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A simple compact formulation is presented for the eigenvalue A of the Mathieu differential equa-
tion "+ (A —2h* cos 20)y=0. The relations obtained thereby are employed to examine certain charac-

teristic features of the solutions y = ei*? z cne?™ in both stable (v real) and unstable (v complex) regions.
n

In the vicinity of the boundaries (v = m = integer) which separate these regions, the expressions derived
for A are nonsingular and continuous; at the boundaries, these expressions are identical to available
expansions which become therefore special cases of a more general formulation. The results are used
to determine the magnitudes of the harmonic coefficients ¢, and the instability intervals. The latter
are shown to be intimately related to restrictions on the complex value of the characteristic exponent
v. In addition, simple approximations that are suitable for perturbation problems (h* small) are derived
for all of the characteristic quantities.

1. Introduction

Hill’s differential equation and its special case, the Mathieu equation with real coefficients

d>y 010 o
w%—()\—lhf cos 20)y =0 (1.1)

were first examined in connection with the vibration of elliptic membranes [1] ! and the motion of
celestial bodies [2]. More recent studies were motivated by applications in the fields of acoustical
and electromagnetic diffraction, frequency modulation, electromechanical transducer design,
elliptic waveguides, etc.; since it is impractical to provide a complete bibliography within the
present framework, the reader is referred to several excellent textbooks [3—6], which contain
lengthy lists of references.

Most of the investigations of the Mathieu equation (1.1) were concerned primarily with only
a very limited range of solutions —the periodic ones. Thus, if the solution to (1.1) is expressed
in the Floquet form

y () = e*irt i cn( £ iv)eind (1.2)

n=—wx

where the = signs relate to the two possible characteristic solutions, these will be periodic when-
ever the characteristic exponent v is an integer (v=m=0, 1, 2, 3, . . .). In those restricted
cases, the solutions y(f) were extensively tabulated [7].

Of a somewhat different type are problems which do not require periodic solutions; in those
cases, v is not necessarily a real integer and it may also become complex. Thus, the Mathieu
equation (1.1) may express the propagation of electromagnetic waves in a medium that possesses
dielectric or magnetic properties which vary periodically [8, 9, 10]; in that case, 0 represents a

*This paper is based on a portion of a dissertation submitted by H. C. Wang in partial fulfillment of the requirements for the Ph. D. (Electrophysics) degree at
the Polytechnic Institute of Brooklyn, New York.

! Figures in brackets indicate the literature references at the end of this paper.
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space variable and cy(=iv) refer to the amplitudes of the space harmonics. An analogous situ-
ation occurs in the case of certain types of oscillators [11] (particularly those involving parametric
action) for which 0 is interpreted as a time variable whereas cy(*iv) relate to the amplitudes of
the temporal harmonics. In all of these cases, tabulated results are few and restricted in range
[6, 12].

The significance of the characteristic exponent v can usually be related directly to the wave
character of the physical phenomena described by the Mathieu equation (1.1). Hence the deter-
mination of v, i.e., its relation in terms of A and A? or, alternatively, the determination of A=A(v, h?),
are usually of considerable importance. It is also recognized that, when a forcing term is present,
the source (generator) element usually prescribes the wavelike nature of the phenomena as re-
flected through v; hence A, rather than v, represents the unknown physical quantity to be deter-
mined. One may then employ expressions that are found in the literature [1-7] and which relate
\ in terms of power series of A% for integral values of v. For v not an integer, the power series

SVl

1
—— 4 8
A=v +2(V2_1)h +32(y2——1)3(y2——4)h o o o (1.3)

is available; however, this relation converges poorly for v close to an integer and its applicability
is therefore limited.

The present paper presents a method for deriving explicit expressions for A= A(v, A% which
hold for arbitrary values of v. The expansions involved are based on the continued fraction rela-
tions [3—7] of the Mathieu equation and is an extension of a method for obtaining power series for
v integer [13]. The expressions obtained herein are not singular for v integer, they are applicable
for both real and complex values of v and appear to converge rapidly. A different method which
also converges rapidly was recently proposed by Schifke, Ebert, and Groh [14]; in contrast to their
results, the expressions presented here are explicit and they are particularly simple when approxi-
mate expressions are required for small A2

In addition to expansions for the eigenvalue \, other characteristic parameters can be found
via the expansions given here. Thus, the extent of the range for complex values of v is discussed,
as well as the relation between all of the harmonic amplitudes c,(=iv). It is also shown that, in
the limit of » becoming an integer, the results presented here are identical to those already avail-
able [1-7] for the Mathieu functions and it is suggested that the present method leads to a more
systematic approach for future computations of the pertinent series.

Certain physical interpretations, notation and the representation of the various possible solu-
tions are discussed in connection with the so-called “‘stability chart’ in section 2. The derivation
of the expansions for A= A\(v, h?) is presented in section 3 and the pertinent formulas for small >
are given in section 4. Simplified expansions for v integer are discussed in section 5 and the range
for v complex is evaluated in section 6. The magnitudes of the harmonics c,( = iv) are dealt with
in section 7. Finally, some comments are made in section 8 concerning the range for A*> wherein
the relations presented here are expected to be valid and to converge rapidly.

2. Stability Chart

The harmonic amplitudes ¢, = c,(=* iv) are interrelated via the infinite continued fraction ex-

pansions [3—6]:
&__@_{__"” _,_/h4 5 5 0 0 5
Cn- 1_ Ln L,H] L'H—z (Zl)
PO I T AR .
Cn+1 B L,, ’ﬁl L”72 (22)

Ly=w+2np—A. (2.3)
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By combining eqs (2.1) and (2.2), one obtains

Ly V| A_ . 1] _'__lh4 L
h.l—L“*l L"+2 +Ln—l Ln 2 (24)

which is essentially an equation for A=A\(v, A%. By solving it, one may obtain the eigenvalue A
and thence the harmonic amplitudes ¢, via (2.1) or (2.2).

Relation (2.4) is often presented [3-9] in the form of a so-called “*stability chart™, as shown in
figure 1. This diagram illustrates some of the properties associated with the eigenvalue A and the
characteristic exponent v. Thus, for A% and A real, v may be either real or complex. In the latter
case:

v=m-+ixa (2.5)

where « is real and m=0, 1, 2, 3. . . . For simplicity, the real part of v will always be taken as
positive, in both the real and the complex v cases.

Regions with real and complex values of v are called ““stable” and “unstable’ regions (or
bands), respectively, in the literature [3—12]. A systematic definition of this terminology can be
traced to van der Pol and Strutt [15]; the justification is afforded by the fact that, if v is complex,.
the characteristic solutions in eq (1.2) are not bounded as |6|—c. It is recognized that the
“unstable” solutions should not necessarily be neglected in actual physical situations.  Thus, when
0 is bounded, both complex values of == v are admissible; also, in certain unbounded situations, one
of the solutions may be retained and only the other need be rejected. The latter case is illustrated
by the radiation condition in electromagnetic fields [10].

From figure 1, one sees that unstable regions (bands) alternate with stable ones. The lines
v=nm consist of two separate branches (for all m # 0) which join on the A axis and contain a region
with v complex (=m +i®): it may be shown that the two v= m lines touch each other on the A-axis
with an order of tangency of m—1. As a consequence, for a fixed A2, the width of the unstable
band decreases as m increases.

As indicated in figure 1, the curves for v = const. exhibit different variations in the stable and
unstable regions. Those with v real start from the \-axis (at ¥2=\) and proceed towards increas-
ing values of A%; on the other hand, the curves for v complex exhibit a minimum with respect to
h? and are double-valued with respect to A.

Whereas the stability diagram may be used directly [9, 10] to obtain one of the parameters
N, v, or h* when the other two are given, this procedure usually leads to a graphical construction
and therefore its accuracy and convenience are somewhat limited. Instead, simple analytical
expressions for A=A(v, h*) may be used and their derivation is given in the following section.

FIGURE 1. The Mathieu stability diagram.

s
10 Yy
A
N / X
A Y
N by
VAN L
y:mi’\ \ > /Iw
1 10i \ 0 a2
1 Il Ly
-2 -1 o 3

103



3. Relations for the Eigenvalue

In the present section, relations in the form A= A(v, h?) are obtained via the continued frac-
tions of eq (2.4). When properly expanded as power series, these relations lead to equations for
the eigenvalue A which, unlike eq (1.3), are not singular at the band edges ¥=m=0,1,2,3. . 2.
In order to better appreciate the procedure employed here, it is pertinent to illustrate first the
derivation of eq (1.3).

By setting n=0 in eq (2.4), one obtains

hy hy h Y| A A
PSRN . . IO 'l Nl NN I
Lo=v*—\ L [I:ij[i‘ +L_1 ‘Z__J IL—_J (3.1)

which may be written as

A= —h{K*+K") (3.2)

h*| Rt
L+1 (3.3)

Equation (3.2) is now viewed as an iteration formula

where

N =P = h4[K+(/\i) P K*()\,‘)] (3.4)

for finding Ai41 when a trial value A\i(i =0, 1,2,3. . . .)is assumed. To obtain an analytical result
in terms of a power series in A2, it is necessary to expand K* as a power series. This is achieved
via a useful series expansion for continued fractions [16] which, in the present case, is written as

1 h4 h8
Kr=—~+ G
Rt h4\2 __l ht
2 T i —
bt (b)) () (B )
h12
+ h\2 -_] ht\2 _I h4 ht + (3-5)
s
L+1 L+Z E L*"% *2 [Zz
This expansion may be cast in the more compact form
=3 BusBuganh® (3.6)
=0
where Bo=1: B+A—HA+J 3.7

ag=plptd ]k
and =0 L+J +(j—1) +(j—2) ’ E=2) [L_ﬂ (38)

G=1,2,3...:k=0,1,2,...)

and it is understood that 4., :LL'

gl
It is recognized that the expansion in eqs (3.5) or (3.6) would be a power series in terms of A*
if terms with A% did not also appear in A.;. However, if h* is sufficiently small, one may employ
the binomial series expansion to convert the above in a power series. Thus:
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1 h4 h4 —1 h?‘ h4 -2 h4 h4 —-11-1
K+—E+L§L2<1_L1Lz> +LfL§L3<1 L1L2> [1 LgL;g(l LIL) ] *

1, A Ls\ A8 L;L4 h'? .
_L1+Lsz <1+ >L2L2L3 <1+L +2LL2 Ll 2>L§L§L§L4+O(h ) (3.9

and a similar power series for K-. Introducing these series into eq (3.4), one obtains the required
iteration formula which yields A in terms of v and a power series in h*. The proper starting value
for the iteration process is obviously Ao =12 for the stable regions and Ay=m? (m=0,1,2 . . .) for
the unstable regions, since these are the values of A at A=0 (see fig. 1). It is observed that by
taking these starting values of Ao, the iteration formula (3.4) is in a form such that \; is obtained
to 0(h%*). Hence, if X is to be found to 0[A*i*V], it is necessary to find the series expansions for
K* only up to 0(h*).

By using these considerations, one may verify that eq (3.2) yields formula (1.3). As already
noted, however, this formula yields good results only for values of v which are not too close to a
nonzero integer. When this condition is satisfied and if A? is not too large, both the iteration (3.4)
and eq (1.3) converge rapidly. This fast convergence is due to the fact that A;4; in eq (3.4) was
isolated out from the term L,, as indicated in eq (3.1) and, of all L, terms, L, varies most rapidly
with both A2 and v, provided 0 <real part of » <1. This property is verified by noting that, for
small A%, one may write A = v? to yield

L,=w+2nP—v*=4n(v+n) (3.10)

which is most sensitive for n =0 and n=—v=—m, where m is the integer that is closest to the real
part of v. Hence, as long as v is real and sufficiently smaller than unity, L, is the only sensitive
term. However, in general both Ly and L_,, may become critical; hence, an iteration formulation
such as eq (3.4) would have to be based on a value for \;;; which is isolated out from both L, and
L . This is accomplished herein by employing certain properties of the pertinent functions L,
as discussed below.

Consider first the problem of isolating the term L, out of a continued fraction such as eqs
(2.1) or (2.2). If |n| is large, Lo will appear far down in the expansion and the process of finding
its value will become quite tedious. It is therefore convenient to extend the concept of K* of

eq (3.3) and define
h* ht
Lo L 6-1)

where the subscripts of the denominators form an increasing sequence. The term L, will appear
only if n<0; one may then write (see appendix):

B2h—4n
K,lZA,,+S—_"m (n=<0) (3.12)

where the terms 4, and B, are given in eqs (3.8) and (3.7), respectively, with

S=Ly—Kh* (3.13)
—(n+1)
Ag=Cy=0; Cn:z)B—kB—(k+l)h4k(n<O) (3.14)

and it is noted that the terms A4, =A,(v), B,=B,(v) and C,=C,(v) were defined in such a manner
that, if expanded as power series in A%, their expansion will start with a free term.
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In addition to the simplification realized by writing K, in the form of eq (3.12), the terms
Ly, possess a certain symmetry which is basic in the derivations obtained here. This feature is
exhibited by taking v as

v=m+A (3.15)
where

B (for v real)
A= (3.16)

ia (for v complex).

For complex values of v, eqs (3.15) and (3.16) correspond to eq (2.5) and therefore m denotes

. . . . 1 .
the pertinent unstable region. In the stable regions, m is chosen so that |8| < 3 hence m is then
the integer closest to v in an arithmetic sense.
Defining the “complementary” value of v as

(3.17)

17=m—A=2m—1/,

one recognizes that v corresponds to the complex conjugate value of v if the latter is complex.
Consider now any function F =F(v); then

- — A -
F=F(v)=F@), (3.18)

where a indicates equality by definition. If F(v) is a polynomial, one may separate it as
F=Fe+Fo (3.19)

where Fe=Fe(m, A) and Fo=Fo(m, A) are the functions containing only even or odd powers of
both m and A. For complex values of v, Fe, and Fo refer to the real and imaginary parts of F,
respectively. One then also has

F=Fe—Fo (3.20)

F2A pF = (Feyr— (Foy (3.21)

and it is recognized that, if v is complex, the modulus F is identical to the absolute value |F|.
Applying definitions (3.17) and (3.18) to L, in eq (2.3), one gets

Ly=1_(n:n) (3.22)

which is the “symmetry” feature alluded above. Its importance lies in the fact that, whereas
only the first fraction (with increasing indices in L,) of eq (2.4) is expressed via K, of eqs (3.11)
and (3.12), the second (decreasing) continued fraction is expressible in terms of K, via eq (3.22).

A crucial point in the above definitions is the fact that \ is regarded as an independent param-
eter when taking the complementary of F(v). In particular, one notes that L,= L,(v, ) which may
also be written as L,=L,[v, A(v)]; definition (3.18), however implies that L,= L,(v, \)= L,[v, A(v)]
and therefore L, # L,[v, A(¥)].

The following discussion is more convenient if even and odd values of m are viewed separately.
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(aymodd: m=2r—1(r=1,2,3 . . .
For odd values of m, eq (2.4) may be written, with n=1—r, as

h" /14 h ht -
- ':L,,. 7 (3.23)

which, by using relations (3.11), (3.18), and (3.22) becomes

1

Ko, Kot (3.2)

The sensitive L_,, term is thus replaced with L;. One recalls that, for an iteration formula
similar to that of eq (3.4), the term A1 needs to be isolated from the L, term, i.e., out of S of eq
(3.13) in the present case: in particular, since now m # 0, \;+; will be obtained from the even part of

Ly. Writing
X=S—Ci h* (3.25)
the required iterated eigenvalue is given, via eqs (2.3), (3.13), and (3.25), by

N2 =D =m24 A2 — Xe— (Ke, + Ce,-,) h* (3.26)

where A will henceforth be used to denote the pertinent eigenvalue appropriate to the mth
region, as defined in eqs (3.15) and (3.16).  To find Xe in eq (3.26), it is realized that eq (3.24) leads,
via eqs (3.12) and (3.25), to
pAr—17 [— B2 hir—1)
[ B B,
(3.27)

and the last relation is recognized to be a quadratic equation for Xe. By solving it and substituting
into eq (3.26), one finally obtains:

N =(2r— 12+ A2—Gle - ht =+ \/[ﬁ' SR04 [2(2r— 1)A—Glo - b (328)
where
,__ B,
1—A2 ps
G'=Ki+Cry— Ay F'h4, (3.29)

Result (3.28) is the required iteration formula for m=2r—1; though more complicated, this
result is analogous to the iteration in eq (3.4) for m=0. The = signs in A" refer to the two admis-
sible eigenvalues for given h? and A. As already discussed in conjunction with the stability chart,
all A (m # 0) are double-valued for a given v and A? in the unstable regions: the + and — signs
then refer to the larger and the smaller values of A, respectively. In the stable bands, A" is
single-vaiued and the two eigenvalues in eq (3.28) arise due to the choice of m in eq (3.15); it is

then easy to verify that A" correspond to 8= 0, i.e.,, A" applies if m <v < m+§, whereas A"

. . o 1
is pertinent if m—i <v<m.
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(b) m even: m=2r (r=1,2,3 . ...
For even values of m, eq (2.4) is written, with n=—r and relations (3.11), (3.18), and (3.22), as

L,=(Kir+Ki_,)h* (3.30)

which, by employing the notation of eqs (3.12) and (3.26), becomes
2 R2
L_,.—24e, hi= (El:urgl_i) hi (3.31)
X X
One then obtains again a quadratic with respect to Xe which yields a similar, but different, solu-

tion when compared with the m odd case. By noting the value of L_,, as defined via eq (2.3), one
now obtains

A2 = 4r2+ A2 — G"eh* = \/(F”"'h“”)2 + (4rA—G"o - h*)? (3.32)
where
F"___ B%*T
A2 —\@)—24e,_,ht (3.33)
G'=K,+Ci—r+ F'RA=D, (3.34)

Equation (3.32) is the required iteration formula for even values of m; the significance of the
=+ signs in A was already discussed in the paragraph following eq (3.29).

4. Formulas for the Eigenvalue \™ for Small #*

Relations (3.28) and (3.32) are directly applicable for obtaining A™ to any desired accuracy
by means of numerical methods. In addition, analytical formulations may be obtained for A(®
provided A? is sufficiently small, this being particularly significant in certain physical situations.
Thus, small A2 occurs in problems wherein the periodicity with respect to the independent variable
0 appears as a perturbation in an otherwise uniform configuration (h*=0); it is then clear (e.g.,
from the stability chart) that instability phenomena may appear in certain ranges even if the
perturbation h? is exceedingly small.

To examine these effects, all of the functions appearing in eqs (3.28) and (3.32) are expanded
as power series via relations which are analogous to eq (3.6) and (3.9). Using considerations simi-
lar to those described in the paragraph following eq (3.9), formulas (3.28) and (3.32) are then em-
ployed to yield relations for A™ up to any desired power of A2. This method is applied in the pres-
ent section to obtain expansion for A for small A% up to and including O(h%). It is easy to verify
that, if all terms of O(h%) or smaller are neglected, it is sufficient to retain only first terms (h°) in
the expansions for K;, A, etc.; the approximations involved are commented upon in section 8.
The following results are thus obtained:

(a) In the stable regions (v real).

Formulas (3.4), (3.28) and (3.32) are used and expanded to O(h%); the iterations need be em-
ployed only once and with a trial value of \¢™ =%, The exact definition of L, is important in these
derivations, as commented upon in the two paragraphs following eq (3.22).

m=0: 0Sy$l' )\(0"—‘1}2———h4—+0<ih8> (4.1)
2N 2(=n2) 128 )~ ’
m=1: %$V_$1,1SV+S-;—;
(S_Vt)hé

AD=1+4 (1—p.)?

C16(1+v.)(2—vs)

i\/’ﬁ M [2 60+ Vi};4(2 - v:)]z(l i O%) -4
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m—2 %SV—$2,25V+$;;
(7T—v2)h*
(2) = —
NP=4+ (2—v.) (l—v =0
h? h! 2 . (379384 )
BNy S — e . ‘
_\/16(1—Vt)2+[4+6(1+v*)(3—v$)] (2—v2) 0(———]3824 he),  (4.3)
2{ —lgyig’n m<=v. m+l
ue : m 2 D 0— 2
h 5m2+7
(m) — 2 — o
N 2(1_Vi)+0[32(m2—1)3(m2—4)h] (4.4)

It is noted that, to O(A?), only the results for m=1 and m =2 are different from eq (1.3). On
the other hand, eqs (4.2) and (4.3) imply that eq (1.3) may lead to very erroneous results even for
small perturbations; this relates to the regions which are close to v=1 and v=2, respectively.

The order of magnitude of the first neglected term in the above expansions is also indicated;
the figures give the exact result for v=m and it is expected that they yield a very good approxi-
mauon for v # m.

(b) In the unstable regions (v=m + i«).

As illustrated in figure 1, A and v may not be prescribed in a completely arbitrary fashion
since, for m # 0 and a given A%, « cannot exceed a certain value if A" is to be real. The limiting
a corresponds to the minimum of the constant-v curves in the unstable region; this value of «
may be calculated by stipulating that the radicands in eqs (3.28) and (3.32) vanish, thus obtaining

a<s wmh:!m —+ O(h2m+2) (45)
where the equal sign refers to the limiting value and

1 .
2m[2,,,71 (m__ 1) ']2 (f()l‘ all m # 0)

Wm =

(4.6)

Since the coefhicients w,, form a descending sequence, « is restricted to exceedingly small values
for large m. This behavior is directly related to the extent of instability since a refers to the ex-
ponential increase of the solution (1.2); consequently, large values of m (and therefore of A') can
accommodate only “weak” instabilities (at least for sufficiently small values of A2).

With restriction (4.5) being accounted for, A may be obtained in the same fashion as in the
stable regions, except that the trial values for the iteration are taken as A9 =—a2(m=0) and A7V
=m2(m # 0). It is then obtained:

GRS +4 o) %0[32(12 ;zi?z}i az)] Ce0)
m=1: A\D=1—q— (4+(§2) "16fa2)_\/h4— Za)z[ (4+a2§’ﬁ6+a2)]210(%) (4.8)
L (4%3)??(21;2) - \/<4~’+L-4a2>2~ (4o)® [1 * (4+a2)2?;6+a2)]2
—o(% h8> (4.9)
S R VA sy e (4.10)
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Due to analogous considerations, the comments following eq (4.4) (with respect to m = 3) also
apply here.

5. Characteristic Curves for the Periodic Mathieu Functions (v=m)

As a particular case, formulas (3.28) and (3.32) are applicable for obtaining the characteristic
curves of the periodic Mathieu functions (v=m). Observing that A =0 in these cases, all of the
odd functions Aou, Bo,, etc., are identically zero and the formulas simplify considerably.

The notation for the band edges is generally given as an=A"(v) | v=m and by =A"(v) | ,=p in

the literature [3—6]. One then obtains 0

ao:—‘2K1h4, (51)

B2 p2er-1)
by = (2r—1)?— (Ki + G =705, (5.2)

B2 p2er-1
azr1 = (2r=1)= (Ki+ Con) b+ T2 2

1-7

bor=4r*— (K1 +C1-r) b, (5.4)
B2 b (5.5)

azr=4r2—(K1+C1,r)h4+ l(lz A Bt
2Q2yr 1-r

These relations may be used to generate the Mathieu function expansions for the eigenvalues
anm or by in terms of a power series in A% It is then evident that certain known features are already
apparent in formulas (5.1)+5.5); thus, odd values of m lead to expansions in terms of powers of h?
whereas even values of m lead to expansions in terms of powers of A*. In fact, if these expansions
are obtained iteratively with a first trial value of \o=m?, the above formulas yield results which
are identical with expressions available in the literature [3-7]. The identification follows upon
recognizing that, for example, eqs (5.2)—(5.5) are a restatement of eqs (20—2, 21-24), respectively,
on p. 723 of reference 6.

The advantage of the present formulation is evident in that it represents a systematic technique
for generating the power expansions for \™. Whereas it is recognized that all methods (including
the present one) become quite involved and tedious if an or b, need to be found in terms of large
powers of A2, it is nevertheless clear that formulas (5.1)—(5.5) are already expressed in such a
concise and systematic manner that considerable simplification occurs.

6. Instability Intervals

The width of the band between each pair of the characteristic v=m curves is of special im-
portance since it yields information on the extent of the range of instability. For an arbitrary
value of A2, this instability interval is defined by

Wn=am—bn (m#* 0) (6.1)

and is easily determined via relations (5.1) to (5.5) which yield:

2B%

WZI‘—~] = 1 _A2 h4 hZ(ZT*l) (6'2)
l=7r
= 232-' 4r
W=t h 6.3)
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Both results may be expressed also as

h m

Wn= 2[2711-1(m_ l)l

2
] + O(h>m+2) (6.4)

which is obtained by taking the first term in a series expansion of eqs (6.2) or (6.3) in powers of AZ.
It is observed that, to this order of approximation

W= 4‘mwmh2m (6.5)

where wy, are the coeflicients in eq (4.6). Result (6.4) is identical to that already obtained by Bell
[17], Levy and Keller [18] and Hochstadt [19] who used different approaches. In the present case,
the instability interval W, turns out as a simple corollary to formulas (5.2)~5.5) and the accuracy
of eq (6.4) can be estimated as discussed in section 8. It is also noted that W, is simply related to
the maximum allowable value of a since, introducing eq (4.5) into eq (6.5), one has

WIII

4m

a< + O(h?m+2), (6.6)
Hence, as m increases. the range of a becomes more restricted than that of W,. Phrased dif-
ferently, larger values of v (or \) lead to regions with decreasing unstable intervals; the extent of
instability itself is proportional to the interval W, but inversely proportional to v (or \).

7. Magnitude of Harmonics

The magnitude of the harmonic coefficients c¢,(==iv) of eq (1.2) may be found by using the
appropriate values of A™ obtained above. For simplicity, the + sign in ¢,(*iv) will be implied
subsequently; hence, ¢, is taken to denote c,(iv). To find the coefficients c,(—iv), one may employ
the identity cu(—iv)=c_,(iv) which is proven in the literature [3—6].

Using eqs (2.1), (2.2), (3.11), and (3.22), one gets

Cn
Cn—1

=021 (7.1)

Cn E—(nl+ll) . T
- —_hzk—(nwn) (7.2)

Cn+1 C—(m+n+1)

As clarified below, the ¢, and ¢_,, harmonics turn out to be particularly important. For these har-
monics, one obtains the following relations:

(a) For m odd; m=2r—1r=1,2,3. . .).
By using eq (7.1) successively, one obtains

o _TT S5 (a1 T K ;
e T T K (1.3
and eq (7.2) similarly yields:
Ci—2r 2r—-1 C—i Nl e
— = = (—h2)r- KNi
rwnl ] o (—h?) ]:'[O (7.4)

so that, by division:

— h2K, (for r= 1)

R,:CI—":
Co _ r—2 Eii
—hH{,_,.E) z(for r>1) (7.5)
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(b) For meven; m=2r(r=1,2,3. . .).

In a manner similar to that for m odd, one gets:

c _1 e e
Cop 5 C=1—i (= 4% :il:[oK"' (7.6)
Coor_ s ﬁ:(_hZ)rr_ll_(,
(87 i=l:l1 C1—i II:! - (7.7)
and, by division:
" C—2r r_1[_<_i
el (7.8)

By using eqs (7.1), (7.2), (7.5), and (7.8), one may now express all ¢, by means of the following
relations:

(=hr)"]] K; (n>0)

i=1

m—1 __
(—h2)n H K_; (—r<n<0)
Cn i=m+n
| e (79
(—h2)m+nR H K ; m<n<-—r
—(m+n) __
—hyommR [ K (n<—m)

i=1

and it is understood that R stands for R’ or R” for odd or even values of m, respectively. The
fundamental harmonic ¢y may be taken as unity or normalized via an orthogonal relationship
[3—6]; all these normalization procedures, however, lead to a real value for c,.

Equations (7.5) and (7.8) lead to the useful relation

I~22=R1—€=1 (7.10)

which is obvious for R=R"; for R=R’, this is verified by observing that eq (3.24) accounts for
the extra K;_, term in eq (7.5). One therefore gets

="C%min) (7.11)

which is obtained via eq (7.9) and (7.10).
Result (7.11) is interesting since one recalls that, in the unstable bands, any function F (v)

leads to a complementary function F (V) = F(v) which is identical to_F*(v) =F(v*), where the
asterisk denotes the complex conjugate. Consequently, the modulus F(v) is then identical to the
absolute value |F(v) |, so that

len] = le-an+m] (7.12)

in the unstable bands. The harmonic amplitudes are then equal in pairs, as shown in figure 2.
Relation (7.12) holds up to and including the band edges (v =m) where all variables are real; hence

= C—(m+n) (7.13)
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since all terms are real and therefore any function F(v) =F*(v) =F (v) at the band edges. The
proper sign in eq (7.13) is determined by the sign of R ==1 itself at the band edges. For m odd,
the sign of R’ is given by the sign of —A2K, ,=—h?K,_, because the product term in eq (7.5) is
obviously +1 at the band edge. By using eqs (3.12), (3.13), and (3.24), one has

B%_Lhz(zr—l)
C(2r—1)2—=ACD—(K,+C,_)h*

—h?K,_,=—A4,_.h* ==t (7.14)

where N#7=V refers to byy—1 and A3~V refers to as—1 of eqs (5.2) and (5.3), respectively. It is easily
seen by inspection that, in order to comply with eqs (5.2) and (5.3), R’ =1 need be taken for as
whereas R'=—1 is appropriate for bsr—; in eq (7.14).

The even m case is somewhat more complex. Checking for K;_,, it is seen that a, of eq (5.5)
leads to a finite value for K;_, but b, of eq (5.4) requires that |K;_.|—>%. Hence R"=+1 for a»,
(since then all K_;=K_; are finite) but is yet undetermined for b.. To clarify the latter situation,
one uses eq (3.30) to find the limit

. El—r* - |: Lfr ]
1 =] —1|=—1
sooKior  amoLPKiy

and since all K ;=K ; (i #r—1) in eq (7.8) at the edge pertinent to bs,, eq (7.15) leads to R"=—1
at that edge. In conclusion, one obtains that

cn=-=1 C—(m+n) for am
(7.15)

Cn =" C—(m+n) for bm

and therefore the function y{6) of eq (1.2) is in the form of a Fourier cosine or sine expansion,
respectively, on the right or left edge of the unstable regions.

A special feature of the b,, edge is that, since K,_,—®, one gets from eq (7.6) that ¢_,= 0 which
also agrees with the second of eqs (7.15); hence, the ¢, harmonic vanishes at the left edge of all
the unstable regions which are characterized by even values of m=2r. It is appreciated that
this harmonic is exceptional in that it is the only one which (for m even) does not pair off with any
other harmonic in the unstable regions but, as shown in figure 2 and eq (7.12), it can be said to

pair with itself.
=2r+l 0]

-2r+2 =1
S2v |
—2r-1 -2r+3 2
l Sh=2 S l |
_ Y . _
—r-l/ =t

(a)m ODD (m=2r-1)

FIGURE 2. The magnitudes of the harmonic coefficients
cn(tv) in the unstable regions.

-2r

o

=2r+l =

Sons!
r -2r+2 =) !

72 2
==l =l
| ' 7 | |

(b) m EVEN (m=2r)
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To conclude the discussion, it is pertinent to find the magnitudes of the harmonics for small
h?. In that case, one may approximate K; in the unstable regions as
1 . 5 . . 1
EELiE(m+A+2z) —(m+A) E4L(m+z)5?- (7.16)
t i
For K_;, however, condition (4.5) precludes an easy approximate evaluation. The order of magni-
tude may nevertheless be estimated by replacing ¢ with —i in eq (7.16). One then finds:

h2

(5) e
(

%)7"[ ’”+”_1)’J (—r<n<0)

O h2n+2) (n > 0)

(—n)lm—1)!
L

(7.17)

(%)’W [(m+_rl)rl‘(_rrzl)—’ 1)!] (—m<n<-r)
{

hZ) m+n) ml

T O (ns—m)

4
for the unstable regions. Numerical and approximate analytical considerations indicate that, for

m > 3, the order of approximation for —m < n <0 in eqs (7.17) approaches the actual value very
closely.

In the stable regions, property (7.10) does not hold any longer and K i turns out to be quantita-
tively dissimilar from K_;. To find the latter, one notes that eqs (3.1) and (3.13) imply that

S_C_ih":L()_K]]ﬂ_ijh4:(K—_C7j)h4 (7_18)

where K= and K*=K; were defined in eq (3.3). Employing the definition of C_; in eq (3.14) and
the series expansion (3.6) for K=, one finds

K-—C_i=B_B_i+1nh*+ O[h4+D], (7.19)

Introducing eqs (7.18) and (7.19) into eq (3.12), one obtains via eqs (3.7) and (3.8)

L+ 4i+1DE+1—v)

Kfj:Afi‘F h4 h4

+ O(hY) = + O(h%) = + O(h=2). (7.20)

_1
A—(i+1)h4

In view of the comments following eq (3.22), I_(,; cannot be obtained directly from eq (7.20) and one
needs to use definition (3.12) instead. It is then observed that

S=L,—Kih*=02m—v)2*— A —K;h*; (7.21)

also, an inspection of eqs (4.1)—(4.4) for X reveals that Sis of O(h°), provided v is not too close to
m (band-edge). Thus

L omy= - L0 (i~ m) (7.22)

Z.; dm—1)(m—v—1)

E,,' :Z,,- + ()(/’l“) =

and this approximation is valid for use in eqs (7.9) since i # m therein.
The terms K; and K; are obtained in a similar form to that of the unstable regions. Thus,

Ki=7+ 0kt ==——+ Oh?), (7.23)



- 1
K I T O =g =y + Ok (7.24)

Introducing the relations above into eqs (7.9) one has for the stable regions:

cn_ [ hA\I I'd=+v)
a_<_Z—) |n"r(1 i |n| iy)+0[h2(l+J"|)] (for n=0) (7.25)

where ['(x) is the gamma function of argument x.
When comparing the last results with eqs (7.17), one recognizes that the order in A2 for |e,/col
is the same in both stable and unstable regions for n = —r; for n <—r, on the other hand, |enlco|

changes from O(h2m+nl) to O(h2"), i.e., by a factor of A2™. This is due to the fact that pairing of
the harmonics occurs in the unstable region only.
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The above considerations indicate the following: (a) for n = —r, |c,| decreases monotonically
relative to ¢y as \ increases; (b) every harmonic |c,| with n <—r increases near and at the band
edges and decreases towards the middle of the stable bands. These remarks apply to cases with
h? small and, as one follows the value of ¢, with n <0, it is clear that this harmonic will behave in
the manner (b) up to a value of A = r and in the manner (a) for A >r. For n> 0, the harmonic am-
plitudes behave only in the manner (a) since then n is always greater than —r.

The above features are illustrated in figure 3 wherein a few harmonic amplitudes are plotted
for the range 0 < v < 6 within the stable regions. The vanishing of the c_, harmonic at the left
band edge with m even is shown in the figure by c¢_i, c_s, and c_3 which vanish respectively, at
v=2, 4 and 6. Also, relations (7.16) are verified; thus, |c_i| =co at v=1, |c_2| =co at v=2, |c4|
=|c_s| at v=3, etc. The constant monotonic behavior of ¢, for n >0 should also be observed.

8. A Note on Accuracy and Convergence

In the foregoing derivations, the exact meaning of ““A? small”” was not explored and this ques-
tion is examined in the present section.

It is first remarked that, if a numerical computation is desired, the results (3.28) and (3.32)
may be valid for the calculation of X for any values of v and A%2. One notes that all the expressions
involved are in the form of finite continued fractions, except for K;=K* which is infinite. The
latter, however, is expandable via eq (3.6) into a series consisting of terms «; that, for large £,
vary as

B B h4k h4k 1 m! 2 h 4k
R 4kt D) (mtk+1) [k!(m—l—k)!] (5) 8.1)
Lk+1 l_[ Lj
j=1

which converges very rapidly. Hence, for numerical computation, A is obtainable within any
desired accuracy provided the iteration process itself converges. However, the convergence of
the iteration process is still an open question.

With the above observations in mind, the accuracy of the results for small A% can be examined.
As already noted, only the leading terms in the expansions for Ky, 4:-,, etc., need be retained for
results up to and including a term of O(h%). With respect to K, this means that one needs

h* < |LiLi+| for all i >0, (8.2)
in order to justify the assumed approximation. All of the other functions 4,_, B;_,, and C; -, are
essentially expressible in terms of 4,_,; retaining only the first term in the latter means that

h* < |L_ L, j| forall 1 <j<r (8.3)

If one replaces A by the first approximation Ao =v? = m? in the two inequalities, one gets:
ht<16i(i+1)(m—+i)(m+i+1) (i>0) (8.4)
and ht<16jG—1) (m—jm—j+1) A <j<r). (8.5)
The worst case for inequality (8.4) is m=0, i=0, i.e.,
h* < 64 (8.6)
whereas, for (8.5), the worst restriction occurs at m=25 and j=2 since only 1 < j < r applies; hence,

h* <12 X 32. (8.7)
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(1.3).  The dot-dashed curve relates to the error which occurs when eq (4.2) is used instead of eq (4.1).

Equations (8.6) and (8.7) indicate that the results obtained should hold well up to and including
values of h? of order unity. An analogous examination of L (instead of L) leads to the same restric-
tion. To check these considerations, the exact results for A2=1 are compared in figure 4 with
those obtained via eqs (4.1)=(4.4). The solid lines indicate the error produced by using eqs (4.1)—
(4.4) whereas the dashed lines refer to the results obtained via eq (1.3). It is noted that consid-
erable improvement is obtained, especially near v=1 and v=2. It is also interesting to observe
that smaller errors are obtained if eq (4.2) is used to calculate A for 0 < v < (.5 instead of eq (4.1);
this feature is shown in figure 4 by the dot-dashed line. Calculations were also carried out for
h2=0.1 and 2.5; the errors incurred then are respectively, less than 0.1 percent and 20 percent for
all v, provided eqs (4.2)—(4.4) are employed (i.e., eq (4.2) is extended to cover the range 0 < v < 3/2).

The above comments indicate that the formulation discussed in the present paper is useful

from both analytical and computational aspects. While it is recognized that the iteration process

may not always be convergent, it is also probable that the present formulation might provide a

tool for examining the range of validity for some of the expressions of the Mathieu functions and
solutions whose convergence is still an open question.
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9. Appendix
Assume that K,, as defined in eq (3.11), may be written as
Kn:Pn+ Q" (nSO) Al
SR, (A1)
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where P,, Qn, and R, are functions to be determined in such a manner that the above becomes an
identity; S was defined in eq (3.13). One then has

S Quos
Kn—l —Ln~1 - h4Kn B P"_l +S _Rn—l (A2)

Substituting for K,, eq (A2) yields after some algebraic manipulation,

On
Qn—l - l anl - h4P,l (A3)
Pn_1+s“"Rn—1—Ln_1“h4Pn 1+S_R - 0.
" Ln—l - h4Pn
and, identifying terms, one obtains
_ 1
P"_l _—LnAl - h4Pn (A4)
__ O
On1 _(L,,fl — h*P,)? (A5)
nh*
Rn—lan'Fﬁ‘ (A6)

The last relations form a system of difference equations which are solved by noting that the bound-
ary condition at n =0 stipulates that

P0=R0=03nd00=1. (A7)

Applying this to (A4)—(A6), one obtains easily
1 h? ht h*| h?
TR T T VE

Ly n1 Lpi2 L_, ,L_—l (A8)

Qu=h-T[ P2, (A9)
i=1
R,=h* E P_;0.; (A10)
it

all of which hold for n <0 and it is understood that P_y=1/L_;. Upon identifying
A=Y B2 = Q,h*" and C,=R,h™, (A11)

it is readily verified that eq (3.12) is proven and that eqs (3.7), (3.8), and (3.14) are satisfied.
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