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On the Surface Duality of Linear Graphs”
Jack Edmonds

(February 3, 1964)

THEOREM: A 1-1 correspondence between the edges of two connected graphs is a duality with
respect to some polyhedral surface embedding if and only if for each vertex v of each graph, the edges
which meet v correspond in the other graph to the edges of a subgraph G, which is connected and which
has an even number of its edge-ends to each of its vertices (where if an edge meets v at both ends its

image in G, is counted twice).
by the two graphs.
to be planar.

A graph, for purposes here, is a finite set of edges,
i.e., homeomorphs of a closed line segment, and an

identification of the edge endpoints into a number of

equivalence classes called vertices. We call edge
endpoints simply ends of the edge. We say that an
edge end meets the vertex which is its image.

The edges and vertices of a polygonal disk, bounded
by one or more edges, form a graph —a particular kind,
called a circuit. When we identify in pairs, accord-
ing to homeomorphisms, the edges of a finite set of
polygonal disks, we form (by composing these iden-
tifications with those in the disks) one or more closed
surfaces. The pair S¢= (S, Gp), consisting of one such
surface, S, and the graph, G, whose edges and ver-
tices are the distinct images in S of disk edges and
vertices, is called a polyhedral surface, or a map,
or a polyhedral surface embedding of G, where G is a
homeomorph of Gy.

The vertices and edges of the graph G, are also
called the vertices and edges of Sy. The disks are
called the faces of Sy. The graph Gy of a map is con-
nected in the usual sense. FEach of its edges is the
image of two face-edges. A vertex of Gy is the image
of one or more face vertices and also the image of
the same number of edge ends of edges of Gy.

Associated with any map Sy =(S, Gy) is a (topologi-
cally unique) dual map Sy =(S, Gy) with the proper-
ties that (a) a map is the dual map of its dual map,
(b) each vertex of a map is interior to a face of its dual
map, (¢) each face of a map contains exactly one vertex
of its dual map, and (d) each edge of a map crosses
once exactly one edge of the dual map.

By an edge-correspondence between two graphs,
we mean a l-1 correspondence between the edges
of the two graphs. An edge-correspondence is called
a surface duality correspondence or briefly a duality
if the two graphs respectively have homeomorphisms
with the graphs of dual maps so that the images of
corresponding edges cross each other.
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Using the Euler formula, the characteristic of the surface is determined
Thus, the theorem generalizes a variation of the H. Whitney condition for a graph

Our main objective, Theorem 1, will give a necessary
and sufhicient condition for an edge-correspondence
between two graphs G and Gy to be a surface duality
correspondence.

Using Euler’s formula, the characteristic x of the
surface for a surface duality correspondence is deter-
mined by the two graphs. Where Vy, Ey, and Fy are
the numbers of vertices, edges, and faces in map Sy
and Vy, Eyw, and Fy are the numbers of vertices,
edges, and faces in dual map Sy, we have x(S)=Vy
—E1'+F1':V‘|'—‘E;;’+Fu' and V(':Fu', E(':Eu'7 ‘d]ld
1"1’: Vw.

Hence,
Xf(é;) = l/}"_'lfl"F l/;y. (])

COROLLARY 1 (to Theorem 1): A necessary and sufh-
cient condition for a connected graph Gy to have a
polyhedral surface embedding of given characteristic
x is that it have an edge-correspondence with some
graph Gy such that (a) the condition of Theorem 1
is satisfied and (b) formula 1 is satisfied.

Corollary 1 is analogous to Hassler Whitney’s well-
known theorem on the planar duality of graphs'. He
defines two graphs to be dual if there is an edge-
correspondence between them that satisfies certain
combinatorial conditions. His theorem states that
a graph is planar if and only if it has a dual.

That a connected graph be planar is equivalent to
its having a polyhedral surface embedding which is
spherical. A polyhedral surface is a sphere if and only
if it has characteristic equal two. Hence, for x=2
conditions (a) and (b) of Corollary 1 are equivalent
(for connected graphs) to Whitney’s notion of duality.

THEOREM 1: A 1-1 correspondence between the
edges of two connected graphs is a duality with respect
to some polyhedral surface embedding if and only
if for each vertex v of each graph, the edges which
meet v correspond in the other graph to the edges of
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a subgraph G, which is connected and which has an
even number of its edge-ends to each of its vertices
(where if an edge meets v at both ends its image in
G, is counted twice).

Proof of necessity. A graph B,, formed by the edges
and vertices of a polygonal disk D, before identifica-
tions in a map, is connected and has exactly two edge-
ends meeting each of its vertices. In other words,
B, is a circuit or a simple closed path. Under the
identification which occurs when D, is regarded as a
face of a map Sy=(S, Gp), the image of By, call it s
is a connected subgraph of Gy.

Each vertex u in G, is the image of a set V', , of one
or more vertices of B,. Each edge in G, is the image
of either one or two edges in B,; in the later case call
it a double edge in G,. Conversely, the image of every
edge-end and vertex which meet in B, is an edge-end
and vertex which meet in G,. Hence, if we count twice
the edge-ends of each double edge in G, then u meets
an even number of edge-ends of edges in G,, two for
each member of V,, ..

Each edge of G, crosses exactly one edge of Gy
where Syw=(S, Gw) is the dual of Sy. These edges
of Gy are exactly those which meet the one vertex
v of Gy which is interior to disk D,. Furthermore,
one of these edges meets v at both ends if and only if
the edge of G, it intersects is double. Thus, the
“only if”” part of the theorem is proved.

A closed path in a graph G is a mapping C of a circuit
B into G which takes edge-interiors of B homeomorphi-
cally to edge-interiors of G and which takes edges to
edges and vertices to vertices so that edge-vertex
incidence relations are preserved. Equivalently, a
closed path is a cyclic order (. . . viEwis By . . ),
i taken modulo some n, of vertices and edges in G
such that for all i edge E; meets vertex v; at one end
and vertex v at the other end. There is no distin-
guished position or orientation of the cyclic order.
E; and E;;, are said to be adjacent at vertex viii
in the cyclic order.

An Euler path in a graph G is defined as a closed
path which contains each edge of G exactly once.
(Here, a ““double-edge” is to be regarded as two edges.)

Euler’s “Konigsberg Bridge” theorem states that a
graph G has an Euler path if and only if G is con-
nected and has an even number of edge-ends to each
vertex. Theorem 1 is really a strengthened form of
Euler’s theorem. It states conditions for the existence
of a whole family of Euler paths which fit together in a
certain way.

To construct in G, connected and even at each ver-
tex, an Euler path, first construct a family of closed
paths which together contain each edge of G exactly
once. Try doing this and you can’t miss. Because
G is connected, if the family of paths has more than
one member then some two members C, and C,
have at least one vertex vy in common. If C, and
Cy can always be replaced in the family by one closed
path, then by iteration an Euler path can be obtained.

Suppose (. . . EfwEd . . .) in Cq and (. . . E'wE?
.) in Cy. There are two ways to change edge-

adjacencies at v, either to EfwoE? and E¢vES or to
EwoEY and EfvoE?, so that with the other adjacencies
unchanged C, and C, join to a single closed path.
That is, of the three possible adjacencies for E¢
at v, with E¢ or EY or EY%, one yields two closed paths
and two yield one closed path. This extra freedom
in constructing an Euler path is important to Theorem 1.

Proof of sufficiency. Let there be an edge-corre-
spondence between connected graphs Gy and Gy which
satisfies the condition in Theorem 1. For each vertex
v in Gy, find an Euler path C, in G,, where G, is the
subgraph of Gy which corresponds to the edges meet-
ing v. Let each of these Euler paths bound a disk.
More precisely, for each v let the circuit, which is the
pre-image of mapping C,, bound a disk D,; and then
let the boundary of D, be identified with G, according
to the mapping C,. Because edges of the disks D,
identify together in pairs according to continuous
mappings that are 1-1 in their interiors, the resulting
connected complex K is locally planar except possibly
at the vertices of Gy.

But what happens at a vertex u of Gy? Each vertex
of each disk D, meets two edge-ends in the disk and
these edge-ends (for all of the disks D,) identify in
pairs to edge-ends of Gy in K. This causes disk-
vertices (or disk-vertex “corners”) and the edge-ends
of Gy to arrange themselves in a number of cyclic
orders. Let H, be the set of these cyclic orders whose
disk-vertices are pre-images of u—that is, whose edge-
ends meet u.

By construction of the cyclic orders, a pair of edges
in Gy, with edge-ends adjacent at a disk vertex d in
cyclic order heH,, correspond to a pair of edges of
Gw which meet the vertex, say v, corresponding to
the disk D, which contains d. Thus the edges of
Gy with edge-ends in heH, correspond to a set of
edges in Gy which form a closed path C) in Gy with
cyclic order determined by h.

Graph Gy can be embedded in K so that each vertex
v in Gy is contained in the interior of corresponding
disk D, and so that edges of Gy cross corresponding
edges of Gy. Then K is a map (S, Gy) with dual
(S, Gw), if and only if for each u of Gy the family H,
contains one member. Where H, contains k, cyclic
orders, a neighborhood of u in K consists of &, open
disks which intersect only at u. When k,=1 for all
u, the face of (S, Gyw) containing u is a polygonal disk
bounded by the pre-image of the mapping C;, where h
is the only member of H,.

The edges of G which meet u correspond to a sub-
graph, say G,, of Gy. Since by hypothesis G, is con-
nected, when k,> 1 there exist two closed paths C,
and Cy, g and heH,, which in G, have a common ver-
tex, say v. Hence, closed path C, passes through u
at least twice, once at a vertex d, of D, where dj is a
member of cyclic order geH, and once at a vertex
dn of D, where dj is a member of cyclic order heH,.

Suppose (. . . EWwE? . . . EWE? . . ) describes
the closed path C, where ends of edges E¢ and E? of
Gy are adjacent at d; in g and where ends of edges
E?% and E¢ of Gy are adjacent at dj in h. From C,, by
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changing the adjacencies E¢uE% and ESuE? to E{uk?
and E'uE? and leaving unchanged the other adjacen-
cies in C,, we obtain another Euler path C! of G,. Re-
placing disk D, by new disk D!, we get a new complex
K’. At the same time, cyclic orders g and A combine
to a single cyclic order with the same edge-end ad-
jacencies except that, here also, the E¢, E% and E%, E¢
adjacencies are replaced by E¢, E% and E?, E¢
adjacencies.

The new family H, of cyclic orders associated with
u contains one less cyclic order than H,. The families
of cyclic orders associated with the other vertices of
Gy remain the same. Repeating the process just
described enough times we eventually get only one
cyclic order in each family. Therefore, Theorem 1
is proved.

A corollary of Theorem 1 is that every connected
graph G can be embedded in some closed surface
S so that S—G is an open disk. (For example, a cir-
cuit has such an embedding in the projective plane.)

Another corollary is that every connected graph G
which has an even number of edge-ends to each vertex
is the graph of a map formed by identifying the edges
of one polygonal disk with the edges of another.
Notice how this corollary strengthens Euler’s
theorem —from asserting the existence of one Euler
path in G to asserting the existence of two Euler paths
in G (distinct unless G is a circuit) which fit together
in a certain way.

The characteristic x of a closed surface determines
uniquely its topology only if x is two or an odd number
(less than two). For x=2 the surface is a sphere and
for odd values the surface is nonorientable. For
each of the other possible values of x, nonpositive
and even, there are two closed surfaces, one orien-
table and one nonorientable. Though the two graphs
of a surface duality correspondence determine the
surface characteristic, Theorem 1 provides no control
over which of the two surfaces the maps might be.

In trying to find an analog of Theorem 1 for orientable
maps, it is natural to use the notion of oriented edge-
correspondence between two graphs, Gy and Gy.
That is a 1-1 correspondence between the edges of
Gy with orientations and the edges of Gy with orienta-
tions such that if two edges with orientations corre-
spond then the same edges with opposite orientations
correspond.

For any Gy and Gy which are the graphs of dual
oriented maps there is determined an oriented edge-
correspondence with the following property. Py:
For each vertex v of each graph, the edges directed
away from v correspond in the other graph to a directed
subgraph which is connected and which has the same
number of its edges directed away from as directed
toward each of its vertices. Property P, follows from
the fact that the faces of the oriented maps determine a
directed FEuler path in each of these directed sub-
graphs.

However, an oriented edge-correspondence with
property P, between two connected graphs is not
necessarily an oriented surface duality correspond-
ence. That is we cannot always find directed Euler
paths which fit together into single cyclic orders at each
vertex. In particular, there are lots of connected
graphs Gy, even where Vy—Ey is odd, which are not
graphs of oriented maps with one face, even though for
any connected graph one can set up an oriented edge-
correspondence satisfying Py with a graph which con-
sists of one vertex and the proper number of edges.
The directed-graph analog of Euler’s theorem is true,
but not true with enough leeway for the corresponding
oriented surface-duality theorem to be true.

(Paper 69B1-142)
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