one. 

When we get, in case 1 and 2, a matching with larger 
weight-sum in Gm , it yields a matching with larger 
weight-sum in each graph G; back through Go. It 
does this by the process of successively selecting a 
new matching within each blossom Bi which is com
patible in Gi with the matching already chosen with 
respect to G;+l. If U i+1, the blossom Bi before "ex
pansion", is an exposed node in Gi+1 then the selection 
of matching edges in Bi is determined by condition 
(e). Sequence {Gi } with these new matchings Mi 
satisfies (a) through (j) and comes closer by at least 
one to satisfying (k). There is no advantage in select
ing the matching in graphs Gi other than Gm until the 
algorithm is otherwise finished or until it is neces
sitated by condition (h) in case (3). 

It is important for the type of step of the algorithm 
necessitated by (h) in case 3, described below, that we 
be able to "expand" the shrunken blossoms Bi in an 
order different from the order in which they were 
shrunk - thereby obtaining a sequence {Gf} of type 
{Gi } (possibly not satisfying (k» such that the terms 
Gg and G~ together with their weights and matchings 
are, respectively, identical to the terms Go and Gm 

of {Gi} and such that the blossoms B? of {Gf} corre
spond in a different order to the blossoms Bi of {Gi}. 

The order of the blossoms Bi is not arbitrary but it is 
limited only by the relation of one U i +1 having been 
absorbed into another. 
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In pa rti c u la r, for any node v"' of Gill whi c h is 
the image of some Bi , le t B .. be the bl osso m of {Gi } 

whose im age in Gil/ is vITI and s uc h tha t k is maximum. 
Node v"' can be " expanded " to obt a in from Gill with 
its weights and matc hin g a certa in gra ph , GII/k, with 
weights and a matc hing a nd a blosso m , BII/h" corre
sponding to B... The graph structure, th e we ights , 
a nd the matc hing of Gil/h' in the neighborhood of BII/h' 
are de termined by Gill in the neighborhood of VIII and 
by Gk in the neighborhood of BA·, subj ect to the con
ditions (other than (k)) of theore m (M ). Elsewhere 
Gmk is like Gm . There exis ts a sequence {Gn as de
scribed above suc h that the next to the last term is 
GIIIA·• Without describing it and justifying it here in 
any greater de tail, the de rivation of {Gn should be 
fairly e vide nt from th e local nature of the c hanges in 
success ive te rms of a ny sequ e nce {GiL 

In imple me nting the algorithm it may be be tte r to 
represent the parti al ord e r s tructure of inclu sion for th e 
blosso ms Bi of a {Gi } so th at no spec ial prefe re nce is 
give n to {Gi } or a ny of the othe r sequ e nces {Gf}. He re 
we desc rib e th e algorithm with respec t to a p arti c ul a r 
{G i } me rely for co nve nie nce of exposition. 

In case 3, t he we ights of the verti ces in the Hungar
ian tree are a djus ted . We ights of outer verti ces are 
lowered and weights of inn er vertices are rai sed by a 
uniform a mount , whic h is as la rge as poss ible with out 
violating for th e seque nce {Gi } e ith er (b) by ma king 
an outer vert ex too s mall or (h) by ma kin g an inne r 
vertex whi ch is the image of a s hrunk e n blosso m too 
large . In the adjus tme nt, prope rt y w(v ~1/) + w(v~' ) = 
w(elll ) . is pres.e rved for edges of the tree. E dges of ~f'q 
meetlllg an IIlner ve rtex a nd not an outer ve rtex WI t 
drop out of G;Il ' 

If (b) limits th e adjus tm e nt, it may be because some 
outer vert ex weight becomes zero. The n, poss ibly 
afte r the opera tion pe rform ed in case 2, we again ha ve 
one less node viola te (k). Oth erwise if (b) limits the 
adjus tm ent , it is because for one or more edges em in 
Gm and not in G;lI' whi c h meet oute r verti ces, we ge t 
W(V~') + w(V~') = (em) . These edges enter G;" , so the tree 
is no longer Hungari a n a nd can be grown so me more. 

If, in case 3, condition (h) limits the adjus tm e nt a t 
an inner vertex, say V III , of the tree , it is because, wh ere 
{G?} is the m odifi cation of {G i } cited above, w(v lll ) 

becomes as large as the s mallest node -weight in Billie 
of Gill .. . By s ubs tituting {Gf} for {G;} , and calling it 
{G i } , we ma y regard v lll as u lll , the image of B"'_I in Gill 
of {G i } . 

Node-weight w(u lll ) was first set equal to the smalles t 
node weight w(qlll- I) in Bill - I of Gm - I. However, by 
some we ight adjus tme nt whe re u lll was an outer vertex 
of a Hungaria n tree, w(u"' ) may have go tte n smaller for 
a while - before th e curre nt adjustme nt gave w(u lll ) = 
w(qlll- I) again . 

We now describe what to do when u lll , the image of 
Bill- I, is an inner vert ex of the curre nt tree and w(um) = 
w(qlll - I). The pre- image in Gill - I of the tree-edges is 
not ge ne rally one tree in Gill - I but two. Howe ve r, as 
described in section 7 of [2] , us ing onl y edges from 
Bill- I, thi s pre -image can always be comple ted to a 
planted tree, say T, in G;,, _I' wh ere G;" _I is the sub-

graph of Gm - I conslstlllg of edges elll - I for which 
w(vt - I) + w(v~I-I)= w(e lll - I). Thus, we abandon Gill' 
replace {G i} (i= 0, ... , m) by {G i } (i=O, . . . , 
m-l), and continu e the algorithm with r espect to T 
in G;lI _I' 

Thi s co mple tes th e description of the situations and 
operations in th e algorithm. Aft e r ha ndling a number 
of impedim e nts like described in case 3 and like blos
soms to be shrunk , the tree will grow into one which 
allows a decrease in the number of nodes violating 
(k). Finally when (k) is no longer viola ted in the final 
te rm of {Gi }, we have a {G i } sati fying all the condi
tions of theore m (M) . It is easy to verify that all the 
conditions (a) through (j) are preserved by the s teps 
of the algorithm . 

The progress of th e algorithm is measured firs t 
according to the decrease in the number of node 
we ights whic h violate condi tion (k). The algori th m 
consis ts , in th e large, of "growing" trees, o ne a fte r 
the other. E ach tree is abandoned when a nd only 
wh en it yield s a decrease of one or two in th a t number. 
Thus, a t mos t N trees are grown whe re N is th e numbe r 
of nodes in G. 

The progress in the growth of a n individual tree can 
be measured acco rding to the number of di s tin ct edges 
whic h have e nte red the tree, including those whi c h 
have di sappeared into blosso ms s hrunke n while grow
in g the tree. Th e la tte r neve r rea ppear in th e same 
tree because t hey are absorbed into outer vert ices of 
the tree , whe reas onl y inne r verti ces of the tree are 
expand ed in th e course of its growth . Th e total num
ber edges whic h ever e nte r a tree is .less than N, and 
eac h edge e nters a t mos t once. It can be s ho wn by a 
survey of the arithmeti c involved and th e combinatorics 
involved as desc ribed in [2] that a n ample uppe r bound 
on the order of work betwee n additions of edges to a 
tree and in the trans iti on from eac h tree is N2 . This 
is ass uming th at the work involved in th e indi vidual 
a rithmeti c additions and subtrac tions is fix ed . Th e 
a mount of work in the algorithm al so in creases so me 
according to the numbe r of significant decimal places 
in the edge-weight s . 

Section 8 
THEOREM (P) ge ne ralizes to the following: All the 

extreme points of p olyhedra I and II consist of integer 
components. As before the variables x EE correspond 
to the edges of a graph G. Now there is an integer 
"capacity" , d, associated with eac h node VEG. Where 
all d = 1, both I and II are polyhedron C of theore m (P). 
I. (1) x ~ 0, for all xEE. 

(2) LX :!S: d (XEV), for all V, where V corresponds to 
the edges whi ch meet a node v of G and where d is the 
integer capacity assigned to v. 

(3) LX :!S: r(xER ), for all Rand r, wh ere r is a pos i
tive integer, and where R corresponds to th e edges 
of G with both ends in a set S of nodes suc h that 
Ld = 2r + 1 (d summed over capacities of nodes VES ). 
II . (1) O :!S: X ~ 1, for all x EE. 

(2) LX :!S: d (XEV), for all V , same as in I. 
(3) L X :!S: r (xER) , for all Rand r, where r is a pos i-
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tive integer, and where R corresponds to all edges 
with both ends in a set S plus a number t of edges 
with one end in S, where less than d of the t edges 
meet node v in S, and where 2r + 1 = t + 'id ({J summed 
over capacities of nodes VES). 

Correspondingly, there is an efficient algorithm for 
finding maximum·weight-sum, degree-constrained 
subgraphs . 

(Paper 69Bl-143) 
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