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A s imple compac t formulation is prese nted for the e ige nvalue 'A of th e Mat hi e u diffe re ntial equa
t ion y" + ('A - 2,,2 cos 26)y = O. The relations obtained the re by are e mployed to examine ce rtai n c harac-

te ri s ti c features of the so lution s y = ei"o L c"e2i " o in both stable (v real) and uns table (v co mplex ) regions. 

" In the vi c init y of t he boundari es (v = m. = int ege r) whic h separat e these regions, t he expressions de rived 
for 'A are non s ingula r and continuous; at the boundaries, these ex press ions are ide ntical to avai lab le 
ex pans ions whic h become the refo re s pec ial cases of a more ge ne ral formul a tion . The results are used 
to de te rmine th e mag nitud es of th e ha rmonic coe ffi c ie nt s COl a nd th e in stabi lit y inte rval s. Th e la tt e r 
are s hown to be intim ate ly re lated to res tri c ti ons on the complex value of the c haracteri s ti c expo ne nt 
v_ In addition, s imple approximations that are s uit ab le for perturbat ion proble ms (h' s ma ll ) a re de rived 
for a ll of the c harac te ri s ti c quantities. 

1. Introduction 

Hill's differe ntial equation and its special case, the Mathieu equation with real coeffi cie nts 

d2y 
d(P + (A - 2h2 cos 2e)y = ° (1.1) 

were first examined in connection with the vibration of elliptic me mbranes [1] I and the motion of 
celestial bodies [2]. More recent s tudies were motivated by application s in th e fi eld s of acous ti cal 
a nd elec tromagne ti c diffrac tion, frequency modulation, elec trom ec hani cal transdu ce r des ign, 
ellipti c waveguides, e tc .; since it is imprac ti cal to provide a co mple te bibliogra phy within th e 
prese nt fram ework, the reader is r eferred to several excelle nt tex tbooks [3- 6], whic h contain 
lengthy lists of references. 

Most of the inves tigations of the Mathieu equation (1.1) were concerned primarily with only 
a ve ry limited range of solutions-the periodic ones. Thus, if the soluti on to (1.1) is expressed 
in the Floquet form 

'" y(e) =e±ivO L Cn(±iv)e2inO (1.2) 
n=-Xl 

where the ± sign s relate to the two possible characteristic solutions, these will be periodic when
ever the characteristic exponent v is an integer (v = m = 0, 1, 2, 3, ... ). In those restricted 
cases, the solutions y(e) were extensively tabulated [7]. 

Of a somewhat different type are problems which do not require periodic solutions; in those 
cases , v is not necessarily a real integer and it may also become complex. Thus , the Mathieu 
equation (1.1) may express the propagation of electromagneti c waves in a medium that possesses 
dielectric or magnetic properties which vary periodically [8, 9, 10]; in that case, e represents a 

*This pape r is based on a port ion of a dissertation suLnnillcd by 1-1 . C. Wang in partiaJ fulfIllm e nt of the rC(l uin.' menl s for the Ph. D. (Eleclfophysics) degree at 
the Pol ytechnic Ins titute of Brookl yn, New York. 

I Figures in bracke ts indicatc the lit crat ure rc fc n :nces a t the end of thi s pape r. 
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space variable and Cn(± iv) refer to the amplitudes of the space harmonics. An analogous situ
ation occurs in the case of certain types of oscillators [11] (particularly those involving parametric 
action) for whi ch () is interpreted as a time variable whereas c,,(± iv) relate to the amplitudes of 
the te mporal harmonics. In all of these cases , tabulated results are few and restricted in range 
[6, 12]. 

The significance of the characteristic exponent v can usually be related direc tly to the wave 
character of the physical phenome na described by the Mathieu equation (1.1). He nce the de ter
mination of v, i.e ., its relation in terms of A. and h2 OF, alternatively, the determination of A..=A.(v, h2), 
are usually of considerable importance. It is al so r ecognized that , when a forcing term is present, 
the source (generator) ele ment usually prescribes the wavelike nature of the phenome na as re
flected through v; hence r,., rather than v , represents the unknown physical quantity to be de ter
mined. One may then employ expressions that are found in the literature [1- 7] and which relate 
A. in terms of power seri es of h2 for integral values of v. For v not an integer, the power seri es 

(1.3) 

is available; however, this relation converges poorly for v close to an integer and its applicability 
is th erefore limited . 

The present paper presents a method for deriving explicit expressions for A. = A.(v, h2) which 
hold for arbitrary values of v . The expansions involved are based on the continued fraction rela
tions [3- 7] of the Mathieu equation and is an exte nsion of a method for obtaining power series for 
v integer [13]. The expressions obtained herein are not singular for v integer, they are applicable 
for both real and complex values of v and appear to converge rapidly. A differe nt method whi ch 
also converges rapidly was recently proposed by Schiifke, Ebert, and Groh [14] ; in contras t to their 
results , the expressions presented here are explicit and they are particularly simple when approxi
mate expressions are required for small h2 . 

In addition to expansions for the eigenvalue A. , oth er characteri stic parameters can be found 
via the expansions given here . Thus, the extent of the range for complex values of v is di scussed , 
as well as the relation be tween all of the harmonic amplitudes c,,(± iv). It is also shown that, in 
the limit of v becoming an integer, the results presented here are identical to those already avail
able [1- 7] for the Mathieu functions and it is sugges ted that the present method leads to a more 
sys te matic approac h for future computations of the pertinent series. 

Certain physical interpre tations, notation and the representation of the various possible solu
tions are di scussed in connection with the so-called " stability chart" in section 2. The derivation 
of the expansions for A. = A.(v, h2) is presented in section 3 and the pertine nt formulas fo r small h2 

are given in section 4. Simplified expansions for v integer are discussed in sec tion 5 and the range 
for v complex is evaluated in sec tion 6. The magnitudes of the harmonics cn ( ± iv) are dealt with 
in sec tion 7. Finally, some comments are made in section 8 concerning the range for h2 wherein 
the relations presented here are expected to be valid and to converge rapidly. 

2. Stability Chart 
The harmonic amplitudes Cn = c,,( ± iv) are interrelated via the infinite continued fraction ex

pansions [3-6]: 

Cn _ ~ ~ ~ 
C II - I Ln ILn+1 IL1I+2 

(2.1) 

Cn _ ~ ~ ~ 
CIl + 1 -- Ln - IL'~_ I -II:-; -. (2.2) 

where 

Ln = (v + 2n)2 - A. . (2.3) 
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By combining eqs (2 .1) and (2.2), one obtains 

.+~ - ~-. 
LlI - 1 /L Il - 2 

(2.4) 

which is essentially an equation for A = A(V, h2). By solving it, one may obta in th e e igenvalue A 
and th e nce the harmonic amplitudes Cn via (2.1) or (2.2). 

Relation (2 .4) is often presented [3-9] in the form of a so-called "stability c hart", as shown in 
figure 1. This diagram illustrates some of the properties associated with the e igenvalue A and the 
characteristic exponent v. Thus, for h2 and A real, v may be either real or co mplex. In the latter 
case: 

v= m+ia (2.5) 

whe re a is real and m = 0, 1, 2, 3 .. _ . For simplicity, the real part of v will always be taken as 
positive, in both the real and the co mplex v cases. 

Regions with real and complex values of v are called "stable" and " unstable" regions (o r 
bands), respectively, in the literature [3- 12]. A systematic definition of thi s terminology ca n be 
traced to van de r Pol and Strutt [15] ; the just ifi cat ion is afforded by th e fact that, if v is co mplex,. 
the c haracte ri sti c solutions in eq (1.2) are not bound ed as lei ~ 00. It is recognized that the 
"unstable" solution s s hould not necessarily be neglec ted in actual physical situation s. Thu s, whe n 
e is bounded, both complex values of ± v are admissible; also, in certain unbound ed situation s, one 
of the solution s may be re tained and only the o ther need be rejected. The latte r case is illu s trat ed 
by th e radiation condition in electromagnetic fields rIO]. 

From figure 1, one sees that un stable regions (bands) alternate with stable ones. Tbe lin es 
v= In consis t of two separate branches (for all m "'" 0) which join on th e A axis a nd conta in a region 
with v co mplex (= m + ia); it may be s hown that the twov= In lines touc h eac h oth er on the A- ax is 
with an order of tange ncy of m - l. As a conseque nce, for a fixed h2, the width of the unstable 
band decreases as In increases. 

As indicated in figure 1, th e c urves for v = co nst. ex hibit different variations in the stable and 
unstable regio ns. Those with v real s tart from tbe A-ax is (at v2 = A) and proceed towards increas
ing values of 11,2; on tbe other hand, the curves for v co mplex ex hibit a minimum with respect to 
h2 and are doub le-valued with respect to A. 

Whereas the s tability d iagram may be used direc tly [9 , 10J to obtain one of the parameters 
A, v, or h 2 wben the other two are give n, thi s procedure usually leads to a graphical cons truct ion 
and therefore its accuracy and co nve nience are so mew hat limited . Ins tead, simple analytical 
expressions for A = A(V, 11,2 ) may be used and their derivation is given in tbe follow ing sec tion. 

' 0 

FI GURE I . Th e Mathieu stability diagram . 
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3. Relations for the Eigenvalue A 

In the present section, relations in the form A = A(V, h2) are obtained via the continued frac· 
tions of eq (2.4). When properly e xpanded as power series, these relations lead to equations for 
the eigenvalue A which, unlike eq (1.3), are not si ngular at the band e~ges (v= m = O, 1,2,3 . .. ). 
In order to better appreciate the procedure employed here, it is pertinent to illustrate first the 
derivation of eq (1.3). 

By setting n = ° in eq (2.4), one obtains 

LO=V2-A=!!j-!!j-~- . . . +~-~-~ .. . . 
LI ~2 !L3 LI ~-2 ~-3 

which may be writte n as 

where 

K± _~_~_~4L 
L ± I ~ ~ 

Equation (3.2) is now viewed as an iteration formula 

(3.1) 

(3 .2) 

(3 .3) 

(3.4) 

for finding Ai+1 when a trial value Ai(i = 0, 1,2, 3 .... ) is assumed. To obtain an analytical result 
in terms of a power series in h2, it is necessary to expand K± as a power series. This is achieved 
via a useful series expansion for continued fractions [16] which, in the present case, is written as 

K±=_I_+ 

U ± I 

hl 2 

+-u-±I-(:-L-+.,-_-_h7'"":4:-)-:-2 :-(L-+-3 _----:-~-:-;4 -_-':-L4:-)7'"":2 (:-L-+-4 _-~-:-h4'" -_-:J1j:-4.,-_--:-h4~) +. 
- - L±I - L±2 ~ - L±3 [t~; IL: 

This expansion may be cast in the more compact form 

where 

and 

00 

K± = 2: B±AB±(k+l)h4A' 
k =O 

k 

Bo=l ; B±k=I1 A ±j 
j = 1 

0'=1 ,2,3 . .. ; k=O, 1,2, ... ) 

and it is unders tood that A±I =-L1 . 
± I 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

It is recognized that the expansion in eqs (3.5) or (3.6) would be a power series in terms of h4 
if terms with h4 did not also appear in A±j. However, if h4 is sufficiently small, one may employ 
the binomial senes expansion to convert the above in a power series. Thus : 
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(3.9) 

and a similar power series for K-. Introducing these series into eq (3.4), one obtains the required 
iteration formula which yields A in terms of v and a power series in h4. The proper starting value 
for the iteration process is obviously Ao = v2 for the stable regions and Ao = m2 (m = 0, 1, 2 .. . ) for 
the unstable regions, since these are the values of A at h = 0 (see fig. 1). It is observed that by 
taking these starting values of Ao, the iteration formula (3.4) is in a form such that Ai is obtained 
to 0(h4i). Hence, if A is to be found to 0 [h4(i+t)], it is necessary to find the series expansions for 
K± only up to 0(h4i) . 

By using these considerations, one may verify that eq (3.2) yields formula (1.3). As already 
noted, however, this formula yields good results only for values of v which are not too close to a 
nonzero integer. When thi s condition is satis fi ed and if h2 is not too large, both the iteration (3.4) 
and eq (1.3) converge rapidly. This fast convergence is due to the fact that A; + I in eq (3.4) was 
isolated out from the term Lo, as indicated in eq (3. 1) and, of all L" terms, Lo varies most rapidly 
with both h2 and v, provided 0 < real part of v < 1. Thi s property is verified by notin g that, for 
small h2, one may write A == v2 to yield 

L" == (v+ 2n)2 - v2 = 4n(v+ n ) (3. 10) 

which is mos t se nsitive for n = 0 and n =- v =- m, where m is the integer that is closest to the real 
part of v. He nce, as long as v is real and sufficie ntly s maller th a n unity, Lo is the only sensitiv e 
term . However, in general both Lo and L- m may become critical; hence, an iteration formulation 
such as eq (3 .4) would have to be based on a value for Ai+ 1 which is isolated out from both Lo and 
L- m . This is accomplished herein by employing certain properties of the pertinent functions Ln , 

as di scussed below. 
Consider first the problem of isolating the term Lo out of a continu ed fraction suc h as eqs 

(2. 1) or (2.2) . If I nl is large, Lo will appear far down in th e expansion and the process of finding 
its value will become quite tedious. It is therefore conve ni e nt to ex tend the concept of K + of 
eq (3.3) and define 

K - !:...J - - - .... 11 ~4 ~4 
,,- Ln Ln+1 L,,+2 

where the subscripts of the denominators form an increasing sequence. 
only if n ~ 0; one may then write (see appendix): 

(n ~ 0) 

(3. 11) 

Th e term Lo will appear 

(3.12) 

where the terms An and B n are given in eqs (3.8) and (3.7), respectively, with 

(3 .13) 

(3.14) 

and it is noted that the terms AII = AII(v), B,,=Bn(v) and C,,=C,,(v) were defined in suc h a manner 
that, if expanded as power series in h4, their expansion will start with a free term. 
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In addition to the simplification realized by writing Kn in the form of eq (3.12), the terms 
Ln possess a certain symmetry which is basic in the derivations obtained here. This feature is 
exhibited by taking v as 

where 

v=m+~ 

f3 (for v real) 
~= 

ia (for v complex). 

(3.15) 

(3.16) 

For complex values of v, eqs (3.15) and (3.16) correspond to eq (2.5) and therefore m denotes 

the pertinent unstable region. In the stable regions, m is chosen so that 1f31 ,s:;~; hence m is then 
the integer closest to v in an arithmetic sense. 

Defining the "complementary" value of v as 

v=m-~=2m-v, 
(3.17) 

one recognizes that v corresponds to the complex conjugate value of v if the latter is complex. 
Consider now any function F = F(v); then 

- - ~ -
F= F(v)=F(v), 

h ~. d· 1· b d fi .. were = m Icates equa Ity y e mtlOn. If F(v) is a polynomial, one may separate it as 

F=Fe+Fo 

(3.18) 

(3.19) 

where Fe = F e(m, ~) and F 0 = F oem, ~) are the functions containing only even or odd powers of 
both m and~. For complex values of v, Fe, and Fo refer to the real and imaginary parts of F, 
respectively. One then also has 

F=Fe-Fo (3.20) 

(3.21) 

and it is recognized that, if v is complex, the modulus F is identical to the absolute value IFI · 
Applying definitions (3.17) and (3.18) to Ln in eq (2.3), one gets 

Ln= I _(m+n) (3.22) 

which is the "symmetry" feature alluded above. Its importance lies in the fact that, whereas 
only the first fraction (with increasing indices in L II) of eq (2.4) is expressed via Kn of eqs (3.11) 
and (3.12), the second (decreasing) continued fraction is expressible in terms of Kn via eq (3.22). 

A crucial point in the above definitions is the fact that A is regarded as an independent paramo 
eter when taking the complementary of F(v). In particular, one notes that_Ln = Ln(v, A) which may 
also be writte~ as LII = Ln[v, A(V)]; definition (3.18), however implies that Ln = Ln(v, A) = Ln[v, A(V)] 
and therefore Ln =1= Lll[v, A\v)]. 

The following discussion is more convenient if even and odd values of m are viewed separately. 
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(a) modd: m = 2r-1 (r = 1, 2, 3 . . . ) 
For odd values of m, eq (2.4) may be wrille n, with n = 1- r, as 

which, by using relations (3.11), (3.18), and (3.22) becomes 

1 -
---K h~ K - I - /" . 

l - r 

(3.23) 

(3.24) 

The sensitive L- III term is thus replaced with Lo. One recall s that, for a n it e ra ti on formula 
similar to that of eq (3.4), the term A; + 1 needs to be isolated from the Lo term, i.e., out of 5 of eq 
(3.13) in the present case; in particular, sin ce now m 01= 0, A; + 1 will be obtained from the even part of 

Lo. Writing 

(3.25) 

the required ite rated e igenvalu e is given, via eqs (2_3), (3.13), and (3.25), by 

(3.26) 

wh ere A(III) will he nce forth be used to de note the pertine nt e ige nvalu e appropriat e to the mth 

region, as d efin ed in eq s (3. 15) and (3 .16). To find Xein eq (3.26), it is realized that eq (3.24) leads, 
via eqs (3.12) a nd (3.25), to 

(3.27) 

and the las t re lation is recognized to be a quadrati c equati on for Xe. By solvin g it and subs tituting 

into eq (3 .26), one finall y ob ta ins: 

(3.28) 

where 

(3.29) 

Result (3.28) is the required iteration formula for m=2r-1 ; though more complicated, this 
res ult is analogou s to the iterati on in eq (3.4) for m = 0. The ± signs in A(I~I refe r to the two admis
sible eige nvalues for given h2 and~. As already discussed in conjunction with the s tability chart, 
all A(III ) (m 01= 0) are double-valued for a given lJ and h2 in the unstable regions; the + and - signs 
the n refer to the larger and the smaller values of A(IIII, respec tively. In the stable bands, A(III) is 
single-valued and the two e ige nvalues in eq (3.28) arise due to the choice of m in eq (3.15); it is 

the n easy to ve rify that A~" 1 correspond to f3 '2' 0, i. e. , A~"1 applies if m < lJ < m+~, where as A~"1 

is pe rtine nt if m-~ < lJ < m . 
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(b) meven: m=2r (r = 1,2,3 .... ) 
For even values of m, eq (2.4) is written, with n = - r and relations (3.11), (3.18), and (3.22), as 

L-r= (Kt _r+Kt _r)h4 (3.30) 

which, by employing the notation of eqs (3.12) and (3.26), becomes 

L,.- 2Aet_rh4 = (B1-r + Bi') h4r. (3.31) 

One then obtains again a quadratic with respect to Xe which yields a similar, but different, solu
tion when compared with the m odd case. By noting the value of L- r , as defined via eq (2 .3), one 
now obtains 

where 

F"= Bi_r 
tl2 - ,,<;r) - 2Aet _rh4 

G"=Kt +Ct_r+F"h4(r- t). 

(3.32) 

(3.33) 

(3.34) 

Equation (3.32) is the required iteration formula for even values of m; the significance of the 
± signs in ,,~n) was already discussed in the paragraph following eq (3.29). 

4. Formulas for the Eigenvalue x(m) for Small h2 

Relations (3.28) and (3.32) are directly applicable for obtaining" (m) to any desired accuracy 
by means of numerical methods. In addition, analytical formulations may be obtained for ,,(m) 

provided h2 is sufficiently small, this being particularly significant in certain physical situations. 
Thus, small h2 occurs in problems wherein the periodicity with respect to the independent variable 
() appears as a perturbation in an otherwise uniform configuration (h 2 = 0); it is then clear (e.g., 
from the stability chart) that instability phenomena may appear in certain ranges even if the 
perturbation h2 is exceedingly small. 

To examine these effects, all of the functions appearing in eqs (3.28) and (3.32) are expanded 
as power series via relations which are analogous to eq (3.6) and (3.9). Using considerations simi
lar to those described in the paragraph following eq (3.9), formulas (3.28) and (3.32) are then em
ployed to yield relations for ,,(Ill) up to any desired power of h2 . This method is applied in the pres
ent section to obtain expansion for" (m) for small h2 up to and including O(h4). It is easy to verify 
that, if all terms of O(h6) or smaller are neglected, it is sufficient to retain only first terms (hO) in 
the expansions for K1 , An, etc.; the approximations involved are commented upon in section 8. 
The following results are thus obtained: 

(a) In the stable regions (v real). 
Formulas (3.4), (3.28) and (3.32) are used and expanded to O(h4); the iterations need be em

ployed only once and with a trial value of "o(m) = v2 • The exact definition of Ln is important in these 
derivations, as commented upon in the two paragraphs following eq (3.22). 

m =O·. 0 0<: V 0<: 1.. \(0)- 2_ h4 + 0 (..2.- h8) 
~ ~ 2' 1\ -v 2(l-v2) 128 ' 

m=l: 
1 3 
- ~ v ~ 1 l ~ v+ ~ -' 2 -, 2 ' 
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m=2: 
3 5 
-<v < 2 2 < v+ < - · 2 -.:;:; - -...;: , -..;: -.:;:; 2' 

(4.3) 

m "",3: 

( 4.4) 

It is noted that, to O(h4), only the results for m = 1 and m = 2 are different from eq (1.3) . On 
the other hand, eqs (4.2) and (4.3) imply that eq (1.3) may lead to very erroneous results even for 
small p e rturbations ; this relates to the regions which are close to v= 1 and v=2, respectively. 

The order of magnitude of th e firs t neglec ted term in the above expansions is also indicated; 
the fi gures give the exac t result for v = m and it is expected that they yield a very good approxi
man on for v ¥= m. 

(b) In the unstable regions (v = m + iex). 
As illustrated in fi gure 1, h2 and v may not be prescribed in a comple tely arbitrary fas hion 

since,_ for m ¥= 0 and a given h2 , ex cannot exceed a certain value if >..(m) is to be real. The limiting 
ex corres pond s to the minimum of the co nstant-v c urves in the uns table region; thi s value of ex 
may be calc ulated by s tipulating that the radicands in eqs (3 .28) and (3.32) vani sh , thus obtainin g 

(4.5) 

wh ere the equal sign refe rs to the limiting value and 

1 
Will = 2m[2111 -

' 
(m~ 1) !)2 (for all m ¥= 0) . 

(4.6) 

Since the coeffi c ients Will form a descending seque nce, ex is res tric ted to exceedingly s mall values 
for large m. This behavior is direc tly related to the exte nt of instability since ex refers to the ex
pon e ntial increase of the solution (1.2); consequently, large values of m (and therefo re of A (III) can 
accommodate only "weak" instabiliti es (at least for suffi cie ntly s mall values of h2 ). 

With restriction (4.5) being accounted for, A (m ) may be obtai ned in the same fas hi on as in the 
stable regions, except that the trial values for the iteration are take n as A tg) = ~ ex2(m = 0) and A t'g) 
= m2 (m ¥= 0). It is then ob tained: 

m = O: (4.7) 

m = l: (4 .8) 

m=2: 

m "",3 : A (m) ~ 2 + h4 O[ 5m2 + 7 h8] 
:t ~m 2(m2~l)+ 32(m2~1)3(m2~4) . (4.10) 
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Due to analogous considerations, the comments following eq (4.4) (with respect to m ~ 3) also 
apply here. 

5. Characteristic Curves for the Periodic Mathieu Functions (v = m) 

As a particular case , formulas (3.28) and (3 .32) are applicable for obtaining the characteristic 
curves of the periodic Mathieu functions (v = m). Observing that d "" 0 in these cases, all of the 
odd functions Ao", BOn, etc ., are identically zero and the formulas simplify considerably. 

The notation for the band edges is generally given as am = A~n)(V) I v ~m and bm = A (:n)(v) I v ~m in 

the literature [3-6]. One then obtains 

B2 h2(2r-l) 
a2r_l=(2r-l)2-(K1 +CI _ r)h4 + I I_fAi-1.h2 ' 

b2r =4r2- (Kl +C 1- r)h4, 

(r=l, 2, 3 ... ). 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

These relations may be used to generate the Mathieu function expansions for the eigenvalues 
am or bm in terms of a power series in h2• It is then evident that certain known features are already 
apparent in formulas (5.1)-(5.5); thus, odd values of m lead to expansions in terms of powers of h2 

whereas even values of m lead to expansions in terms of powers of h4. In fact, if these expansions 
are obtained iteratively with a first trial value of 11.0 = m2 , the above formulas yield results which 
are identical with expressions available in the literature [3-7]. The identification follows upon 
recognizing that, for example, eqs (5.2)-(5.5) are a restatement of eqs (20-2, 21-24), respectively, 
on p. 723 of reference 6. 

The advantage of the present formulation is evident in that it represents a systematic technique 
for generating the power expansions for A(II1). Whereas it is recognized that all methods (including 
the present one) become quite involved and tedious if am or bm need to be found in terms of large 
powers of h2, it is nevertheless clear that formulas (5.1)-(5.5) are already expressed in such a 
concise and systematic manner that considerable simplification occurs. 

6. Instability Intervals 

The width of the band between each pair of the characteristic v= m curves is of special im
portance since it yields information on the extent of the range of instability_ For an arbitrary 
value of h2, this instability interval is defined by 

and is easily determined via relations (5.1) to (5.5) which yield: 

2B7 r h2(2r- l) 
1-A2 h4 

I - r 
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Both results may be expressed also as 

[ hili J2 
WII/ = 22m - l (m_I)! +O(h2m+2) (6.4) 

which is obtained by taking the firs t te rm in a series expansion of eqs (6.2) or (6.3) in powers of h2 • 

It is obse rved that, to this order of approximation 

Wm == 4mwlllh2m (6.5) 

where Will are the coefficients in eq (4.6). Result (6.4) is identical to that already obtained by Bell 
[17], Levy and Keller [18] and Hochstadt [19] who used different approaches . In the prese nt case, 
the instability interval Wm turns out as a simple corollary to formulas (5 .2)-(5.5) and the accuracy 
of eq (6.4) can be estimated as discussed in section 8. It is also noted that W", is simply relate d to 
the maximum allowable value of a since, introducing eq (4.5) into eq (6.5), one has 

a ~ ::::' + O(h2m + 2). (6.6) 

He nce , as m increasps , the range of a beco mes more res tricted than that of Wm . Phrased dif
fe rently, larger values of v (or A) lead to regions with decreasing uns table inte rvals; the exte nt of 
ins tability itself is proportional to the inte rval W"" but inversely proportional to v (or A). 

7. Magnitude of Harmonics 

The magnitude of the harmonic coeffi cients c,,(±iv) of eq (1.2) may be found by using the 
appropriate values of A ( m ) obtained above. For simplicity, the + sign in cn(±iv) will be implied 
s ubsequ e ntly ; he nce, C" is taken to de note cn(iv). To find the coe ffi cie nts CII( - iv), one may e mploy 
the ide ntity c,,( - iv) = c- ,,(iv) which is prove n in the lite rature [3- 6] . 

Using eqs (2.1), (2.2), (3.11), and (3.22), one geLs 

~=_h2K" 
CI/ _ I 

CII 

CII + I 

C- (III + n) 

C - (m + ,,+ I ) 

(7.1) 

(7 .2) 

As clarifi ed below, th e Co and c_mharmonics turn out to be partic ularl y important. For these har· 
moni es, one obtains the following relation s: 

(a) For m odd; m = 2r-I(r = I, 2, 3 .. . ). 
By us ing eq (7.1) successively, one obtains 

and eq (7.2) s imilarly yields: 

so that, by divi sion: 

757- 615 0-65-8 

R1 =C I_2r={-h2KO (for r=I) 

Co _ r-2 K . 
-h2K I - r IT ~(for r > 1) 

i =O K-i 

III 

(7.3) 

(7.4) 

(7.5) 



(b) For m even; m= 2r(r= 1, 2, 3 ... ). 
In a manner similar to that for m odd, one gets: 

and, by division: 

C- 2r r- 1K-· 
R" = ,- ' = IT-----=:!' 

Co i=O K- i 

(7.6) 

(7.7) 

(7.8) 

By using eqs (7.1), (7.2), (7.5), and (7.8), one may now express all Cn by means of the following 
relations: 

Cn 

Co 

n 
(- h2)" IT Ki (n> 0) 

"i = 1 

tn-I 

(- h 2)- n n K-i (-r < n < 0) 
i=m+n 

m-I 

(- h2)m+llR n K- i 
i=-n 

-(m+nl 
(- h 2)-(m+nlR n Ki 

i= l 

(- m < n ~ - r) 

(n < - m) 

(7.9) 

and it is understood that R stands for R' or R" for odd or even values of m, respectively. The 
fundamental harmonic Co may be taken as unity or normalized via an orthogonal relationship 
[3-6]; all these normalization procedures, however, lead to a real value for co. 

Equations (7.5) and (7.8) lead to the useful relation 

(7.10) 

which is obvious for R = R"; for R = R', this is verified by observing that eq (3.24) accounts for 
the extra K I - r term in eq ("7.5). One therefore gets 

(7.11) 

which is obtained via eq (7.9) and (7.10). 
Result (7.11) is interesting since one recalls that, in the unstable bands, any function F(v) 

leads to a complementary function F(v)=F(v) which is identical to F*(v)=F(v*), where the 
asterisk denotes the complex conjugate. Consequently, the modulus F(v) is then identical to the 
absolute value IF(v) I, so that 

(7.12) 

in the unstable bands. The harmonic amplitudes are then equal in pairs, as shown in figure 2. 
Relation (7.12) holds up to and including the band edges (v = m) where all variables are real; hence 

Cn = ± C- (m+nl (7.13) 
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since all terms are real and therefore any function F(v) =F*(v) =F(v) a t the band edges. The 
proper sign in eq (7.13) is determined by the s ign of R =± 1 itself at the band edges. For m odd, 
the sign of R' is given by the sign of -h2KH ·=-h2K1_ ,. because the product term in eq (7 .5) is 
obviously + 1 at the band edge. By using eqs (3 .12), (3.13), and (3.24), one has 

R'=±1 (7.14) 

where A~,·- I) refers to b Z" - 1 and A~,.- I) refers to aZ,.- 1 of eqs (5.2) and (5.3), respec tively. It is easily 
seen by inspec tion that, in order to comply with eqs (5.2) and (5.3), R' =+ 1 need be taken for a 2,. - 1 

whereas R' =-1 is appropriate for b2T - 1 in eq (7 .14). 
The even m case is somewhat more complex. Checking for K1- r , it is seen that a2r of eq (5.5) 

leads to a finite value for K1- ,· but b2r of eq (5 .4) requires that IKH·I-HO. Hence R" =+ 1 for aZr 

(since then all K-i= K-i are finite) but is yet undetermined for bz," To clarify the latter situation, 
one uses eq (3.30) to find the limit 

and since all K-i = K- i (i =P r - 1) in eq (7.8) at the edge pertinent to b2 ,., eq (7.15) leads to R" = - 1 
at thal edge . In conclusion, one obtains that 

Cn = + C- (m+n) for am 

(7. 15) 
Cn = - C- (m+n) for bm 

and therefore the function ){8) of eq (1.2) is in the form of a Fourier c')sine or s ine expansion, 
respec tively, on the right or left edge of the uns table regions . 

A special feature of the b2·,. edge is that, since Kl _r~oo, one ge ts from eq (7.6) that c- ,.= O whic h 
also agrees with the seco nd of eqs (7. 15); hence, the c- ,. harmonic vanishes at the left edge of all 
the unstable regions which are charac terized by eve n values of m = 2r. It is appreciated that 
this harmonic is exceptional in that it is the onl y one which (for m even) does not pair off with any 
other harmonic in the unstable regions but, as shown in figure 2 and eq (7. 12), it can be said to 
pair with itself. 

F IGUI{E 2. The magnitudes of the harmonic coefficients 
cn(iv) in the unstable regions. 
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To conclude the discussion, it is pertinent 10 find the magnitudes of the harmonics for small 
h2 • In that case, one may approximate Ki in the unstable regions as 

..!.. == 1; == (m+ ~ + 2i)2 - (m+~)2 == 4i(m+ i) == 2. . 
Ki Ki (7.16 ) 

For K- i, however, condition (4.5) precludes an easy approximate evaluation. The order of magni· 
tude may nevertheless be estimated by replacing i with - i in eq (7.16). One then finds: 

( h2) 11 m' - . + O(h211+2) 
4 n!(m+ n)! 

(n> 0) 

( h2)-nO[ (m+n-l)! J 
4 (-n)!(m-l)! 

I~:I= (h2)1I1+110[ (-n-l)! ] 
4 (m+n)!(m-l)! 

(-r<n<O) 

(7.17) 

(-m<n~-r) 

( h2 )-(m+n) m' -. . + 0 (h2 - m- 1I ) 
4 (-m-n)!(-n)! 

(n ~-m) 

for the unstable regions. Numerical and approximate analytical considerations indicate that, for 
m> 3, the order of approximation for - m < n < 0 in eqs (7.17) approaches the actual value very 
closely. 

In the stable regions, property (7.10) does not hold any longer and K- i turns out to be quantita· 
tively dissimilar from K_i . To find the latter, one notes that eqs (3.1) and (3 .13) imply that 

(7.18) 

where K- and K+ = KJ were defined in eq (3.3). Employing the definition of C- i in eq (3.14) and 
the series expansion (3.6) for K- , one finds 

(7.19) 

Introducing eqs (7.18) and (7.19) into eq (3.12), one obtains via eqs (3.7) and (3.8) 

K - i =A- i + A 1 h4 + OW) = Lh(~+ J) + O(hO) = 4(i + 1)~4+ 1- v) + O(h- 2). (7.20) 
- (/ + 1) 

In view of the comments following eq (3.22), K - i cannot be obtained directly from eq (7.20) and one 
needs to use definition (3.12) instead. It is then observed that 

(7.21) 

also, an inspection of eqs (4.1)-(4.4) for A reveals that 5 is of O(hO), provided v is not too close to 
m (band·edge). Thus 

(i 0;1= m) (7.22) 

and this approximation i~valid for use in eqs (7.9) since i 0;1= m therein. 
The terms Ki and Ki are obtained in a similar form to that of the unstable regions. Thus, 

Ki = L + OW) = 4i(/+ v) + OW), (7.23) 
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- 1 1 
Ki= t + OW) = 4(m + i) (m - v + i) + OW). (7.24) 

Introduc ing the relations above into eqs (7.9) one has for the stable regions : 

(7.25) 

where f(x) is the gamma function of argument x. 

When comparing the last results with eqs (7 .17), one recognizes that the orde r in h2 for len/co l 
is the same in both stable and unstable regions for n ~ - r; for n < - r, on the other hand, len/co l 
c hanges from O(h2Im+nl) to O(h2Inl), i.e., by a factor of h2m. This is due to the fac t th at pairing of 
the harmoni cs occurs in the unstable region only. 

FIGU RE 3. Variation oj the harmonic coefficients cn(iv) 
with in the stable regions , Jor h2 = 1. 
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The above considerations indicate the following: (a) for n ~ - r, len I decreases monotonically 
relative to Co as A increases; (b) every harmonic lenl with n < - r increases near and at the band 
edges and decreases towards the middle of the stable bands. These remarks apply to cases with 
h2 small and, as one follows the value of Cn with n < 0, it is clear that this harmonic will be have in 
the manner (b) up to a value of A == r and in the manner (a) for A > r. For n > 0, the harmonic am
plitudes behave only in the manner (a) since the n n is always greater than - r_ 

The above features are illustrated in figure 3 wherein a few harmonic amplitudes are plotted 
for the range ° ~ v ~ 6 within the stable regions. The vanishing of the C _ I" harmonic at the left 
band edge with m even is shown in the figure by C- l, C- 2, and C- 3 which vanish respectively, at 
11=2,4 and 6. Also, relations (7_16) are verified ; thus, Ie-d=co at v=l, 1c-21=co at 11=2, let I 
= 1e-21 at v = 3, etc. The constant monotonic behavior of en for n > ° should also be observed. 

8. A Note on Accuracy and Convergence 

In the foregoing derivations, the exact meaning of "h2 small" was not explored and this ques
tion is examined in the present section. 

It is first remarked that, if a numerical computation is desired, the results (3.28) and (3.32) 
may be valid for the calculation of A for any values of II and h2• One notes that all the expression s 
involved are in the form of finite continued fractions, except for KI =K+ which is infinite. Th e 
latter, however, is expandable via eq (3.6) into a series consisting of te rms Kk' that, for large k, 
vary as 

(8.1) 

whic h converges very rapidly. Hence, for rlumerical computation, A is obtainable within any 
desired accuracy provided the iteration process itself converges. However, the convergence of 
the iteration process is still an open question . 

With the above observations in mind, the accuracy of the results for small h 2 can be examined. 
As already noted, only the leading terms in the expansions for K I , A I - /" , etc., need be re tained for 
results up to and including a term of O(h4) _ With respect to K I , thi s means that one needs 

(8.2) 

in order to justify the assumed approximation. All of the other functions A I _ ,-, B I _ ,. , and CI - I" are 
essentially expressible in terms of A 1- ,.; retaining only the firs t term in the latte r means that 

(8.3) 

If one replaces A by the first approximation Ao = v2 == m2 in the two inequalities, one gets : 

h4 ~ 16i(i + 1) (m + i) (m + i + 1) (i > 0) (8.4) 

and h4 ~ 16j(j-l) (m- J) (m- j+ 1) (1 < j < r). (8.5) 

The worst case for inequality (8.4) is m = 0, i = 0, i. e., 

(8.6) 

whereas, for (8.5), the worst restri ction occurs at m = 5 and j = 2 since only 1 < j < r applies; hence, 

h4 ~ 12 X 32. (8.7) 
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( 1.,1). The dl.t -das llt·d c ur vl:' n, latl's 1(1 the e rn,,. whic h OCC llr~ when ('(I (4.2) is u s ed ins tead O r C(1 (4.1), 

Equations (8.6) and (8.7) indicate that the results obtain ed s hould hold well up to and including 
values of h2 of order unity. An analogous examination of L (instead of L) leads to th e same res tri c
tion. To c heck these co nsideration s, the exac t results for h? = 1 are compared in fi gure 4 with 
those obtained via eqs (4.1)-(4.4). The solid lines indica te the error produced by using eqs (4.1)
(4 .4) whereas th e das hed lines refe r to the results obtained via eq (1.3). It is noted that consid
erable improvement is obtained, especially near v = 1 and v = 2. It is also interes ting to observe 
that smaller errors are obtained if eq (4.2) is used to calculate A for 0 ,,;;; v ,,;;; 0.5 ins tead of eq (4.1); 
this feature is shown in fi gure 4 by the dot-dashed line. Calculations were also carried out for 
h2 = 0.1 and 2.5; the errors incurred then are respectively, less than 0.1 percen t and 20 percent for 
all v, provided eqs (4 .2)- (4.4) are employed (i.e. , eq (4 .2) is extended to cover the range 0 < v < 3/2). 

Th e above co mm ents indicate that the formulation discussed in the present paper is useful 
from both analytical and computational aspects. While it is r ecognized that th e itera tion process 
may not always be co nvergent , it is also probable that the prese nt formulati on might provid e a 
tool for examining the range of validity for some of th e express ions of the Mathieu fun c tions and 
soluti ons whose convergence is s till an open ques tion . 

The authors are grateful to Professor A. A. Oliner for his encouragement and Professors 
E. S. Cassedy and H. Hochstadt for helpful suggestions; also, thanks are due to Dr. Gertrude 
Blanch, Wright-Patterson Air Force Base, Ohio for her criticism of the manuscript. This work 
was sponsored by the Air Force Cambridge Research Laboratory, Office of Aerospace Researc h, 
under contract No. AF-19 (604)-7499. 

9. Appendix 

Assume that K", as defined in eq (3.11), may be written as 

K P Qn 
,,= n+S -R 

n 
(n ,,;;; 0) (AI) 
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l_~ __ 

where p", Q", and R" are functions to be determined in such a manner that the above becomes an 
identity; S was defined in eq (3.13). One then has 

K - 1 _ Qn- I 
n - I-L _h4K = P Il - 1 +S-R 

n- ) n n- 1 

Substituting for K", eq (A2) yields after some algebraic manipulation, 

and, identifying terms, one obtains 

1 
Pn- I =L -h4P 

n- I n 

Q"h4 

Qn- I = (L _ h4P )2 
n- I n 

Qnh4 

R n- I =Rn + L _ h4P 
11 n 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

The last relations form a system of difference equations which are solved by noting that the bound~ 
ary condition at n = 0 stipulates that 

Po=Ro=O and Qo= 1. (A7) 

Applying this to (A4) - (A6), one obtains easily 

p =JJ_ h4 L h41_ _ h41_ h4 
" Ln Crr::;" rc rL-; (AS) 

-n 

Qn = h- 4n IT P=-i (A9) 
i= 1 

- n 

Rn=h4 L P-jQI -j (AlO) 
j = 1 

all of which hold for n < 0 and it is und erstood that P - I = I /L_I . Upon identifying 

B'{, == Qnh4n and en = R"h-4, (All) 

it is readily verified that eq (3.12) is proven and that eqs (3.7), (3.8), and (3.14) are satisfied. 
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